
Knowledge Distillation

as Semiparametric Inference

Lester Mackey∗

April 28, 2021

Collaborators: Tri Dao†, Govinda M. Kamath∗, Vasilis Syrgkanis∗,
Ruishan Liu†, and Nicolo Fusi∗

Microsoft Research∗, Stanford University†

Mackey (MSR) Enhanced Distillation April 28, 2021 1 / 40



Knowledge Distillation in a Nutshell

Knowledge Distillation (KD)
[Bucila, Caruana, and Niculescu-Mizil, 2006, Li, Zhao, Huang, and Gong, 2014, Hinton, Vinyals, and Dean, 2015]

1 Train your favorite accurate classifier (called the teacher)

…+ + + + + +
Ensemble of

500 trees

2 Train a simpler model (the student) to mimic the teacher’s
predicted class probabilities

+
Just a few

trees

3 That’s it: there are only two steps!

Mackey (MSR) Enhanced Distillation April 28, 2021 2 / 40



Knowledge Distillation (KD) in Action

Task: Predict income level from census data

123 5 10 15 20 30 40
Student's number of trees

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Te
st

 A
UC

Student without KD
KD Student
Teacher: 500 trees, 0.91 AUC

KD Student: 10 trees ⇒ .91 AUC and simpler to deploy
50× less storage and computation
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Knowledge Distillation in a Nutshell

Knowledge Distillation (KD)
[Bucila, Caruana, and Niculescu-Mizil, 2006, Li, Zhao, Huang, and Gong, 2014, Hinton, Vinyals, and Dean, 2015]

1 Train your favorite accurate classifier (called the teacher)

2 Train a simpler model (the student) to mimic the teacher’s
predicted class probabilities

Benefits
1 Simpler student often retains most of the teacher accuracy

Reduces test-time computation and storage costs; ideal for
resource-constrained devices

2 KD often more accurate than training same student from scratch

3 Same strategy applies to any classifier (be it a random forest or
a neural net) and any domain (be it tabular, image, or language)
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Knowledge Distillation (KD) in Action

Task: Predict income level from census data

123 5 10 15 20 30 40
Student's number of trees

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Te
st

 A
UC

Student without KD
KD Student
Teacher: 500 trees, 0.91 AUC

Warning: KD doesn’t always work quite this well...
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Knowledge Distillation (KD) in Action

Task: Distinguish ephemeral and evergreen websites

123 5 10 15 20 30 40
Student's number of trees

0.72

0.74

0.76

0.78

0.80

0.82

Te
st

 A
cc

ur
ac

y

Student without KD
KD Student
Teacher: 500 trees, 0.826 Accuracy

KD Student: 3 trees ⇒ .80 Acc. 40 trees ⇒ .81 Acc.
Underperforms student without KD after 20 trees
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Knowledge Distillation (KD) in Action

123 5 10 15 20 30 40
Student's number of trees

0.750

0.775

0.800

0.825

0.850

0.875

0.900
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Student without KD
KD Student
Teacher: 500 trees, 0.91 AUC

123 5 10 15 20 30 40
Student's number of trees

0.72

0.74

0.76

0.78

0.80

0.82

Te
st
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cc

ur
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y

Student without KD
KD Student
Teacher: 500 trees, 0.826 Accuracy

Questions

1 When should we expect KD to succeed or fail?

2 Can we enhance the performance of KD?
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Knowledge Distillation (KD) in a Nutshell

Question: When should KD succeed or fail?

Hypotheses and partial answers
Probabilities more informative than labels [Hinton, Vinyals, and Dean, 2015]

Linear students exactly mimic linear teachers [Phuong and Lampert, 2019]

Students can learn at a faster rate given knowledge of datapoint
difficulty (LUPI) [Lopez-Paz, Bottou, Schölkopf, and Vapnik, 2015]

Regularization for kernel ridge regression [Mobahi, Farajtabar, and Bartlett, 2020]

Teacher class probabilities p̂(x) are proxies for the true Bayes
class probabilities p0(x) = E[Y | x] [Menon, Rawat, Reddi, Kim, and Kumar, 2020]

This talk: Cast KD as learning with nuisance

Goal: fit an accurate, simple student model f̂
Nuisance: true Bayes class probabilities p0
Plug-in estimate: teacher’s predicted class probabilities p̂

Analyze the success and failure modes of KD
Develop two improvements for enhanced KD performance
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Knowledge Distillation (KD) in a Nutshell

123 5 10 15 20 30 40
Student's number of trees

0.72

0.74

0.76
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0.80

0.82
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Student without KD
KD Student
Enhanced KD Student
Teacher: 500 trees, 0.826 Accuracy

This talk: Cast KD as learning with nuisance

Goal: fit an accurate, simple student model f̂
Nuisance: true Bayes class probabilities p0
Plug-in estimate: teacher’s predicted class probabilities p̂

Analyze the success and failure modes of KD
Develop two improvements for enhanced KD performance
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Knowledge Distillation as Learning with Nuisance

Given: n datapoints zi = (xi, yi) drawn independently from P
Feature vector xi ∈ X and label vector yi ∈ {e1, . . . , ek}

Goal: Learn a simple, accurate student scoring rule f̂ : X → Rk

Student function class: f̂ ∈ F
Loss function: `(f(x), p0(x)) depending on unknown Bayes
class probabilities p0(x) = E[Y | x] (the nuisance)

Example (Standard KD losses)

Squared error logit loss [Ba and Caruana, 2014]

`se(f(x), p(x)) ,
∑

j∈[k]
1
2
(fj(x)− log(pj(x)))2

Annealed cross-entropy loss [Hinton, Vinyals, and Dean, 2015]

`β(f(x), p(x)) = −
∑

j∈[k]
pj(x)

β∑
l∈[k] pl(x)

β log
(

exp(βfj(x))∑
l∈[k] exp(βfl(x))

)
with inverse temperature parameter β ∈ (0, 1)

Optimal student: f0 = argmin
f∈F

E[`(f(X), p0(X))] (the target)

Plug-in Empirical Risk Minimization (ERM) [Foster and Syrgkanis, 2019]

1 Form estimate p̂ of nuisance p0 using (xi, yi)
n
i=1

2 Minimize plug-in empirical risk (using the same data!):
f̂ = argminf∈F

1
n

∑n
i=1 `(f(xi), p̂(xi))
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Knowledge Distillation as Learning with Nuisance

Given: n datapoints zi = (xi, yi) drawn independently from P
Feature vector xi ∈ X and label vector yi ∈ {e1, . . . , ek}

Goal: Learn a simple, accurate student scoring rule f̂ : X → Rk

Student function class: f̂ ∈ F
Loss function: `(f(x), p0(x)) depending on unknown Bayes
class probabilities p0(x) = E[Y | x] (the nuisance)

Optimal student: f0 = argmin
f∈F

E[`(f(X), p0(X))] (the target)

Vanilla KD = Plug-in ERM

1 Form teacher estimate p̂ of nuisance p0 using (xi, yi)
n
i=1

2 Student minimizes plug-in empirical risk (using the same data!):

f̂ = argminf∈F
1
n

∑n
i=1 `(f(xi), p̂(xi))
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When Does Knowledge Distillation Work?

Theorem (Fast Rates for Vanilla KD [Dao, Kamath, Syrgkanis, and Mackey, 2021])

With high probability, the Vanilla KD student f̂ satisfies

‖f̂ − f0‖22 = O( 1
n

+ ‖p̂− p0‖2n + δn(F , p0)2)
when F is convex, `(f(x), p(x)) is strongly convex in f(x), and
`,∇f(x)`, and ∇f(x),p(x)` are bounded.

Student error: ‖f̂ − f0‖22 , EX∼P‖f̂(X)− f0(X)‖22
How well f̂ matches the optimal student f0 on test points

Teacher error: ‖p̂− p0‖2n , 1
n

∑n
i=1 ‖p̂(xi)− p0(xi)‖22

How well the teacher matches the nuisance p0 on training points

Complexity of noiseless student regression: δn(F , p0)2
Localized Rademacher critical radius of `(F , p0)− `(f0, p0)
How well `(f, p0)− `(f0, p0) approximates random noise
Tight bounds for many F ; Õ( 1

n
) for parametric, VC, & kernel F
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When Does Knowledge Distillation Work?

Theorem (Fast Rates for Vanilla KD [Dao, Kamath, Syrgkanis, and Mackey, 2021])

With high probability, the Vanilla KD student f̂ satisfies

‖f̂ − f0‖22 = O( 1
n

+ ‖p̂− p0‖2n + δn(F , p0)2)
when F is convex, `(f(x), p(x)) is strongly convex in f(x), and
`,∇f(x)`, and ∇f(x),p(x)` are bounded.

Student error: ‖f̂ − f0‖22 , EX∼P‖f̂(X)− f0(X)‖22
Teacher error: ‖p̂− p0‖2n , 1

n

∑n
i=1 ‖p̂(xi)− p0(xi)‖22

Complexity of noiseless student regression: δn(F , p0)2

Takeaway: Vanilla KD “works” when teacher approximates p0 well
on training set and noiseless student regression is relatively simple

Result applies to standard KD losses with bounded f and log p
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When Does Knowledge Distillation Fail?

Theorem (Fast Rates for Vanilla KD [Dao, Kamath, Syrgkanis, and Mackey, 2021])

With high probability, the Vanilla KD student f̂ satisfies

‖f̂ − f0‖22 = O( 1
n

+ ‖p̂− p0‖2n + δn(F , p0)2)
when F is convex, `(f(x), p(x)) is strongly convex in f(x), and
`,∇f(x)`, and ∇f(x),p(x)` are bounded.

Guess: KD fails when teacher approximates p0 poorly on training set

1 Teacher underfitting from model misspecification, an overly
restrictive teacher function class, or insufficient training

2 Teacher overfitting: p̂ approximates p0 well on test data but
overconfident or miscalibrated on training set

Next: Simple lower-bounding examples showing KD suffers from
both teacher underfitting and teacher overfitting
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Impact of Teacher Underfitting on KD

Example (Impact of Teacher Underfitting [Dao, Kamath, Syrgkanis, and Mackey, 2021])

There exists a classification problem in which, with high probability:

p0 and f0 = log(p0) are constant (independent of x)

Ridge regression teacher p̂ = 1
n(1+λ)

∑n
i=1 yi for λ = 1

n1/4

SEL loss `se(f(x), p(x)) ,
∑

j∈[k]
1
2
(fj(x)− log(pj(x)))2

Vanilla KD with constant f̂ satisfies

‖f̂ − f0‖22 = Ω(‖p̂− p0‖2n) = Ω( 1√
n
)

matching upper bound up to a constant

Enhanced KD with loss correction satisfies ‖f̂ − f0‖22 = O( 1
n
)

Takeaway: Vanilla KD is not robust to teacher underfitting
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Impact of Teacher Overfitting on KD

Example (Impact of Teacher Overfitting [Dao, Kamath, Syrgkanis, and Mackey, 2021])

There exists a classification problem in which, with high probability:

f0 = E[log(p0(X))] is constant (independent of x)

Teacher interpolates ‖p̂− p0‖2n = Ω(1) but still generalizes

E‖p̂− p0‖22 = O(n−
4

4+d ) [Belkin, Rakhlin, and Tsybakov, 2019]

SEL loss `se(f(x), p(x)) ,
∑

j∈[k]
1
2
(fj(x)− log(pj(x)))2

Vanilla KD with constant f̂ is inconsistent with

‖f̂ − f0‖22 = Ω(‖p̂− p0‖2n) = Ω(1)

matching upper bound up to a constant

Enhanced KD with cross-fitting satisfies ‖f̂ − f0‖22 = O(n−
4

4+d )

Takeaway: Vanilla KD is not robust to teacher overfitting
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Enhancing Knowledge Distillation

Failure Modes of KD

1 Teacher underfitting

2 Teacher overfitting

KD Enhancements

1 Loss correction

2 Cross-fitting
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Fighting Overfitting with Cross-fitting

Problem
Student only observes teacher’s training set predictions
Training predictions are susceptible to overfitting

Idea: Sample splitting
Hold out a fraction of the data for training the student
Downside: Student accuracy suffers from reduced training data

Better idea: Cross-fitting
[Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins, 2018]

1 Split data into B batches S1, . . . , SB
2 For t ∈ {1, . . . , B}, fit teacher estimate p̂(t) of p0 excluding St
3 Student minimizes the cross-fitted risk:

f̂ = argminf∈F
1
n

∑B
t=1

∑
i∈St `(f(Xi), p̂

(t)(Xi))

Each teacher p̂(t) queried only on held-out points St
Student trained on all n datapoints
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Fighting Overfitting with Cross-fitting

Theorem (Fast Rates for Cross-fit KD [Dao, Kamath, Syrgkanis, and Mackey, 2021])

With high probability, the Cross-fit KD student f̂ satisfies

‖f̂ − f0‖22 = O( 1
n

+ 1
B

∑B
t=1 ‖p̂(t) − p0‖22 + δn/B(F , p̂(t))2)

when F is convex, `(f(x), p(x)) is strongly convex in f(x), and
`,∇f(x)`, and ∇f(x),p(x)` are bounded.

Teacher error: ‖p̂(t) − p0‖22 , EX∼P‖p̂(t)(X)− p0(X)‖22
How well the teacher matches the nuisance p0 on test points

Takeaway: Cross-fit KD is robust to teacher overfitting
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Cross-fit KD in Action

Task: Predict income level from census data [Dheeru and Karra Taniskidou, 2017]

123 5 10 15 20 30 40
Student's number of trees

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Te
st

 A
UC

Student without KD
KD Student
Cross-fit KD Student
Teacher: 500 trees, 0.91 AUC

Without KD: Not great Vanilla: 10 trees, .91 AUC
Cross-fit: 3 trees, .91 AUC
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Cross-fit KD in Action

Task: Predict loan repayment [FIC]

123 5 10 15 20 30 40
Student's number of trees

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800
Te

st
 A

UC

Student without KD
KD Student
Cross-fit KD Student
Teacher: 500 trees, 0.792 AUC

Without KD: Not great Vanilla: 40 trees, .789 AUC
Cross-fit: 5 trees, .789 AUC
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Cross-fit KD in Action

Task: Distinguish ephemeral and evergreen websites [Eve]

123 5 10 15 20 30 40
Student's number of trees

0.72

0.74

0.76

0.78

0.80

0.82

Te
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Student without KD
KD Student
Cross-fit KD Student
Teacher: 500 trees, 0.826 Accuracy

Without KD: 40 trees, .817 Acc. Vanilla: 15 trees, .814 Acc.
Cross-fit: 3 trees, .827 Acc.
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Cross-fit KD in Action

Task: Detect Higgs boson production [Dheeru and Karra Taniskidou, 2017]

123 5 10 15 20 30 40
Student's number of trees

0.62

0.64

0.66

0.68

0.70

0.72

Te
st
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Student without KD
KD Student
Cross-fit KD Student
Teacher: 500 trees, 0.718 Accuracy

Without KD: 40 trees, .70 Acc. Vanilla: 40 trees, .69 Acc.
Cross-fit: 5 trees, .70 Acc.
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Fighting Underfitting with Loss Correction

Problem

KD relies wholly on the accuracy of the teacher

Suffers when 0th-order approximation `(f, p̂) of `(f, p0) is poor

First-order correction: `(f, p̂) + 〈p0 − p̂,∇p̂`(f, p̂)〉
Issue: We don’t know p0!

Unbiased estimate: `(f, p̂) + 〈y − p̂,∇p̂`(f, p̂)〉
Neyman-orthogonal loss [Foster and Syrgkanis, 2019]: robust to errors in p̂

SEL loss: 1
2
(f(x)− log p̂(x))2 + 〈y − p̂(x), diag( 1

p̂(x)
)f(x)〉

Issue: Variance explodes if p̂(x) is small!

γ-Loss correction: `(f(x), p̂(x)) + 〈y − p̂(x), γ(x)f(x)〉
Select correction matrix γ(x) to trade off bias and variance

Enhanced KD: Cross-fitting + loss correction with γ(t) fit per batch
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Fighting Underfitting with Loss Correction

Theorem (Fast Rates for Enhanced KD [Dao, Kamath, Syrgkanis, and Mackey, 2021])

With high probability, the Enhanced KD student satisfies

‖f̂−f0‖22 = O( 1
n

+ 1
B

∑B
t=1 ‖p̂(t) − p0‖44 + δn/B(F , p̂(t))2

+ 1
B

∑B
t=1 ‖(diag( 1

p̂(t)
)− γ̂(t))(p̂(t) − p0)‖22

+ 1
B

∑B
t=1 δn/B(F , p̂(t))2

√
E[‖γ̂(t)(X)(Y − p̂(t)(X))‖42])

with SEL loss, convex F , and `,∇f(x)`, and ∇f(x),p(x)` bounded.

Teacher error: ‖p̂(t) − p0‖44 = reduced impact
Small even when teacher converges slowly

γ bias: ‖(diag( 1
p̂(t)

)− γ̂(t))(p̂(t) − p0)‖22
Exactly 0 when γ̂(t) = diag( 1

p̂(t)
); product of γ̂ and p̂ errors

γ variance:
√

E[‖γ̂(t)(X)(Y − p̂(t)(X))‖42]
Exactly 0 when γ̂(t) = 0; often explodes when γ̂(t) = diag( 1

p̂(t)
)
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Fighting Underfitting with Loss Correction

Theorem (Fast Rates for Enhanced KD [Dao, Kamath, Syrgkanis, and Mackey, 2021])

With high probability, the Enhanced KD student satisfies

‖f̂−f0‖22 = O( 1
n

+ 1
B

∑B
t=1 ‖p̂(t) − p0‖44 + δn/B(F , p̂(t))2

+ 1
B

∑B
t=1 ‖(diag( 1

p̂(t)
)− γ̂(t))(p̂(t) − p0)‖22

+ 1
B

∑B
t=1 δn/B(F , p̂(t))2

√
E[‖γ̂(t)(X)(Y − p̂(t)(X))‖42])

with SEL loss, convex F , and `,∇f(x)`, and ∇f(x),p(x)` bounded.

Takeaway: Enhanced KD avoids teacher overfitting and mitigates
teacher underfitting when γ chosen to balance bias and variance

Example: Minimize pointwise estimate of bias-variance sum

γ̂(t)(x) = argminγ ‖γ (y − p̂(t)(x))‖22 + α‖ diag( 1
p̂(t)(x)

)− γ‖22
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Enhanced KD in Action

Task: Predict income level from census data [Dheeru and Karra Taniskidou, 2017]

1 2 3 5 10 15 20
Teacher's max tree depth
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Student without KD
KD Student: 10 trees, max depth=
Cross-fit KD Student
Enhanced KD Student
Teacher: 100 trees

Teacher: Underfits for low depths
High depths: KD � no KD Low depths: Enhanced � Teacher!
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Enhanced KD in Action

Task: Predict loan repayment [FIC]

1 2 3 5 10 15 20
Teacher's max tree depth
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Cross-fit KD Student
Enhanced KD Student
Teacher: 100 trees

Low depths: Enhanced � Teacher!
Mid depths: KD � no KD High depths: Enhanced � Vanilla
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Enhanced KD in Action

Task: Detect Higgs boson production [Dheeru and Karra Taniskidou, 2017]
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Teacher's max tree depth
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KD Student: 10 trees, max depth=
Cross-fit KD Student
Enhanced KD Student
Teacher: 100 trees

Low depths: Enhanced � no KD � Teacher!
Mid depths: KD � no KD High depths: Enhanced � Vanilla
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Image Classification with ResNets
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Teacher
Cross-fit Teacher

Task: CIFAR-10 image classification [Krizhevsky and Hinton, 2009]

Student = ResNet-10 [He, Zhang, Ren, and Sun, 2016]

Teacher = ResNet with depth in {14, 20, 32, 44, 56}
Vanilla suffers from teacher overfitting

Cross-fitting corrects for overfitting

Enhanced benefits from loss-correction
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Effect of the Bias-Variance Tradeoff Parameter α

0 10 4 10 3 10 2 10 1

alpha
0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

Te
st

 a
cc

ur
ac

y

Enhanced KD Student
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Task: CIFAR-10 image classification [Krizhevsky and Hinton, 2009]

Recall: γ̂(t)(x) = argminγ ‖γ (y− p̂(t)(x))‖22 +α‖ diag( 1
p̂(t)(x)

)− γ‖22
α trades off bias and variance in loss correction

α =∞⇒ high-variance Neyman-orthogonal loss

α = 0⇒ no loss correction
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Summary

What have we accomplished?

Framed knowledge distillation as learning with nuisance

Proved that KD succeeds when the teacher’s training set
probabilities are accurate and noiseless regression is simple

Identified two KD failure modes: teacher over- and underfitting

Developed two KD enhancements to mitigate these failures:
cross-fitting and loss correction

Paper: Knowledge Distillation as Semiparametric Inference

Code: github.com/microsoft/semiparametric-distillation
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Future Directions

Many opportunities for future development
1 Can other tools from semiparametric inference improve KD?

Example: Targeted Maximum Likelihood [Van Der Laan and Rubin, 2006]

2 Self-distilled students often outperform their teachers!
[Furlanello, Lipton, Tschannen, Itti, and Anandkumar, 2018]

What explains their surprising success?

3 Synthetic data augmentation often improves KD, even when it
harms the original supervised learning task

Teacher-Student Compression with Generative Adversarial
Networks [Liu, Fusi, and Mackey, 2018], MUNGE [Bucila, Caruana, and Niculescu-Mizil, 2006]

What characterizes a good generative model for KD?
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Augmenting KD with GAN Data [Liu, Fusi, and Mackey, 2018]

Task: Distinguish ephemeral and evergreen websites [Eve]

Teacher: 500 trees, .889 AUC
Augmented Student: 1 tree, .882 AUC
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Augmenting KD with GAN Data

Teacher-Student Compression with GANs (GAN-TSC)
[Liu, Fusi, and Mackey, 2018]

(a) GAN augmentation improves KD
student performance

(b) Same GAN augmentation impairs
student without KD

Task: Distinguish gamma telescope signals
[Dheeru and Karra Taniskidou, 2017]
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What’s a GAN?

Generative Adversarial Networks (GANs)

Image credit: Thalles Silva

We train Auxiliary Classifier GANs (AC-GANs) [Odena, Olah, and Shlens, 2017]
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Augmenting KD with GAN Data

Teacher-Student Compression with GANs (GAN-TSC)
[Liu, Fusi, and Mackey, 2018]

Task: CIFAR-10 image classification [Krizhevsky and Hinton, 2009]

Teacher: 78.1% accuracy, NIN [Lin, Chen, and Yan, 2014]

Without KD: 66% accuracy, LeNet [LeCun, Bottou, Bengio, and Haffner, 1998]

Vanilla KD: 71% accuracy

GAN-TSC: 76% accuracy
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Augmenting KD with GAN Data

Teacher-Student Compression with GANs (GAN-TSC)
[Liu, Fusi, and Mackey, 2018]

(a) GAN augmentation improves KD
student performance

(b) Same GAN augmentation impairs
student without KD

Task: CIFAR-10 image classification
[Krizhevsky and Hinton, 2009]
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Augmenting KD with GAN Data

Teacher-Student Compression with GANs (GAN-TSC)
[Liu, Fusi, and Mackey, 2018]

GAN-TSC complements standard image augmentation
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GAN Quality Matters

Teacher-Student Compression with GANs (GAN-TSC)
[Liu, Fusi, and Mackey, 2018]

Task: CIFAR-10 image classification [Krizhevsky and Hinton, 2009]
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Evaluating GANs with Distillation

Teacher-Student Compression (TSC) Score [Liu, Fusi, and Mackey, 2018]

Measures test accuracy of student distilled with synthetic data

Higher test accuracy indicates higher quality data

Train student for single pass through data for rapid evaluation

Inception Score [Salimans, Goodfellow, Zaremba, Cheung, Radford, and Chen, 2016]

Uses classifier confidence to quantify class affinity

Does not account for within class diversity

Easily misled by high-confidence unrealistic images
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Evaluating GANs with Distillation

Real Data Well-trained GAN Inferior GAN

Inception: 11.2± 0.1 Inception: 5.80± 0.06 Inception: 5.93± 0.06
TSC: 0.994± 0.003 TSC: 0.778± 0.002 TSC: 0.702± 0.002

Timing: Inception (1436.6s), TSC Score (350.1s)
Code: https://github.com/RuishanLiu/GAN-TSC-Score

Paper: Teacher-Student Compression with Generative Adversarial Networks
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Future Directions

Many opportunities for future development
1 Can other tools from semiparametric inference improve KD?

Example: Targeted Maximum Likelihood [Van Der Laan and Rubin, 2006]

2 Self-distilled students often outperform their teachers!
[Furlanello, Lipton, Tschannen, Itti, and Anandkumar, 2018]

What explains their surprising success?

3 Synthetic data augmentation often improves KD, even when it
harms the original supervised learning task

Teacher-Student Compression with Generative Adversarial
Networks [Liu, Fusi, and Mackey, 2018], MUNGE [Bucila, Caruana, and Niculescu-Mizil, 2006]

What characterizes a good generative model for KD?
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Localized Rademacher Complexity

G , {z → r (`(f(x), p0(x))− `(f0(x), p0(x))) : f ∈ F , r ∈ [0, 1]}

Definition (Critical radius δn [Wainwright, 2019, 14.1.1])

Satisfies R(δn;G) ≤ δ2n for the localized Rademacher complexity

R(δ;G) = EX1:n,ε1:n [supg∈G:‖g‖2≤δ
1
n

∑n
i=1 εig(Xi)]

where εi are i.i.d. random variables uniform on {−1, 1}.
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Nadaraya-Watson Kernel Smoothing

Definition (Nadaraya-Watson kernel smoothing estimator
[Nadaraya, 1964, Watson, 1964])

p̃(x) ,

{
yi if x = xi∑n

i=1 yiK((x− xi)/h)/
∑n

i=1K((x− xi)/h) otherwise

with kernel K(x) = ‖x‖−a2 I[‖x‖2 ≤ 1], a ∈ (0, d/2), and
h = n−1/(4+d).
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