Deflation Methods for Sparse PCA

Lester Mackey
Computer Science Division
University of California, Berkeley
Berkeley, CA 94703

Abstract

In analogy to the PCA setting, the sparse PCA problem is aftdved by iter-
atively alternating between two subtasks: cardinalitpstmained rank-one vari-
ance maximization and matrix deflation. While the former rexeived a great
deal of attention in the literature, the latter is seldomiyred and is typically
borrowed without justification from the PCA context. In thi®rk, we demon-
strate that the standard PCA deflation procedure is seldgroppate for the
sparse PCA setting. To rectify the situation, we first depedeveral deflation al-
ternatives better suited to the cardinality-constrairedext. We then reformulate
the sparse PCA optimization problem to explicitly reflee thaximumadditional
variance objective on each round. The result is a genedatiefiation procedure
that typically outperforms more standard techniques ohwead datasets.

1 Introduction

Principal component analysis (PCA) is a popular change nébkes technique used in data com-
pression, predictive modeling, and visualization. Thel géaPCA is to extract several principal
components, linear combinations of input variables thgetioer best account for the variance in a
data set. Often, PCA is formulated as an eigenvalue decatigpoproblem: each eigenvector of
the sample covariance matrix of a data set corresponds toatagsor coefficients of a principal
component. A common approach to solving this partial eigkmsdecomposition is to iteratively
alternate between two subproblems: rank-one variancemizadion and matrix deflation. The first
subproblem involves finding the maximum-variance loadiverstor for a given sample covariance
matrix or, equivalently, finding the leading eigenvectottaf matrix. The second involves modifying
the covariance matrix to eliminate the influence of that eigetor.

A primary drawback of PCA is its lack of sparsity. Each prpalicomponent is a linear combination
of all variables, and the loadings are typically non-zerparSity is desirable as it often leads to
more interpretable results, reduced computation time,isnpdoved generalization. Sparse PCA
[8, 3,16, 17,6, 18, 1, 2, 9, 10, 12] injects sparsity into tkEARrocess by searching for “pseudo-
eigenvectors”, sparse loadings that explain a maximal atnariance in the data.

In analogy to the PCA setting, many authors attempt to sdieesparse PCA problem by itera-
tively alternating between two subtasks: cardinalitystomined rank-one variance maximization
and matrix deflation. The former is an NP-hard problem, andraty of relaxations and approx-
imate solutions have been developed in the literature [9, 20, 12, 16, 17]. The latter subtask
has received relatively little attention and is typicallyriowed without justification from the PCA
context. In this work, we demonstrate that the standard P&€hatibn procedure is seldom appro-
priate for the sparse PCA setting. To rectify the situatioa first develop several heuristic deflation
alternatives with more desirable properties. We then refhaite the sparse PCA optimization prob-
lem to explicitly reflect the maximuradditional variance objective on each round. The result is a
generalized deflation procedure that typically outperfomore standard techniques on real-world
datasets.



The remainder of the paper is organized as follows. In Se@iwe discuss matrix deflation as it re-
lates to PCA and sparse PCA. We examine the failings of typiC# deflation in the sparse setting
and develop several alternative deflation procedures. ¢tid®e3, we present a reformulation of the
standard iterative sparse PCA optimization problem and/eler generalized deflation procedure
to solve the reformulation. Finally, in Section 4, we dentoate the utility of our newly derived
deflation techniques on real-world datasets.

Notation

I is the identity matrix. S%, is the set of all symmetric, positive semidefinite matrice®Rp=>.
Card(z) represents the cardinality of or number of non-zero eninidise vectorz.

2 Deflation methods

A matrix deflationmodifies a matrix to eliminate the influence of a given eigetwe typically by
setting the associated eigenvalue to zero (see [14] for & mietailed discussion). We will first
discuss deflation in the context of PCA and then considexitnsion to sparse PCA.

2.1 Hotelling’s deflation and PCA

In the PCA setting, the goal is to extract thkeading eigenvectors of the sample covariance matrix,
Ay € S%, as its eigenvectors are equivalent to the loadings of tisesfiprincipal components.
Hotelling’s deflation method [11] is a simple and populahtgque for sequentially extracting these
eigenvectors. On theth iteration of the deflation method, we first extract thedlag eigenvector
of A;_4,
x; = argmax Ay 1z Q)
zizTx=1

and we then use Hotelling’s deflation to annihilate

Ay = A1 — xtxtTAt,la:txtT. (2)

The deflation step ensures that the 1-st leading eigenvector od, is the leading eigenvector of
A;. The following proposition explains why.

Proposition 2.1. If Ay > ... > A, are the eigenvalues of € Sﬁ, z1,...,%p are the corresponding
eigenvectors, and = A — xjx] Azjx] forsomej € 1,...,p, thenA has eigenvectors , . . ., z,,
with corresponding eigenvalues, ..., Aj_1,0, \j41,. .., Ap.

PROOF

T, _ R o N — N — .
ST = Az T;T; Azj = Njzj — A\jxy; = Ox;.

Ax; = Ax; — xjijAmjijxi = Azx; — 0= N\jz;, Vi # .

i , T
Az = Ax; — T Azjz

O

Thus, Hotelling’s deflation preserves all eigenvectors ofarix and annihilates a selected eigen-
value while maintaining all others. Notably, this impliéat Hotelling’s deflation preserves positive-
semidefiniteness. In the case of our iterative deflation atethnnihilating the-th leading eigen-
vector of A renders the + 1-st leading eigenvector dominant in the next round.

2.2 Hotelling's deflation and sparse PCA

In the sparse PCA setting, we seekparse loadings which together capture the maximum amount
of variance in the data. Most authors [1, 9, 16, 12] adopt tubt@nal constraint that the loadings
be produced in a sequential fashion. To find the first suchughseigenvector”, we can consider a
cardinality-constrained version of Eqg. (1):

T = argmax zT Az 3)
z:2Tx=1,Card(z)<k;



That leaves us with the question of how to best extract sulesggseudo-eigenvectors. A common
approach in the literature [1, 9, 16, 12] is to borrow thesdtime deflation method of the PCA setting.
Typically, Hotelling’s deflation is utilized by substitatj an extracted pseudo-eigenvector for a true
eigenvector in the deflation step of Eq. (2). This substitythowever, is seldom justified, for the
properties of Hotelling’s deflation, discussed in Sectioh 2epend crucially on the use of a true
eigenvector.

To see what can go wrong when Hotelling’s deflation is appited non-eigenvector, consider the
following example.

2 1
11

:3820. Letz = (1,0)7, a sparse pseudo-eigenvector, ahe= C' — zz” Czz”, the corresponding

deflated matrix. Theld’ = (1) i ) with eigenvalues\; = 1.6180 and X, = —.6180. Thus,
Hotelling’s deflation does not in general preserve positemidefiniteness when applied to a non-

eigenvector.

Example. LetC = ( ) a2 x 2 matrix. The eigenvalues @f are\; = 2.6180 and)\; =

ThatS', is not closed under pseudo-eigenvector Hotelling's deffeis a serious failing, for most
iterative sparse PCA methods assume a positive-semidefiratrix on each iteration. A second,
related shortcoming of pseudo-eigenvector Hotelling'8atien is its failure to render a pseudo-
eigenvector orthogonal to a deflated matrixAlis our matrix of interesty is our pseudo-eigenvector
with variancer = 27 Az, andA = A — zaT Aza” is our deflated matrix, thedz = Az —
xxT AzaTx = Az — Az is zero iff 2 is a true eigenvector. Thus, even though the “variance” of
zwrt. Ais zero ¢T Az = 27 Az — 2722 AzaTz = XA — A = 0), “covariances” of the form

yT Az for y # = may still be non-zero. This violation of the Cauchy-Schwiaemjuality betrays a
lack of positive-semidefiniteness and may encourage tippesgiance of as a component of future
pseudo-eigenvectors.

2.3 Alternative deflation techniques

In this section, we will attempt to rectify the failings ofgasglo-eigenvector Hotelling’s deflation by
considering several alternative deflation techniquesbstiited to the sparse PCA setting. Note
that any deflation-based sparse PCA method (e.g. [1, 9, 1B caa utilize any of the deflation
techniques discussed below.

2.3.1 Projection deflation

Given a data matri¥” € R™*? and an arbitrary unit vector im € RP, an intuitive way to remove

the contribution ofr from Y is to projectY” onto the orthocomplement of the space spanned:by

Y = Y(I — zzT). If Ais the sample covariance matrix B, then the sample covariance Bfis

given by A = (I — z2T)A(I — z2T), which leads to our formulation for projection deflation:
Projection deflation

Ay = A1 — xtx?At_l — At_lxtxf =+ $t$$At_1$t$? = ([ — $t$?)At_1(I — a?tl‘?) (4)

Note that when, is a true eigenvector ofl;_; with eigenvalue)\,, projection deflation reduces to
Hotelling’s deflation:
At = At—l — $tI?At_1 — At_lxtmf + ItIzAt_lmtI?

T T T
= At—l — /\ta:t:vt — )\txtxt + )\t.lftﬂft

= Atfl - xtx?At,lxtxz.
However, in the general case, whenis not a true eigenvector, projection deflation maintaires th
desirable properties that were lost to Hotelling’s deflatiGor example, positive-semidefiniteness
is preserved:
Vy, Z/TAty = ZIT(I - ftxgw)Atfl(I - xtx?)y =2TA 12
wherez = (I — z3x])y. Thus, ifA;_; € Sﬁ, so isA;. Moreover, A, is rendered left and right

orthogonal tor,, as(I —z¢x! )z = z¢ —x; = 0 and A, is symmetric. Projection deflation therefore
annihilates all covariances with: Vv, v Ajzy = ] Ajv = 0.



2.3.2 Schur complement deflation

Since our goal in matrix deflation is to eliminate the influenas measured through variance and
covariances, of a newly discovered pseudo-eigenvectsryéasonable to consider the conditional
variance of our data variables given a pseudo-principalpmmant. While this conditional variance

is non-trivial to compute in general, it takes on a simplesetbform when the variables are normally
distributed. Letz € RP be a unit vector antl’ € R? be a Gaussian random vector, representing the
joint distribution of the data variables. W has covariance matrix, then(W, Wx) has covariance

:}Z x?;gg ) andVar(W|Wz) = ¥ — i“;””;f wheneverz” Sz # 0 [15].

That is, the conditional variance is the Schur complemenhefvector variance” £z in the full
covariance matri¥/. By substituting sample covariance matrices for their pajan counterparts,
we arrive at a new deflation technique:

Schur complement deflation
At—1$tx$At—1

T
o A1y

matrix V. =

Ay = A1 — (5)
Schur complement deflation, like projection deflation, press positive-semidefiniteness. To
see this, supposel;_; € S%. Then,Vu,v"40 = vTA; v — % > 0 as
vl Ay _qval Ay oy — (0T Ay_q124)? > 0 by the Cauchy-Schwarz inequality ard A; 2, > 0
asAd;_; € S

Furthermore, Schur complement deflation rendgrgeft and right orthogonal tod;, since A4, is
symmetric andd;z; = A;_1x; — Acamer Ao _ Ai 12y — Az = 0.

T
T Ap_1T

Additionally, Schur complement deflation reduces to Hatgls deflation when, is an eigenvector
of A,_, with eigenvalue\; # 0:

T
At719€tlt A

A=Ay —
t t—1 .I'?At,]_xt
T
_ At_l _ )\tIt/\Jit )\t
t

T T
= At,1 — Tty Atfll't.’l?t .

While we motivated Schur complement deflation with a Gaustgiassumption, the technique ad-
mits a more general interpretation as a column projectioa data matrix. Supposg € R"*P

is a mean-centered data matrixe R has unit norm, and” = (I — ﬁf;iﬁ;)y’ the projection

of the columns of” onto the orthocomplement of the space spanned by the pgeirdipal com-
ponent,Yz. If Y has sample covariance matr¥ then the sample covariance Bfis given by

A1 YazTy”T YzzTy”T _ 1 YzaeTy”T _ AzzT A
A= EYT(I N \:\C;ﬂcl\z )T(I T IYe[P )Y - EYT(I TIYe[P )Y =A- l‘TJAw '

2.3.3 Orthogonalized deflation

While projection deflation and Schur complement deflationreskl the concerns raised by per-
forming a single deflation in the non-eigenvector settirgyy nlifficulties arise when we attempt to
sequentially deflate a matrix with respect teaaiesof non-orthogonal pseudo-eigenvectors.

Whenever we deal with a sequence of non-orthogonal vect@snust take care to distinguish
between the variance explained by a vector andatiiditional variance explained, given all pre-
vious vectors. These concepts are equivalent in the PChgetts true eigenvectors of a matrix
are orthogonal, but, in general, the vectors extracted bysspPCA will not be orthogonal. The
additional variance explained by theh pseudo-eigenvector,, is equivalent to the variance ex-
plained by the component of orthogonal to the space spanned by all previous pseudonageers,

q: = x¢ — Py_1x¢, WhereP,_ is the orthogonal projection onto the space spanned by. ., z; ;.
On each deflation step, therefore, we only want to elimirfagevariance associated wigh Anni-
hilating the full vectorz; will often lead to “double counting” and could re-introducemponents
parallel to previously annihilated vectors. Consider thiofving example:



Example. Let Cy = I. If we apply projection deflation w.rtz; = (@ @)T, the result is

27 2
1 _1
Ci = ( 20 42 > andz; is orthogonal ta”; . If we next apply projection deflation 0; w.r.t.
2 2
x9 = (1,0)7, the resultCy = ( 8 8 ) is no longer orthogonal to; .
2

The authors of [12] consider this issue of non-orthogopatitthe context of Hotelling’s deflation.
Their modified deflation procedure is equivalent to Hotefrdeflation (Eg. (2)) fot = 1 and can
be easily expressed in terms of a running Gram-Schmidt deosition fort > 1:

Orthogonalized Hotelling’s deflation (OHD)
(I — Qt—lQ?_1)xt

qt = (6)
||(I - Qt—nglﬂxtH
_ T T
A=A — qtqy At—thQt
whereq; = x1,andgy, ..., g;—1 formthe columns of);_1. Sinceq,, . .., ¢;:—1 form an orthonormal

basis for the space spannedby ..., x; 1, we have thaQt_lQ,T_l = P,_1, the aforementioned
orthogonal projection.

Since the first round of OHD is equivalent to a standard apptia of Hotelling’s deflation, OHD
inherits all of the weaknesses discussed in Section 2.2 eMexvthe same principles may be applied
to projection deflation to generate an orthogonalized watlzat inherits its desirable properties.

Schur complement deflation is unique in that it preservesoganality in all subsequent rounds.
T
That is, if a vectow is orthogonal tad,_, for anyt, then4d,v = A, v — W =0as
TA,_
A;_1v = 0. This further implies the following proposition.

Proposition 2.2. Orthogonalized Schur complement deflation is equivaler@diour complement
deflation.

Proof. Consider theé-th round of Schur complement deflation. We may wiite= o; + p;, where
pq IS in the subspace spanned by all previously extracted pseiggnvectors and, is orthogonal
to this subspace. Then we know th&t p; = 0, asp; is a linear combination of1,...,z;_1,
andA;_1z; = 0,Vi < t. Thus,a] Ayzy = pl Aipr + of Aypy + pl Aoy + of Ayoy = ol Ayoy.
Further,At—ﬂtItTAt—l = At—lptptTAt—1 +At—1pt0tTAt—1 +At—10tPtTAt—1 +At—10t0tTAt—1 =

Ay_10407 Ay A_1gqF Ay
At_10t0;5TAt_1. Hence,At = At_1 — L1009y el At—l — L9ty Beon asq; = O

o
OtTAt—lot thAt—lﬂh HOtHI

Table 1 compares the properties of the various deflatiomtqabs studied in this section.

Method CE;A&L} =0 Atl't =0 At S S:i AS.’I]t == O,VS >t
Hotelling’s v X X X
Projection v v v X
Schur complement v v v v
Orth. Hotelling’s v X X X
Orth. Projection v v v v

Table 1: Summary of sparse PCA deflation method properties

3 Reformulating sparse PCA

In the previous section, we focused on heuristic deflatichrigues that allowed us to reuse the
cardinality-constrained optimization problem of Eq. (8).this section, we explore a more princi-
pled alternative: reformulating the sparse PCA optim@aproblem to explicitly reflect our maxi-
mization objective on each round.

Recall that the goal of sparse PCA is to findardinality-constrained pseudo-eigenvectors which
together explain the most variance in the data. If we aduliflg constrain the sparse loadings to



be generated sequentially, as in the PCA setting and thépiesection, then a greedy approach of
maximizing theadditionalvariance of each new vector naturally suggests itself.

On roundt, the additional variance of a vectoeris given by% where Ay is the data covari-

ance matrix,y = (I — P;—1)z, and’P,_; is the projection onto the space spanned by previous
pseudo-eigenvectors, ..., ;1. Asqlq = 2T (I — P;_1)(I — Pi_1)x = 2T (I — Py_1)z, max-
imizing additional variance is equivalent to solving a ¢aatity-constrained maximum generalized
eigenvalue problem,

max SCT(I* Pt_l)Ao(I - Pt_l)l’

subject tar” (I — P;_1)z =1 (7
Card(z) < k.

Ifweletg, = (I — Ps_1)zs,Vs <t —1,thengy,...,q—1 form an orthonormal basis for the space
spanned byry, ...,z 1. Writing I — P,y = I — S2'20 quq” = T2} (I — ¢.q7) suggests a

s=1

generalized deflation technique that leads to the solutidfro (7) on each round. We imbed the
technique into the following algorithm for sparse PCA:

Algorithm 1 Generalized Deflation Method for Sparse PCA
Given: Ag € S¥,r € N, {ky,...,k.} CN

Execute:
1. B() — I
2. Fort:=1,...,r
o I; — argmax 2T Ay
z:xzT By_1z=1,Card(z)<k:
® gt — By 114
o Ay — (I —qg!)Ava(I — qugl’)
e By — By (I —qq)
oz — 3¢/ |||
Return:{z1,...,z,}

Adding a cardinality constraint to a maximum eigenvaludbgm renders the optimization problem
NP-hard [10], but any of several leading sparse eigenvalethods, including GSLDA of [10],
DCPCA of [12], and DSPCA of [1] (with a modified trace constthj can be adapted to solve this
cardinality-constrained generalized eigenvalue problem

4 Experiments

In this section, we present several experiments on reatvdaiasets to demonstrate the value added
by our newly derived deflation techniques. We run our expenits with Matlab implementations
of DCPCA [12] (with the continuity correction of [9]) and GBIA [10], fitted with each of the
following deflation techniques: Hotelling’s (HD), projémh (PD), Schur complement (SCD), or-
thogonalized Hotelling’s (OHD), orthogonalized projectiOPD), and generalized (GD).

4.1 Pit props dataset

The pit props dataset [5] with 13 variables and 180 obsemathas become a de facto standard for
benchmarking sparse PCA methods. To demonstrate the disgaghavior of differing deflation
methods, we utilize each sparse PCA algorithm and deflagicinique to successively extract six
sparse loadings, each constrained to have cardinalitythessor equal td; = 4. We report the
additional variances explained by each sparse vector ile Pahnd the cumulative percentage vari-
ance explained on each iteration in Table 3. For refereihesfinst 6 true principal components of
the pit props dataset capture 87% of the variance.



DCPCA GSLDA

HD PD SCD | OHD | OPD | GD HD PD SCD | OHD | OPD | GD

2.938 | 2.938 | 2.938| 2.938 | 2.938 | 2.938 || 2.938 | 2.938| 2.938 | 2.938 | 2.938 | 2.938
2.209 | 2.209| 2.076 | 2.209 | 2.209 | 2.209 || 2.107 | 2.280 | 2.065| 2.107 | 2.280 | 2.280
0.935| 1.464 | 1.926| 0.935| 1.464 | 1.477 | 1.988| 2.067 | 2.243 | 1.985| 2.067 | 2.072
1.301 | 1.464 | 1.164 | 0.799 | 1.464 | 1.464 | 1.352| 1.304| 1.120| 1.335| 1.305| 1.360
1.206 | 1.057 | 1.477| 0.901 | 1.058 | 1.178 | 1.067 | 1.120 | 1.164| 0.497 | 1.125| 1.127
0.959 | 0.980| 0.725| 0.431| 0.904 | 0.988| 0.557 | 0.853 | 0.841| 0.489 | 0.852 | 0.908

Table 2: Additional variance explained by each of the firspéirse loadings extracted from the Pit
Props dataset.

On the DCPCA run, Hotelling’s deflation explains 73.4% of vheiance, while the best performing
methods, Schur complement deflation and generalized aef]akplain approximately 79% of the
variance each. Projection deflation and its orthogonaNzeint also outperform Hotelling’s defla-
tion, while orthogonalized Hotelling’s shows the worstfpemance with only 63.2% of the variance
explained. Similar results are obtained when the discretihod of GSLDA is used. Generalized
deflation and the two projection deflations dominate, with &hieving the maximum cumulative
variance explained on each round. In contrast, the morelatdrHotelling’s and orthogonalized
Hotelling’s underperform the remaining techniques.

DCPCA GSLDA
HD PD SCD OHD OPD GD HD PD SCD OHD OPD GD
22.6% | 22.6% | 22.6% | 22.6% | 22.6% | 22.6% || 22.6% | 22.6% | 22.6% | 22.6% | 22.6% | 22.6%
39.6% | 39.6% | 38.6% | 39.6% | 39.6% | 39.6% || 38.8% | 40.1% | 38.5% | 38.8% | 40.1% | 40.1%
46.8% | 50.9% | 53.4% | 46.8% | 50.9% | 51.0% || 54.1% | 56.0% | 55.7% | 54.1% | 56.0% | 56.1%
56.8% | 62.1% | 62.3% | 52.9% | 62.1% | 62.2% || 64.5% | 66.1% | 64.4% | 64.3% | 66.1% | 66.5%
66.1% | 70.2% | 73.7% | 59.9% | 70.2% | 71.3% || 72.7% | 74.7% | 73.3% | 68.2% | 74.7% | 75.2%
73.4% | 77.8% | 79.3% | 63.2% | 77.2% | 78.9% || 77.0% | 81.2% | 79.8% | 71.9% | 81.3% | 82.2%

Table 3: Cumulative percentage variance explained by teedisparse loadings extracted from the
Pit Props dataset.

4.2 Gene expression data

The Berkeley Drosophila Transcription Network Project (BYP) 3D gene expression data
[4] contains gene expression levels measured in each ruudéweveloping Drosophila em-
bryos and averaged across many embryos and developmeagmsst Here, we analyze O-
3.116052418371310436-29ap05-02.vpc, an aggregate VirtualEmbryo coin@i2l genes and
5759 example nuclei. We run GSLDA for eight iterations witdrdinality pattern 9,7,6,5,3,2,2,2
and report the results in Table 4.

GSLDA additional variance explained GSLDA cumulative percentage variance

HD PD SCD OHD OPD GD HD PD SCD OHD OPD GD

PC1 | 1.784 | 1.784 | 1.784 | 1.784 | 1.784 | 1.784 21.0% | 21.0% | 21.0% | 21.0% | 21.0% | 21.0%
PC2 | 1464 | 1.453 | 1.453 | 1.464 | 1.453 | 1.466 38.2% | 38.1% | 38.1% | 38.2% | 38.1% | 38.2%
PC3 | 1.178 | 1.178 | 1.179 | 1.176 | 1.178 | 1.187 52.1% | 51.9% | 52.0% | 52.0% | 51.9% | 52.2%
PC4 | 0.716 | 0.736 | 0.716 | 0.713 | 0.721 | 0.743 || 60.5% | 60.6% | 60.4% | 60.4% | 60.4% | 61.0%
PC5 | 0.444 | 0574 | 0.571 | 0.460 | 0.571 | 0.616 65.7% | 67.4% | 67.1% | 65.9% | 67.1% | 68.2%
PC6 | 0.303 | 0.306 | 0.278 | 0.354 | 0.244 | 0.332 69.3% | 71.0% | 70.4% | 70.0% | 70.0% | 72.1%
PC7 | 0.271 | 0.256 | 0.262 | 0.239 | 0.313 | 0.304 725% | 74.0% | 73.4% | 72.8% | 73.7% | 75.7%
PC8 | 0.223 | 0.239 | 0.299 | 0.257 | 0.245 | 0.329 || 75.1% | 76.8% | 77.0% | 75.9% | 76.6% | 79.6%

Table 4: Additional variance and cumulative percentagéamae explained by the first 8 sparse
loadings of GSLDA on the BDTNP VirtualEmbryo.

The results of the gene expression experiment show a clemarbhy among the deflation methods.
The generalized deflation technique performs best, actgefie largest additional variance on every
round and a final cumulative variance of 79.6%. Schur cometgrdeflation, projection deflation,
and orthogonalized projection deflation all perform corapéy, explaining roughly 77% of the total
variance after 8 rounds. In last place are the standard lithafeland orthogonalized Hotelling’s
deflations, both of which explain less than 76% of variantera& rounds.



5 Conclusion

In this work, we have exposed the theoretical and empirteaitsomings of Hotelling’s deflation in
the sparse PCA setting and developed several alternatitreodemore suitable for non-eigenvector
deflation. Notably, the utility of these procedures is notifed to the sparse PCA setting. Indeed,
the methods presented can be applied to any of a number dfaimes eigendecomposition-based
problems, including sparse canonical correlation ansldsd] and linear discriminant analysis [10].
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