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Abstract

This work introduces Divide-Factor-Combine (DFC), a pletativide-and-
conquer framework for noisy matrix factorization. DFC dies a large-scale
matrix factorization task into smaller subproblems, sskach subproblem in par-
allel using an arbitrary base matrix factorization algart and combines the sub-
problem solutions using techniques from randomized matsproximation. Our
experiments with collaborative filtering, video backgrdunodeling, and simu-
lated data demonstrate the near-linear to super-lineadspps attainable with
this approach. Moreover, our analysis shows that DFC erjmjs-probability
recovery guarantees comparable to those of its base &lgorit

1 Introduction

The goal in matrix factorization is to recover a low-rank mafrom irrelevant noise and corrup-
tion. We focus on two instances of the problem: noisy matixipletion, i.e., recovering a low-rank
matrix from a small subset of noisy entries, and noisy romtrix factorization [2, 3, 4], i.e., re-
covering a low-rank matrix from corruption by noise and @u# of arbitrary magnitude. Examples
of the matrix completion problem include collaborativedfilhg for recommender systems, link pre-
diction for social networks, and click prediction for welaseh, while applications of robust matrix
factorization arise in video surveillance [2], graphicaldel selection [4], document modeling [17],
and image alignment [21].

These two classes of matrix factorization problems havec#d significant interest in the research
community. In particular, convex formulations of noisy mpafactorization have been shown to ad-
mit strong theoretical recovery guarantees[1, 2, 3, 2@} ,aavariety of algorithms (e.g., [15, 16, 23])
have been developed for solving both matrix completion ahdist matrix factorization via convex
relaxation. Unfortunately, these methods are inheremidpential and all rely on the repeated and
costly computation of truncated SVDs, factors that limé stalability of the algorithms.

To improve scalability and leverage the growing avail&pitif parallel computing architectures, we
propose a divide-and-conquer framework for large-scalgixfactorization. Our framework, en-
titted Divide-Factor-Combine (DFC), randomly divides thieginal matrix factorization task into
cheaper subproblems, solves those subproblems in parsiiej any base matrix factorization al-
gorithm, and combines the solutions to the subproblem wfiigjent techniques from randomized
matrix approximation. The inherent parallelism of DFC adfor near-linear to superlinear speed-
ups in practice, while our theory provides high-probapiitcovery guarantees for DFC comparable
to those enjoyed by its base algorithm.

The remainder of the paper is organized as follows. In Se&jave define the setting of noisy ma-
trix factorization and introduce the components of the D Firfework. To illustrate the significant
speed-up and robustness of DFC and to highlight the effaatiss of DFC ensembling, we present
experimental results on collaborative filtering, video kground modeling, and simulated data in
Section 3. Our theoretical analysis follows in Section 4efEh we establish high-probability noisy
recovery guarantees for DFC that rest upon a novel analys@ndomized matrix approximation
and a new recovery result for noisy matrix completion.



Notation For M € R™*", we defineMy; as theith row vector andM;; as theijth en-
try. If rank(M) = r, we write the compact singular value decomposition (SVD)Mfas
UMEMVL, where 3, is diagonal and contains the non-zero singular values d¥1, and
Uy € R™" and'V,, € R™*" are the corresponding left and right singular vectordvbf We
defineM™* = VME;}UL as the Moore-Penrose pseudoinversd/bindP,; = MM as the
orthogonal projection onto the column spacéif We let||-||,, ||| », and||-||, respectively denote
the spectral, Frobenius, and nuclear norms of a matrix arjd/|leepresent thé; norm of a vector.

2 The Divide-Factor-Combine Framework

In this section, we present our divide-and-conquer frammkfar scalable noisy matrix factorization.
We begin by defining the problem setting of interest.

2.1 Noisy Matrix Factorization (MF)

In the setting of noisy matrix factorization, we observe bsgi of the entries of a matrixI =

Lo + So + Zy € R™*", whereLg has rank- < m,n, Sy represents a sparse matrix of outliers of
arbitrary magnitude, and, is a dense noise matrix. We trepresent the locations of the observed
entries andPq, be the orthogonal projection onto the spacerok n matrices with suppoif, so
that

(Pa(M))i; = My, if (4,5) € @ and (Pq(M)),;; = 0 otherwise
Our goal is to recover the low-rank matili from P, (M) with error proportional to the noise level
A £ ||Z|| - We will focus on two specific instances of this general peaful

o Noisy Matrix Completion (MC): s £ |Q| entries ofM are revealed uniformly without
replacement, along with their locations. There are no exgtliso tha$, is identically zero.

e Noisy Robust Matrix Factorization (RMF): S is identically zero save fas outlier en-
tries of arbitrary magnitude with unknown locations distited uniformly without replace-
ment. All entries ofM are observed, so th@, (M) = M.

2.2 Divide-Factor-Combine

Algorithms 1 and 2 summarize two canonical examples of theege Divide-Factor-Combine
framework that we refer to as DFCRBJand DFC-Nrs. Each algorithm has three simple steps:

(D step) Divide input matrix into submatrices: DFC-ProJrandomly partitiong?,, (M) into ¢ I-
column submatrice§;Po(Cy), ..., Po(C;)}t, while DFC-Nys selects ari-column sub-
matrix, Po(C), and ad-row submatrix;Po(R), uniformly at random.

(F step) Factor each submatrix in parallel using any base MF lgorithm: DFC-ProJperforms
t parallel submatrix factorizations, while DFCyN performs two such parallel factoriza-
tions. Standard base MF algorithms output the Iow-rankmp'mations{f]l, cee Ct} for
DFC-ProJjandC, andR for DFC-Nys. All matrices are retained in factored form.

(C step) Combine submatrix estimatesDFC-ProJgenerates a final low-rank estimaté’ by
projecting[Cy, ..., C,] onto the column space d&f,, while DFC-Nvs forms the low-
rank estimatel.”¥* from C andR via the generalized Nystrom method. These matrix

approximation techniques are described in more detail ati@e2.3.
2.3 Randomized Matrix Approximations

Our divide-and-conquer algorithms rely on two methods ¢jeaterate randomized low-rank approx-
imations to an arbitrary matrikI from submatrices oM.

For ease of discussion, we assume that fnot) = 0, and hencel = n/t. Note that for arbitrary, and
t, Po(M) can always be partitioned intcsubmatrices, each with eithgr /¢ | or [n/t] columns.



Algorithm 1 DFC-PrROJ Algorithm 2 DFC-Nys?

Input: Po(M), ¢ Input: Po(M), 1, d
{Pa(Ci)h<i<t = SAMPCOL(Pq (M), t) Pa(C),Pao(R) = SAMPCOLROW(P, (M), I, d)
do inA parallel do inA parallel

C; = BASE-MF-ALG(Pq(Ch)) C = BASE-MF-ALG(Pq(C))

: R = BASE-MF-ALG(Pq(R))

. ' end do o

C; = BASE-MF-ALG(Pq(Cy)) L"vs = GENNYSTROM (C, R)
end do o
LPre) = COLPROJECTIONC, . . ., Cy) 2WhenQ is a submatrix oM we abuse notation and

definePq(Q) as the corresponding submatrixfah (M).

Column Projection  This approximation, introduced by Frieze et al. [7], is ded from column
sampling ofM. We begin by sampling < n columns uniformly without replacement and 6t

be them x [ matrix of sampled columns. Then, column projection uUSe® generate a “matrix
projection” approximation [13] oM as follows:

L = CCTM = UcULM.

In practice, we do not reconstrult™? but rather maintain low-rank factors, e.§l¢ andU /.M.

Generalized Nystbm Method The standard Nystrom method is often used to speed up large-
scale learning applications involving symmetric posigeenidefinite (SPSD) matrices [24] and has
been generalized for arbitrary real-valued matrices [8].particular, after sampling columns to
obtainC, imagine that we independently sampgle< m rows uniformly without replacement. Let

R be thed x n matrix of sampled rows an8V be thed x [ matrix formed from the intersection

of the sampled rows and columns. Then, the generalized diystnethod use€, W, andR to
compute an “spectral reconstruction” approximation [113Mb as follows:

L"* = CW'R = CVy I/, U, R.

As with MP™°J we store low-rank factors di"¥*, such alCVy, X7, andU, R.

2.4 Running Time of DFC

Many state-of-the-art MF algorithms hamnk ) per-iteration time complexity due to the rank-
kar truncated SVD performed on each iteration. DFC signifisargtuces the per-iteration com-
plexity to Q(mlkc,) time for C; (or C) and Qndkg) time for R. The cost of combining the
submatrix estimates is even smaller, since the outputanélsrd MF algorithms are returned in fac-
tored form. Indeed, the column projection step of DF@eRrequires only @mk? + 1k?) time for

k £ max; kc,: O(mk? + [k2) time for the pseudoinversion €, and Qmk? + [k2) time for ma-
trix multiplication with eachC; in parallel. Similarly, the generalized Nystrom step of OYs
requires only Qlk? + dk? + min(m,n)k?) time, wherek £ max(kc, kr). Hence, DFC divides
the expensive task of matrix factorization into smallermalblems that can be executed in parallel
and efficiently combines the low-rank, factored results.

2.5 Ensemble Methods

Ensemble methods have been shown to improve performancatakrapproximation algorithms,
while straightforwardly leveraging the parallelism of neod many-core and distributed architec-
tures [14]. As such, we propose ensemble variants of the Dg@ithms that demonstrably reduce
recovery error while introducing a negligible cost to theghal running time. For DFC-Ro*

ENs, rather than projecting only onto the column spacegf we project[Cl, ..., C;] onto the
column space of eadf; in parallel and then average theesulting low-rank approximations. For
DFC-Nys-ENs, we choose a randoiirow submatrixPq(R) as in DFC-Nrs and independently
partition the columns oP,(M) into {Pq(C1),. .., Pa(C:)} as in DFC-RoJ After running the



base MF algorithm on each submatrix, we apply the genethhiestrom method to eao@éi, R)
pair in parallel and average theesulting low-rank approximations. Section 3 highligtts empir-
ical effectiveness of ensembling.

3 Experimental Evaluation

We now explore the accuracy and speed-up of DFC on a varisiynoflated and real-world datasets.
We use state-of-the-art matrix factorization algorithmsur experiments: the Accelerated Proximal
Gradient (APG) algorithm of [23] as our base noisy MC aldoritand the APG algorithm of [15] as
our base noisy RMF algorithm. In all experiments, we use #fawdt parameter settings suggested
by [23] and [15], measure recovery error via root mean sqae@ (RMSE), and report parallel
running times for DFC. We moreover compare against two basetethods: APG used on the full
matrix M and RARTITION, which performs matrix factorization onsubmatrices just like DFC-
ProJbut omits the final column projection step.

3.1 Simulations

For our simulations, we focused on square matriees< n) and generated random low-rank and
sparse decompositions, similar to the schemes used irdebadrk, e.g., [2, 12, 25]. We created
Lo € R™*™ as a random producAB ', where A andB arem x r matrices with indepen-
dentN(0,+/1/r) entries such that each entry bf has unit varianceZ, contained independent
N(0,0.1) entries. In the MC settings entries ofL, + Z, were revealed uniformly at random. In
the RMF setting, the support 8f, was generated uniformly at random, and treorrupted entries
took values in[0, 1] with uniform probability. For each algorithm, we report@rbetweerlL, and
the recovered low-rank matrix, and all reported resultssaszages over five trials.

MC RMF
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Figure 1: Recovery error of DFC relative to base algorithms.

We first explored the recovery error of DFC as a functionsofising (n = 10K, » = 10) with
varying observation sparsity for MC anth(= 1K, » = 10) with a varying percentage of outliers
for RMF. The results are summarized in Figuré 1n both MC and RMF, the gaps in recovery
between APG and DFC are small when sampling only 10% of rod<atumns. Moreover, DFC-
PROJENS in particular consistently outperformaRrITION and DFC-Ns-ENs and matches the
performance of APG for most settings of

We next explored the speed-up of DFC as a function of mate&. sFor MC, we revealed% of

the matrix entries and set= 0.001 - m, while for RMF we fixed the percentage of outliersl@

and setr = 0.01 - m. We sampled 0% of rows and columns and observed that recovery errors
were comparable to the errors presented in Figure 1 for airséttings ofs; in particular, at all
values ofn for both MC and RMF, the errors of APG and DFQR®+ENS were nearly identical.
Our timing results, presented in Figure 2, illustrate a fieaar speed-up for MC and a superlinear
speed-up for RMF across varying matrix sizes. Note thatithimg) curves of the DFC algorithms
and RARTITION all overlap, a fact that highlights the minimal computatibcost of the final matrix
approximation step.

2In the left-hand plot of Figure 1, the lines for Prtj% and Proj-Enst0% overlap.
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Figure 2: Speed-up of DFC relative to base algorithms.
3.2 Collaborative Filtering

Collaborative filtering for recommender systems is one gl real-world application of noisy
matrix completion. A collaborative filtering dataset carifterpreted as the incomplete observation
of a ratings matrix with columns corresponding to users amgrcorresponding to items. The goal
is to infer the unobserved entries of this ratings matrix. &valuate DFC on two of the largest
publicly available collaborative filtering datasets: Melens 10M (m = 4K, n = 6K, s > 10M)
and the Netflix Prize datadetm = 18K, n = 480K, s > 100M). To generate test sets drawn
from the training distribution, for each dataset, we aggted all available rating data into a single
training set and withheld test entries uniformly at randerhile ensuring that at least one training
observation remained in each row and column. The algoritivere then run on the remaining
training portions and evaluated on the test portions of eptih The results, averaged over three
train-test splits, are summarized in Table 3.2. Notably(IPRoJ DFC-PROJENS, and DFC-
NYs-ENs all outperform RRTITION, and DFC-ROJENS performs comparably to APG while
providing a nearly linear parallel time speed-up. The popegformance of DFC-Ms can be in
part explained by the asymmetry of these problems. Sincethmtrices have many more columns
than rows, MF on column submatrices is inherently easiem & on row submatrices, and for
DFC-Nys, we observe thaf is an accurate estimate whieis not.

Table 1: Performance of DFC relative to APG on collabordiitering tasks.

Method MovieLens 10M Netflix

RMSE Time RMSE Time
APG 0.8005 294.3s 0.8433 2653.1s
PARTITION-25% 0.8146 77.4s 0.8451 689.1s
PARTITION-10% 0.8461 36.0s 0.8492 289.2s
DFC-Nys-25% 0.8449 77.2s 0.8832 890.9s
DFC-Nys-10% 0.8769 53.4s 0.9224 487.6s

DFC-Nys-ENs-25% 0.8085 84.5s 0.8486 964.3s
DFC-Nys-ENs-10% 0.8327 63.9s 0.8613 546.2s

DFC-PrOF25% 0.8061 77.4s 0.8436 689.5s
DFC-PrOF10% 0.8272 36.1s 0.8484 289.7s
DFC-PROFENS-25% 0.7944 77.4s 0.8411 689.5s
DFC-PROFENS-10% 0.8119 36.1s 0.8433 289.7s

3.3 Background Modeling

Background modeling has important practical ramificatiarsdetecting activity in surveillance
video. This problem can be framed as an application of noisfFRwvhere each video frame is
a column of some matriX{I), the background model is low-rank(), and moving objects and

%htt p: / / www. gr oupl ens. or g/
“http://ww. netflixprize.cont



background variations, e.g., changes in illumination,ardiers (). We evaluate DFC on two
videos: ‘Hall’ (200 frames of sizel76 x 144) contains significant foreground variation and was
studied by [2], while ‘Lobby’ (546 frames of sizd 68 x 120) includes many changes in illumination
(a smaller video witli250 frames was studied by [2]). We focused on DF@eR-ENS, due to its
superior performance in previous experiments, and medsheeRMSE between the background
model recovered by DFC and that of APG. On both videos, DFROJFENS recovered nearly the
same background model as the full APG algorithm in a smatitiva of the time. On ‘Hall,’ the
DFC-PROFENS-5% and DFC-R0JENS-0.5% models exhibited RMSEs 0f564 and1.55, quite
small given pixels witl256 intensity values. The associated runtime was reduced $tihds for
APG to real-time §.2s for a13s video) for DFC-IROJFENS-0.5%. Snapshots of the results are
presented in Figure 3. On ‘Lobby, the RMSE of DF&®&+ENs-4% was0.64, and the speed-up
over APG was more than 20X, i.e., the runtime reduced ft66%7s t0792s.

Original frame APG 5% sampled 0.5% sampled
(342.5s) (24.2s) (5.2s)

Figure 3: Sample ‘Hall’ recovery by APG, DFCRBJ}ENS-5%, and DFC-ROJENS-.5%.

4 Theoretical Analysis

Having investigated the empirical advantages of DFC, we sbaw that DFC admits high-
probability recovery guarantees comparable to those bbise algorithm.

4.1 Matrix Coherence

Since not all matrices can be recovered from missing enttiegross outliers, recent theoretical
advances have studied sufficient conditions for accuraitgyrdC [3, 12, 20] and RMF [1, 25].
Most prevalent among these ar@trix coherenceonditions, which limit the extent to which the
singular vectors of a matrix are correlated with the stathdiesis. Letting; be theith column of
the standard basis, we define two standard notions of cotef2a]:

Definition 1 (10-Coherence)Let V € R™*" contain orthonormal columns with < n. Then the
ip-coherence oV is:

1o(V) 2 2 maxi<icn |[Pre||* = 2 maxi<icn [V |

Definition 2 (u;-Coherence)Let L € R™*™ have rank-. Then, the;-coherence oL is:
,U,l(L) £ \/ % max;; |eiTULVIej| .

For anyp > 0, we will call a matrixL (u, r)-coherentf rank(L) = r, max(uo(Up), po(V)) <
p, andpu (L) < (/u. Our analysis will focus on base MC and RMF algorithms thatress their
recovery guarantees in terms of tfe r)-coherence of the target low-rank matiiy. For such
algorithms, lower values qf correspond to better recovery properties.

4.2 DFC Master Theorem

We now show that the same coherence conditions that alloadturate MC and RMF also imply
high-probability recovery for DFC. To make this precise, i@eM = Lg + Sg + Zg € R™*",
whereLy is (1, 7)-coherent and| P (Zo) || » < A. We further fix any, 6 € (0, 1] and defined(X)

as the event that a matriX is (12—‘52, r)-coherent. Then, our Thm. 3 provides a generic recovery
bound for DFC when used in combination with an arbitrary balgerithm. The proof requires a
novel, coherence-based analysis of column projection andam column sampling. These results

of independent interest are presented in Appendix A.



Theorem 3. Chooset = n/l andl > crulog(n)log(2/d)/€%, wherec is a fixed positive con-
stant, and fix any.,, > 0. Under the notation of Algorithm, if a base MF algorithm yields

P(||Co,i — CiHF > ceVmIA | A(Coﬂ-)) < ¢ for eachi, whereC, ; is the corresponding parti-
tion of Ly, then, with probability at leastl — ¢)(1 — td¢), DFC-PrOJguarantees

Lo — L7 < (2 4 €)ce/mnA.
Under Algorithm2, if a base MF algorithm yieldsP(||CO —Cllp > cevVmlA | A(C)) < d¢

andP(||R0 — R, > cevdnA | A(R)) < g ford > cluo(C)log(m) log(4/5)/¢2, then, with
probability at least(1 — §)(1 — 6 — 0.2)(1 — ¢ — dr), DFC-Nys guarantees

Lo — L] < (2 4 3€)cevV'ml + dnA.

To understand the conclusions of Thm. 3, consider a typ@seé algorithm which, when applied to
Pq (M), recovers an estimale satisfying||Lo — L, < c../mnA with high probability. Thm. 3
asserts that, with appropriately reduced probability, DIF€©J exhibits the same recovery error
scaled by an adjustable factordf- ¢, while DFC-Nys exhibits a somewhat smaller error scaled by
24-3¢.5 The key take-away then is that DFC introduces a controllegsimse in error and a controlled
decrement in the probability of success, allowing the useénterpolate between maximum speed
and maximum accuracy. Thus, DFC can quickly provide neéirrgbrecovery in the noisy setting
and exact recovery in the noiseless settidg £ 0), even when entries are missing or grossly
corrupted. The next two sections demonstrate how Thm. 3 eaapplied to derive specific DFC
recovery guarantees for noisy MC and noisy RMF. In thesémestwe leth = max(m,n).

4.3 Consequences for Noisy MC

Ouir first corollary of Thm. 3 shows that DFC retains the higbbability recovery guarantees of a
standard MC solver while operating on matrices of much smnalimension. Suppose that a base
MC algorithm solves the following convex optimization pteim, studied in [3]:

minimize, ||L||, subject to [|[Po(M —L)||, <A.
Then, Cor. 4 follows from a novel guarantee for noisy convex, Mroved in the appendix.

Corollary 4. Suppose thdk is (u, 7)-coherent and that entries ofM are observed, with locations
Q distributed uniformly. Define the oversampling parameter

5, & s(1—¢€/2)
* T 32u2r2(m + n) log®(m +n)’

and fix any target rate parametér< g < §,. Then, if|Po(M) — Po(Lo)||» < A a.s., it suffices
to choose = n/l and

lzmax(;;—f N /n(/;:n’leog(n)égg@/a))’ dzmax<mf N Wgs—”,czMO(C)l°g<m>j§g<4/5>)

to achieve

DFC-PROJ: ||Lg — LP™7 ||, < (2 + €)cly/mnA
DFC-NYS: [[Lo — L™ p < (2 + 3e)c,v/ml + dnA
with probability at least
DFC-PRoJ: (1 —6)(1 — 5tlog(n)n?~2f) > (1 — 6)(1 — a2
DFC-Nvs: (1 —68)(1 -6 —0.2)(1 — 10log(n)n%=28),

respectively, with: as in Thm. 3 and’, a positive constant.

Note that the DFC-Ns guarantee requires the number of rows sampled to grow iroptiop touo(C),
a quantity always bounded hyin our simulations.



Notably, Cor. 4 allows for the fraction of columns and rowsigéed to decrease as the oversampling
parametep, increases withn andn. In the best cased, = ©(mn/[(m + n)log?(m + n)]), and

Cor. 4 requires only 0> log?(m +n)) sampled columns and(@ log?(m +n)) sampled rows. In
the worst case; = ©(1), and Cor. 4 requires the number of sampled columns and rogote
linearly with the matrix dimensions. As a more realisticeimhediate scenario, consider the setting
in which 8, = ©(v/m + n) and thus a vanishing fraction of entries are revealed. k4ghtting,
only O(v/m + n) columns and rows are required by Cor. 4.

4.4 Consequences for Noisy RMF

Our next corollary shows that DFC retains the high-proligtiécovery guarantees of a standard
RMF solver while operating on matrices of much smaller digi@n. Suppose that a base RMF
algorithm solves the following convex optimization prablestudied in [25]:

minimize;, s ||L|[, + A||S||; subjectto |[M —L -S| <A,

with A = 1/+/n. Then, Cor. 5 follows from Thm. 3 and the noisy RMF guaranfg@®, Thm. 2].

Corollary 5. Suppose thak is (i, )-coherent and that the uniformly distributed support set of
So has cardinalitys. For a fixed positive constapt, define the undersampling parameter

Bs £ (1 - i)/ps,

mn
A

and fix any target rate parametgt > 2 with rescalings’ = §log(n)/log(m) satisfying43, —
3/ps < B' < Bs. Then, if[M — Ly — S| < A a.s,, it suffices to choose= n /I and
r2p?log®(n) 4log(n)B(1 — psfs)
(L—¢€/2)pr " mlpsBs — psp')?
2 p? 10g2(ﬁ) 4log(n)B(1 — psPs)
(1—¢€/2)pr " nlpsBs — psB')?

1> Inax( ,crplog(n) log(2/6) /62)

d> Inax( , clio(C) log(m) log(4/6) /62)

to have
DFC-PROJ: ||Lg — LP™7 ||, < (2 + €)c!//mnA
DFC-NYs: [|Lo — L™ < (2 + 3€)c/v/ml + dnA
with probability at least
DFC-PROJ: (1 —9)(1 —ten?) > (1 —9)(1 — ¢,nt=")
DFC-NYs: (1 —6)(1—6—0.2)(1 — 2¢,n~ "),
respectively, witle as in Thm. 3 ang,., ¢/, andc,, positive constants.

Note that Cor. 5 places only very mild restrictions on the benof columns and rows to be sampled.
Indeed,! and d need only grow poly-logarithmically in the matrix dimens#to achieve high-
probability noisy recovery.

5 Conclusions

To improve the scalability of existing matrix factorizatialgorithms while leveraging the ubiquity
of parallel computing architectures, we introduced, extdd, and analyzed DFC, a divide-and-
conquer framework for noisy matrix factorization with niigg entries or outliers. We note that the
contemporaneous work of [19] addresses the computatiomdeh of noiseless RMF by reformu-
lating a standard convex optimization problem to integnalcorporate random projections. The
differences between DFC and the approach of [19] highlightes of the main advantages of this
work: i) DFC can be used in combination with any underlying Elgorithm, ii) DFC is trivially
parallelized, and iii) DFC provably maintains the recovgnarantees of its base algorithm, even in
the presence of noise.
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A Analysis of Randomized Approximation Algorithms

In this section, we will establish several key propertiesaoidomized approximation algorithms un-
der standard coherence assumptions that will aid us inidgrFC estimation guarantees. Here-
after,e € (0,1] represents a prescribed error tolerance, &d € (0, 1] denote target failure
probabilities.

A.1 Conservation of Incoherence

The following lemma bounds th&, andu;-coherence of a uniformly sampled submatrix in terms
of the coherence of the full matrix. These properties withalfor accurate submatrix completion
or outlier removal using standard MC and RMF algorithmsphsof is given in Sec. B.

Lemma 6. LetL € R™*" be a rankr matrix andLo € R™*! pe a matrix ofl columns ofL
sampled uniformly without replacement. /1> cruo (V1) log(n)log(1/48) /€2, wherec is a fixed
positive constant defined in Thm. 7, then

i) rank(L¢) = rank(L)
i) p0(ULe) = po(UL)

po(ViL)
= 10— e/LZ

ro(Ur)po(Ve)
1—¢/2

i) p0(Viee)

iv) ui(Le) <
all hold jointly with probability at least — ¢ /n.

A.2 Randomized/,; Regression

Our next theorem shows that projection based on uniformnanlsampling leads to near optimal
estimation in matrix regression when the covariate matag $mall coherence. The result builds
upon the randomized, regression work of [6] and the matrix concentration analydi[11] and
immediately gives rise to estimation guarantees for colpnofection and the generalized Nystrom
method. The proof of Thm. 7 will be given in Sec. C.

Theorem 7. Given a target matribB € RP*™ and a ranks matrix of covariated, € R™*", choose
1 > 3200ru0(Vy)log(4n/8) /€2, let Bc € RPX! be a matrix off columns ofB sampled uniformly
without replacement, and I&t- € R™*! consist of the corresponding columnslofThen,

1B~ BeLEL|l, < (14 ¢)|B — BLTL
with probability at leastl — § — 0.2.

A first consequence of Thm. 7 shows that, with high probabitiblumn projection produces an
estimate nearly as good as a given rartlarget by sampling a number of columns proportional to
the coherence andlogn. Our result generalizes Thm. 1 of [6] by providing guarastedative to

an arbitrary low-rank approximation. The proof is given &cSD.

Corollary 8. Given a matrixM € R™*™ and a rank# approximationL. € R™*", choose >
crpo(Vr) log(n)log(1/68) /€2, wherec is a fixed positive constant, and It € R™*! be a matrix
of [ columns ofM sampled uniformly without replacement. Then,

M~ CC M| < (1+¢)|M~L
with probability at leastl — §.

Thm. 7 and Cor. 8 together imply an estimation guaranteeHergeneralized Nystrom method
relative to an arbitrary low-rank approximatidn Indeed, if the matrix of sampled columns
is denoted byC, then, with appropriately reduced probability, (V ,)r logn) columns and
O(uo(U¢)rlog m) rows suffice to match the reconstruction errolofip to any fixed precision.
The proof can be found in Sec. E.
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Corollary 9. Given a matrixM € R™*™ and a ranks approximationL. € R™*", choose
I > crpo(Vy)log(n)log(1/8)/e? with ¢ a constant as in Cor. 8, and le€ € R™*! be
a matrix of [ columns ofM sampled uniformly without replacement. Further choase>

clpo(Uc)log(m)log(1/6") /€%, and letR € R4*™ be a matrix ofd rows of M sampled inde-
pendently and uniformly without replacement. Then,

IM — CW*R|| < (1 +¢)*|M ~ L

with probability at least1 — §)(1 — §’ — 0.2).

B Proof of Lemma 6

Since for alln > 1,
clog(n) log(1/6) = (c/4) log(n?) log(1/6) > 48 log(4n?/0) > 48log(4ryuo(V 1)/ (5/n))

asn > ruo(Vy), claimi follows immediately from Lemma 11 with = 1/10(V1), p; = 1/n for
all j, andD = I/n/l. Whenrank(L¢) = rank(L), Lemma 1 of [18] implies thaPy, . = Py, ,
which in turn implies clainis.

To prove claimiii given the conclusions of Lemma 11, assume, without loss éigdity, thatV;
consists of the first rows of V. Then ifLe = U, XV, hasrank(L¢) = rank(L) = r, the
matrix V; must have full column rank. Thus we can write

LiLe = (U2, VHTULE. V)
= (2, V)TufuLEv;)
= (2 V) =V
vhHr=f=, v/

= (Vl )+Vz

=V, (V] V)"V/],

where the second and third equalities follow fr&f, having orthonormal columns, the fourth and
fifth result fromX;, having full rank andV; having full column rank, and the sixth follows from
V,' having full row rank.

Now, denote the right singular vectorsb§ by V. € R™*". Observe thaPy, , = V,;CVZC =
LJCFLC, and defines; ; as theith column ofI; ande; ,, as theith column ofI,,. Then we have,

to(Vie) =

max [Py, e,

Tr1+ )

max e; l(Vl )Jer €1
1<i<l

max e, V,(V/ V) "'V/]e;,
1<l

e~ 3|~ 3|~ I |~ 3|~

= Inaxe Vo(VIV) WV e,

r 1<i<li

where the final equality follows froW, e;; = V] e; , forall 1 <i <.

11



Now, definingQ = V; V,; we have

! T —1v/T
po(Vie) = - 112‘?% ei,nVLQ Viein
l
— max T&"[eZnVLQ_lV—Lrei7n}

r 1<i<l

! InT T
=-max Tr|Q "V;e;e. . V
r1<i<l [Q L=unin L}

IN

Ly~
£1Q |, max [V esnel Vel

by Holder’s inequality for Schattemnorms. Sincé\fzei,neznVL has rank one, we can explicitly
compute its trace norm @szemHQ = | Py, ei.n|*. Hence,

U~ 2
po(Vee) < L1Q, i [Py

IN

lr, n 2
L2102 max [Pv )

r 1<i<n

l _
EHQ Yopo(ViL),

by the definition ofug-coherence. The proof of Lemma 11 established that the sstaingular
value of 2Q = V, DDV; is lower bounded by — & and hencdlQ~'||, < Tio73y- Thus, we

conclude thajy (Vi) < po(Ve)/(1 —€/2).

To prove claimiv under Lemma 11, note thiy, = Py, impliesU, U, U, = Uy,. We thus
observe that,

UL Vi, =U.2; U] Lc
=UL .2 U U B V)
=ULU UL .2 UL USLV,) .

LettingB = U] U, 2 U] _U.%;, we have

fml T T
M1 (LC) = s 1211?%?5” |ei,mULCVLcej7l|
I<j<t

ml
=4/ — max e/, , U.BV/e;|
r 1<i<m @ '
<<l

ml
=/ — max e/, UBV]ej,|
r 1<i<m ' © '
1<j<l

T T
=\ 12{;}; | Tr[ei)mULBVL ej,n] |
1<5<1

_ T T
=\ 121%)571 | Tr [BVL ejyneLmUL] |
<5<

< /=By max [[Viejnel, ULl .
<<l
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by Holder’s inequality for Schattemnorms. Sincé\/{ej,neiT,mUL has rank one, we can explicitly

compute its trace norm d3J] e; ||V ejnl = ||Pu, eiml|Pv, ej.n|. Hence,
ml
m(Le) < /=By max |[Pu,eimll[Pv.e;n|
1<j<i

mlr2 m n

= (2 e 1P, el ) () o, 1Py i)
mlr? m n

< |B|2(\/— max |PULez-,m|) (\/— max ||PvLej,n||)
mnr r 1<i<m r 1<;<n

Ir
= EHBHQ 1o(Ur)po(Ve),

by the definitition ofug-coherence.
Next, we notice that
B'B=%,U;U,. XU/ U, U, U, U U,%,
=2 U UL 2 U U2 U Usy
=3 U, UL 2’0} UL,
=3, U] (LeLL)TULs,
=3, U} (U, .V V2, U)H)TULE,
=3, U/u. s (Vv Vv) ' 'ujuLy,
=(v/v),
where the penultimate equality follows frddh;, having orthogonal columns ai¥, V,' V, X1, hav-

ing full rank. The proof of Lemma 11 established that the $esalsingular value ofllVlTVl

VDDV, is lower bounded byl — ¢/2 and hence thafB'B||, < ey and B, <

\/ ey - Thus, we conclude thaty (Le) < /ruo(Ur)uo(Ve)/v/1 - €/2.

C Proof of Theorem 7

We now give a proof of Thm. 7. While the results of this sectwa stated in terms of i.i.d. with-
replacement sampling of columns and rows, a concise argunerio [10, Sec. 6] implies the same
conclusions when columns and rows are sampled withoutaepiant.

Our proof of Thm. 7 will require a strengthened version oftiwedomized;, regression work of [6,
Thm. 5]. The proof of Thm. 5 of [6] relies heavily on the facatiAB — GH|| ., < 5||A|| || B| »
with probability at least 0.9, whe@ andH contain sufficiently many rescaled columns and rows of
A andB, sampled according to a particular non-uniform probabdistribution. A result of [11],
modified to allow for slack in the probabilities, shows thatéated claim holds with probability

1 — ¢ for arbitrary§ € (0, 1].

Lemma 10 (Sec. 3.4.3 of [11]) Given matricesA <€ R™** and B ¢ RF*™ with » >
max(rank(A), rank(B)), an error tolerances € (0,1], and a failure probabilityd € (0, 1], de-
fine probabilitiesp; satisfying

p
pi 2 ZIA@IIByl, 2= STIAGIIBGI, and YF_ p; =1 @
i

for somes € (0,1]. Let G € R™! be a column submatrix oA in which exactlyl >
48rlog(4r/(B68))/(Be?) columns are selected in i.i.d. trials in which theh column is chosen with
probability p;, and letH € R'*" be a matrix containing the corresponding rowsRf Further, let

D € R/ be a diagonal rescaling matrix with entl);; = 1/, /Ip; whenever thg-th column ofA
is selected on theth sampling trial, fort = 1, ..., 1. Then, with probability at least — 9,

€
|AB — GDDH], < || Al,[B]l,.
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Using Lemma 10, we now establish a stronger version of Lemmwf[@]. For a givens € (0, 1]
andL € R™*™ with rankr, we first define column sampling probabilitigssatisfying

B n
pj = ;|\(VL)(j)||2 and > 7 ,p; =1 2
We further letS € R™*! be a random binary matrix with independent columns, wheregles1
appears in each column, af¢g, = 1 with probabilityp, for eacht € {1,...,1}. Moreover, leD €

R pe a diagonal rescaling matrix with enBy; = 1/+/Ip; wheneves;; = 1. Postmultiplication
by S is equivalent to selectingrandom columns of a matrix, independently and with replaasm
Under this notation, we establish the following lemma:

Lemma 11. Lete € (0,1], and defineV;! = V]S andT = (V/D)* — (V/D)". If | >
48rlog(4r/(B6))/(B€?) for § € (0, 1] then with probability at least — 4:

rank(V;) = rank(V ) = rank(L)
Pl = 157 ~ Syl
(LSD)* = (V/ D)*3; U]
||E;}D - 2VZTDH2 <e/V2.

Proof BylLemma 10, forall <i<r,
1= o?(V/D)| = |03(V VL) — 0:(V, DDV))|
<|VLVL—-V[SDDS V|,
<e/2|VLlolVelly = €/2,

whereo;(-) is thei-th largest singular value of a given matrix. Sing < 1/2, each singular
value of V; is positive, and seank(V;) = rank(V ) = rank(L). The remainder of the proof is
identical to that of Lemma 1 of [6]. O

Lemma 11 immediately yields improved sampling complexitythe randomized, regression of
[6]:

Proposition 12. Suppos® € RP*" ande € (0, 1]. If I > 3200rlog(4r/(83))/(Be*) for & € (0, 1],
then with probability at least — 6 — 0.2:

|B — BSD(LSD)*L||, < (1 +¢)||B -~ BL*L| ..

Proof The proofis identical to that of Thm. 5 of [6] once Lemma 11lubstituted for Lemma 1
of [6]. O

A typical application of Prop. 12 would involve performingrancated SVD oM to obtain thesta-

tistical leverage scores (V1)) |?, used to compute the column sampling probabilities of E}y. (2
Here, we will take advantage of the slack terfpallowed in the sampling probabilities of Eq. (2)
to show that uniform column sampling gives rise to the santinason guarantees for column
projection approximations whdnis sufficiently incoherent.

To prove Thm. 7, we first notice that> ruo (V) and hence
1 > 3200ru0(V 1) log(4rpuo(Vr)/6) /€

> 32007 log(4r/(59))/ (Be®)

whenevep > 1/u0(Vy). Thus, we may apply Prop. 12 with=1/40(V ) € (0,1]andp; = 1/n
by noting that

p 2 _fBr 1

SNVE) I < = —no(Vi) = — =p;
for all 7, by the definition ofuo (V). By our choice of probabilitied) = I,/n/Il, and hence

IB —BcL{L = ||B —BeD(LeD) Ll < (1+¢)||B—BLYL|

with probability at least — 6 — 0.2, as desired.
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D Proof of Corollary 8

Fix ¢ = 48000/ log(1/0.45), and notice that fon > 1,
48000 log(n) > 32001log(n®) > 3200 log(16n).
Hencel > 32007 uo(V 1) log(16n)(log(d)/ log(0.45)) /2.

Now partition the columns o into b = log(d)/ log(0.45) submatricesC = [Cy, - -- , Cy], each
with @ = 1/b columns? and let[L¢, , - - - , L, ] be the corresponding partition &f. Since

a > 32007uo(V5) log(4n/0.25) /€2,
we may apply Prop. 12 independently for eac¢h yield
IM = CiL{ L], < (1+6)|[M—-ML L[ < (1+¢)|M-Lj ®)
with probability at leas0.55, sinceML* minimizes|M — YL|| . over allY € R™*™,

Since eactC; = CS; for some matrixS; andC*M minimizes||M — CX||. over allX € R*",
it follows that
IM — CC™M]|p < M = C,L{ L .,

for each:. Hence, if
IM = CCTM], < (1+ )M~ L 1,

fails to hold, then, for each Eq. (3) also fails to hold. The desired conclusion theefaust hold
with probability at least — 0.45° = 1 — 4.

E Proof of Corollary 9

With ¢ = 48000/ log(1/0.45) as in Cor. 8, we notice that fon > 1,

48000 log(m) = 16000 log(m?) > 16000 log(4m).
Therefore,

d > 160007 10(Uc) log(4m) (log(6") / log(0.45)) /€

> 3200r10(Uc) log(4m/6') /€,
forallm > 1 andd’ < 0.8. Hence, we may apply Thm. 7 and Cor. 8 in turn to obtain
M~ CW*R|; < (1+ )M~ CC*M]|. < (1+¢|M - L

with probability at leas{l — ¢)(1 — ¢’ — 0.2) by independence.

F Proof of Theorem 3

LetLy = [Co1,...,Cos andL = [Cy,...,C;]. DefineG as the evenfLy — LP"7||, <
(2 4 €)cey/mnA, H as the evenf|L — LP™%7||, < (1 + ¢)||Lo — L||, and B; as the event
I1Co,i — Ci||F < ec.vVmlIA, foreachi € {1,...,¢}. WhenH holds, we have that
Lo = L7 |lp < Lo = Ll p + L = L7 || p < (2+ €)[[ Lo — L,
by the triangle inequality, and hence
P(G) = P(N;B: N H N[;A(Co,i)) = P(N;Bi | HN[;A(Co.:))P(H N[;A(Co.:)).

Our choice of, with a factor oflog(2/4), implies that eacki(Cy ;) holds with probability at least
1—46/(2n) by Lemma 6, whileH holds with probability at least — 6/2 by Thm. 7. Hence, by the
union bound,

P(HNN,A(Co,)) > 1—P(H) — 3, P(A(Co,:)°) > 1 —5/2 —t6/(2n) > 1 — 4.

®For simplicity, we assume thatdivides! evenly.
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Further, by a union bound and our base MF assumption,

P(N;Bi | HN(A(Co,)) 21 =3 P(Bf | A(Co,)) = 1 - thc
yielding the desired bound dA(G).
To prove the second statement, we redefirend write it in block notation as:

L =
Cy Lopoo

} . where C= [91} , R=[R, Ry
Cs

andLg 2o € Rm=Dx(2=1) js the bottom right submatrix dfy. We further defings” as the event
|L — L™ < (1+ €)?||Lo — L] . As above,
Lo — £ < Lo — Ellp+ [T — L7 < 24+ 2+ €3) Lo — Ll < (2+36)||Lo — L,
whenK holds, by the triangle inequality. Our choiced @ind

d > cluo(C)log(m) log(4/6)/€® > erplog(m)log(4/6) /€

imply that A(C) and A(R)) hold with probability at least — 6/(2n) and1 — §/(4n) respectively
by Lemma 6, whileX holds with probability at leastt — §/2)(1 — §/4 — 0.2) by Cor. 9. Hence,
by the union bound,

P(KNA(C)NAR)) > 1—P(K°) — P(A(C)°) — P(A(R))
>1—(1—(1-6/2)(1—6/4—0.2)—5/(2n) —5/(4n)
>(1-6/2)(1—6/4—0.2)—36/8
>(1-6)(1-6-02)

foralln > 1 andé < 0.8. Further, by a union bound and our base MF assumption,
P(J)>P(BcNBr | KNA(C)NAR))P(KNA(C)NAR))
>(1—-9d6c—06r)(1—-0)(1—-6-0.2).

G Proof of Corollary 4

Cor. 4 is based on a new noisy MC theorem, which we prove inISAcsimilar recovery guarantee
is obtained by [3] under stronger assumptions.

Theorem 13. Suppose thak, € R™*™ is (i, r)-coherent and that, for some target rate parameter
8 >1,
s > 32ur(m + n)Blog*(m +n)

entries ofM are observed with locatiort3 sampled uniformly without replacement. Thempi n
and||Po(M) — Po(Lo)|| » < A a.s., the minimizeL to the problem

minimizg, ||L||, subjectto |[Po(M —L)||p <A (4)

satisfies

. 2m?2 1
Lo — Ll & §8\/ T8 o m+ EASC’E\/mnA
s

with probability at leastl — 4 log(n)n?~2 for ¢/ a positive constant.

We begin by proving the DFCHbJ bound. For eachi € {1,...,t}, let B; be the event that
I1Co.: — CZ—||F > ¢/v/mlA andD; be the event that; < 32u/r(m + 1) log®(m + 1), wheres; is
the number of revealed entries@y ;,

2 —
ra KT ;o Blog(n)
C1—¢/2’ and  f = log(max(m, 1))

Then, by Thm. 3, it suffices to establish that
P(B; | A(Cy;)) < (4log(n) + 1)n*~2#

"

16



for eachi. By Thm. 13 and our choice gf,
P(B; | A(Co,i)) < P(B; | A(Co,), Df) +P(D; | A(Co,i)
< 4log(max(m, 1)) max(m, )22 + P(D;)
< 4log(n)n?~%* + P(D;).

Further, since the support &% is uniformly distributed and of cardinality, the variables; has
a hypergeometric distribution withs; = %l and hence satisfies Hoeffding’s inequality for the
hypergeometric distribution [10, Sec. 6]:

P(s; <Es; —st) < exp(—25t2).
It therefore follows that

! ! 2
P(D;) _p<8i <E5i_s<% - 32#7’(m+l)f log (m+z)>)

—Pls 6 — s [ B(m +1)log®(m 4 1) log(71)
- P( P b (” Bs(m + n)log?(m +n) log(max(m,l))))

P(si <Esi—s<% — é))

-1
§P<5i<Esi—s s )

IN

nfs

< exp(—zsﬂn; 1) < exp(=2log(R) (8 — 1)) = 7>~

S

by our assumptions onand!. Hence P (B; | A(Cy;)) < (4log(n) + 1)n%~2 for eachi, and the
DFC-ProJresult follows from Thm. 3.

For DFC-Ns, let Bo be the event thafCy — C||,, > ¢,vmiA and Bi be the event that
|Ro — R > c.VdnA. Reasoning identical to that above yieB$Bc | A(C)) < (4log(n) +

1)n?=2% andP(Bg | A(R)) < (4log(n)+1)n%~25. Thus, the DFC-Ns bound also follows from
Thm. 3.

H Proof of Corollary 5

Cor. 5is based on the following theorem of Zhou et al. [25hm@ulated for a generic rate parameter
3, as described in [2, Section 3.1].

Theorem 14(Thm. 2 of [25]) Suppose thak is (u, r)-coherent and that the support set®f is
uniformly distributed among all sets of cardinaligy Then, ifm < n and|[M — Lo — S| < A

a.s., there is a constan}, such that with probability at least— c,n~?, the minimize(L, S) to the
problem

minimize, s ||L|, + A[[S||; subjectto |[M—-L -S| <A (5)

with A = 1/+/7 satisfies|Lo — L|| 5 + |So — S||» < ¢?mnAZ, provided that
prm
r= 2
j1log?(n)
for target rate parametef > 2, and positive constanis., ps, andc’.

and s < (1—psB)mn

We begin by proving the DFCHbJ bound. For each € {1,...,¢}, let B; be the event that
[Co,i — Cill > c/v/mIA, and further definen £ max(m,[) and

8" £ Blog(n)/log(m) < 5.
Then, by Thm. 3, it suffices to establish that
P(B; | A(Co,i)) < (cp + 1)n ™"
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for eachi. By Thm. 14 and the definitions ¢f andj3”,
P(B; | A(Co,i)) < P(B; | A(Co,), 8 < (1= psB")ml) + P(si > (1 — psf")mi | A(Co,i))
<y 4 P(s; > (1— pof”)mi)
< P+ P(s; > (1 — pe)ml),

wheres; is the number of corrupted entries @y, ;. Further, since the support 8 is uniformly

distributed and of cardinality, the variables; has a hypergeometric distribution wilts; = %l and
hence satisfies Bernstein’s inequality for the hypergedoid0, Sec. 6]:

P(s; > Es; + st) < exp(—st®/(20% + 2t/3)) < exp(—st’n/4l),

forall0 < ¢ < 3i/nando? £ L(1— L) < L |ttherefore follows that

P(s; > (1— ps3)ml) = P<Si > Bsi + S<M - i))

S n

)

_ exp(_ﬁl (psﬂs - psﬂ/)z) S ﬁfﬁ

4 (1 —psfBs)
by our assumptions anandi and the fact thaj; (8::)’:53 — 1) < 3l/nwhenever3,—3/ps < B'.

HenceP(B; | A(Cy,)) < (¢, + 1)n~" for eachi, and the DFC-RouJresult follows from Thm. 3.

For DFC-Ns, let Bo be the event thalCo — C|, > ¢/v/mIA and Bg be the event that
|Ro — R > ¢/vdnA. Reasoning identical to that above yieB§Bc | A(C)) < (¢, + 1)~
andP(Bg | A(R)) < (¢, + 1)n~?. Thus, the DFC-Ns bound also follows from Thm. 3.

| Proof of Theorem 13

In the spirit of [3], our proof will extend the noiseless aygs$ of [22] to the noisy matrix completion
setting. As suggested in [9], we will obtain strengthenesiits, even in the noiseless case, by
reasoning directly about the without-replacement samgpinodel, rather than appealing to a with-
replacement surrogate, as done in [22].

ForULDZLOVZO the compact SVD ok, we letT = {U,;OX+YVI0 X eR™™MY € Rm*7},
‘Pr denote orthogonal projection onto the spdteandP,. represent orthogonal projection onto
the orthogonal complement @f. We further defineZ as the identity operator oR™*" and the
spectral norm of an operatet : R™*" — R™™ as||Al|, = supx <1 [[AX)]|f-

We begin with a theorem providing sufficient conditions far desired recovery guarantee.
Theorem 15. Under the assumptions of Thm. 13, suppose that

mHPTPQPT - i73TH < ! (6)
s mn 27 2

and that there exists & = Pq(Y) € R™*" satisfying

T 8 1
IPr(Y) = ULoVillp <4/ 55,— and [[Pro(Y)]; < 3. )

Then,

. 2m? 1
Lo — Ll < 8\/ UL 1—6A < ce/mnA.

S
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Proof We may writeL, asLy + G + H, wherePo(G) = G andPo(H) = 0. Then, under
Eq. (6),

|PaPr(H)|% = (H, PrPiPr(H)) > (H, PrPoPr(H)) > ()|

Furthermore, by the triangle inequality, = ||Po(H)| > [[PoPr(H )||F — [|PoPr. (H)|| 5.
Hence, we have

S
5 P (H)]p < [PePr )l p < [PePre(\)llp < [Pre(H)|p < [Pro(H)],, (8)

where the penultimate inequality follows ®g, is an orthogonal projection operator.

Next we selectU; and V, such that[U,,,U,] and [V,, V] are orthonormal and
(ULV],Pri(H)) = ||Pr.(H)||, and note that

Lo + HJ,
> (UL, V] +U.V],Lg +H>
= |Loll, + (UL, V], + UNI ~Y.H)
= |Loll, + (UL, Vi, = Pr(Y > (ULVI, Pri(H)) = (Pre(Y), Pri(H))
> || Loll, — HULOVZO - Pr(Y )HFHPT(H)“F+”PTJ-(H)”*_ [Pr+ (Y)[lo[[Pr- (H)|,

> [[Loll, + _”,PTJ-

||PT HF

> || Loll, + Z”PTL (H)[|

where the first inequality follows from the variational repentation of the trace norfA ||, =
sup| |, <1 (A, B), the first equality follows from the fact thaly, H) = 0 for Y = Pq(Y), the
second inequality follows from Holder’s inequality fort@tternp-norms, the third inequality follows
from Eqg. (7), and the final inequality follows from Eqg. (8).

Since Ly is feasible for Eq. (4),|Lo|, > |L||,, and, by the triangle inequality|L]|,
Lo + H|, — |G, Since||G||, < v/m| G| and

IG5 < [Pa(Li = M) g + [[Pa(M — Lo)| < 24,
we conclude that

A2
Lo — L|| = IPr(E)|7 + [Pre (H)| 7 + | GI7

2mn
< <—+1>|7>TL< 2+ 1GIE
2mn
- 16(—+1)||G| el

2m2n
< 64 A2,
< < e 16)

Hence

. 2m?2 1
Lo — Lz < 8\/ UL EA < cev/mnA
S
for some constant,, by our assumption o O

To show that the sufficient conditions of Thm. 15 hold withhigrobability, we will require four
lemmas. The first establishes that the oper&@pP,Pr is nearly an isometry off’ when suffi-
ciently many entries are sampled.

Lemma 16. Forall 8 > 1,

L N

with probability at leastl — 2n?~27 provided thats > 18 r(n + m)Blog(n).
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The second states that a sparsely but uniformly observetkisatiose to a multiple of the original
matrix under the spectral norm.

Lemma 17. LetZ be a fixed matrix ilR™*", Then for allg > 1,

(2P0 7)), = P

with probability at leastl — (m + n)'!~# provided thats > 63m log(m + n).

The third asserts that the matrix infinity norm of a matrixirdoes not increase under the operator
PrPq.

Lemma 18. LetZ € T be a fixed matrix. Then for alf > 2

8 Tl
‘ s Pz ZH \/ Bur(m 3Sn) Og(n)l\zl\m

with probability at leastl — 2n?~* provided thats > £ 8ur(m + n)log(n).

These three lemmas were proved in [22, Thm. 3.4, Thm. 3.5 antma 3.6] under the assump-

tion that entry locations ifi2 were sampledvith replacement. They admit identical proofs under
the sampling without replacement model by noting that tfieremced Noncommutative Bernstein

Inequality [22, Thm. 3.2] also holds under sampling withaglacement, as shown in [9].

Lemma 16 guarantees that Eq. (6) holds with high probabilioyconstruct a matriy = Pq(Y)
satisfying Eq. (7), we consider a sampling with batch regtaent scheme recommended in [9] and
developed in [5]. Lef), ..., Qp be independent sets, each consisting cindom entry locations
sampled without replacement, where = s. Let 2 = U?_,Q;, and note that there exigtandg
satisfying
128 3
q> ?ur(m +n)plog(m+n) and p> 1 log(n/2).

It suffices to establish Eq. (7) under this batch replacemsamme, as shown in the next lemma.

Lemma 19. For any location sef)y C {1,...,m} x {1,...,n}, let A(Qg) be the event that there
existsY = Pq, (Y) € R™*" satisfying Eq. (7). If)(s) consists ok locations sampled uniformly

without reglacement anﬁ(s) is sampled via batch replacement wittbatches of size for pg = s,
thenP(A()(s))) < P(A((s))).

Proof As sketched in [9]

P(A(©Q(s)) = 3 P2 = )P(AQ®) | 10 = i)

< ZP(IQI = )P(A(Q(s))) = P(A(Q(s))),

since the probability of existence never decreases wittereatries sampled without replacement

and, given the size of), the locations ofQ are conditionally distributed uniformly (without
replacement). O

We now follow the construction of [22] to obtaill’ = Py (Y) satisfying Eq. (7). LetW, =
UL, V], and defineY, = 22355 Py (W; 1) and W = UL, V] — Pr(Yy) for k =
1,...,p. Assume that
mn
i - ], <
q mn 2

1
5 ©)
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forall k. Then

Wl = [Wics = 22, (W) = |(Pr = 22, Pry(Wics)| < 5IWical
and hencd Wy || - < 27%||Wo|| . = 27%/r. Since
p> loa(n/2) > Slogy(n/2) > log, v/32rmn ],
Y £ Y, satisfies the first condition of Eq. (7).
The second condition of Eq. (7) follows from the assumptions
Hwk_l — PP, (Wie)| < Sl (10)
(B, ~ 1) (Wi < \/ P P Wil @)

for all k, since Eq. (10) implie§W || , < 27%|UL, V] |_,and thus

-

mn
[Pre(Yp)lly < ~ [r-Pa, (Wj-1)

2

<
Il
—

|
VM"@

mn
PTL(TPQJ- (Wj—1) = W;1)

2

<
Il
—

INA
IE
3

—Pq, —I)(W;-1)

2

<
Il
-

NE

8mn2plog(m + n)
\/ 30 IWi-1llo

1

<.
Il

-

- |8mn2p1 32 1
9 2—.7\/ mnﬁog(m+n)||UWV;V”m<\/ prnBlog(m + n) <1/2

3q 3q

j=1

by our assumption o The first line applies the triangle inequality; the secoaldis sinceW ;_; €
T for eachj; the third follows becaus®. is an orthogonal projection; and the final line exploits
(u, 7)-coherence.

We conclude by bounding the probability of any assumed efaling. Lemma 16 implies that
Eq. (6) fails to hold with probability at mo&t:>~24. For eachk, Eq. (9) fails to hold with probability
at most2n?~2# by Lemma 16, Eq. (10) fails to hold with probability at mast>—2” by Lemma 18,
and Eq. (11) fails to hold with probability at magt +n)'~2# by Lemma 17. Hence, by the union
bound, the conclusion of Thm. 15 holds with probability a@de

3 15
1—2n272% — 1 log(n/2)(4n*=%% 4+ (m +n)'=2F) > 1 - ) log(n)n*=2% > 1 —4log(n)n?=2".
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