

Deflation Methods for Sparse PCA

Lester Mackey

Background

Principal Components Analysis (PCA)

- Goal: Extract r leading eigenvectors of sample covariance matrix, A_0
- Typical solution: Alternate between two tasks
 - . Rank-one variance maximization $x_{t} = \arg\max x^{T} A_{t-1} x \text{ s.t. } x^{T} x = 1$
 - 2. Hotelling's matrix deflation

$$A_{t} = A_{t-1} - x_{t} x_{t}^{T} A_{t-1} x_{t} x_{t}^{T}$$

- ullet Removes contribution of \mathcal{X}_t from A_{t-1}
- Primary drawback: Non-sparse solutions

Sparse PCA

- Goal: Extract r sparse "pseudo-eigenvectors"
 - High variance directions, few non-zero components
- Typical solution: Alternate between two tasks
 - . Constrained rank-one variance maximization $x_{t} = \arg\max x' A_{t-1} x \text{ s.t. } x' x = 1, \operatorname{Card}(x) \le k_{t}$
 - 2. Hotelling's matrix deflation (borrowed from PCA)

The Problem

Hotelling's deflation was designed for eigenvectors, not pseudo-eigenvectors

Compare

- Hotelling's deflation for PCA
 - $x_t^T A_t x_t = 0$ • Annihilates variance of X_{ι} : $A_t x_t = 0$
 - Renders A_t orthogonal to X_t :
 - $A_{t}\succ 0$ Preserves positive semidefiniteness:
- Hotelling's deflation for Sparse PCA
 - Annihilates variance of X_t
 - Does not render A_{t} orthogonal to X_{t}
 - Does not preserve positive semidefiniteness

Key properties lost in the Sparse PCA setting

Goal: Recover lost properties with new deflation methods

Alternative Deflation Methods

Projection Deflation

$$A_{t} = (I - x_{t} x_{t}^{T}) A_{t-1} (I - x_{t} x_{t}^{T})$$

Intuition: Projects data onto orthocomplement of space spanned by χ_{\star}

Schur Complement Deflation

$$A_{t} = A_{t-1} - \frac{A_{t-1} x_{t} x_{t}^{T} A_{t-1}}{x_{t}^{T} A_{t-1} x_{t}}$$

Intuition: Conditional variance of data variables given the new sparse principal component

Orthogonalized Projection Deflation

$$q_{t} = \frac{(I - Q_{t-1}Q_{t-1}^{T})x_{t}}{\|(I - Q_{t-1}Q_{t-1}^{T})x_{t}\|}, A_{t} = (I - q_{t}q_{t}^{T})A_{t-1}(I - q_{t}q_{t}^{T})$$

Intuition: Eliminates additional variance contributed by X_t

- Q_t = orthonormal basis for extracted pseudo-eigenvectors
- Successive pseudo-eigenvectors are not orthogonal
- Annihilating full vector can reintroduce old components
- Orthogonalized Hotelling's Deflation defined similarly

Reformulating Sparse PCA

New goal: Explicitly maximize additional variance criterion

Solve sparse generalized eigenvector problem

$$\max_{x} x^{T} (I - Q_{t-1} Q_{t-1}^{T}) A_{0} (I - Q_{t-1} Q_{t-1}^{T}) x$$

s.t.
$$x^{T}(I-Q_{t,1}Q_{t,1}^{T})x = 1$$
, $Card(x) \le k_{t}$

Yields generalized deflation procedure

Generalized Deflation $q_t = B_{t-1} x_t, \ B_t = B_{t-1} (I - q_t q_t^T)$

$$A_{t} = (I - q_{t}q_{t}^{T})A_{t-1}(I - q_{t}q_{t}^{T})$$

Deflation Properties

Method	$x_t^T A_t x_t = 0$	$A_t x_t = 0$	$A_t \succeq 0$	$A_s x_t = 0, \forall s > t$
Hotelling's (HD)	√	X	X	X
Projection (PD)		$\sqrt{}$		X
Schur Complement (SCD)				
Orthog. Hotelling's (OHD)		X	X	X
Orthog. Projection (OPD)		$\sqrt{}$		$\sqrt{}$
Generalized (GD)				

Experiments

Set up: Leading deflation-based Sparse PCA algorithms

- GSLDA (Moghaddam et al., ICML '06)
- DC-PCA (Sriperumbudur et al., ICML '07)
- Outfitted with each deflation technique

Pit props dataset: 13 variables, 180 observations DC-PCA Cumulative % variance. Cardinality 4.4.4.4.4

	37 Carria	iative 70	Caranty +,+,+,+,+						
	HD	PD	SCD	OHD	OPD	GD			
PC 1	22.60%	22.60%	22.60%	22.60%	22.60%	22.60%			
PC 2	39.60%	39.60%	38.60%	39.60%	39.60%	39.60%			
PC 3	46.80%	50.90%	53.40%	46.80%	50.90%	51.00%			
PC 4	56.80%	62.10%	62.30%	52.90%	62.10%	62.20%			
PC 5	66.10%	70.20%	73.70%	59.90%	70.20%	71.30%			
PC 6	73.40%	77.80%	79.30%	63.20%	77.20%	78.90%			
Gene expression dataset: 21 genes, 5759 fly nuclei									
GSLDA Cumulative % variance, Cardinality 9,7,6,5,3,2,2,2									
	HD	PD	SCD	OHD	OPD	GD			
PC 1	21.00%	21.00%	21.00%	21.00%	21.00%	21.00%			
PC 2	38 20%	38 10%	38 10%	38 20%	38 10%	38 20%			

PC 2 38.20% 38.10% 38.10% 38.20% 38.10% 38.20% PC 3 52.10% 51.90% 52.00% 52.00% 51.90% 52.20% PC 4 60.50% 60.60% 60.40% 60.40% 60.40% 61.00% PC 5 65.70% 67.40% 67.10% 65.90% 67.10% 68.20% PC 6 69.30% 71.00% 70.40% 70.00% 70.00% 72.10%

PC 7 72.50% 74.00% 73.40% 72.80% 73.70% 75.70% PC 8 75.10% 76.80% 77.00% 75.90% 76.60% 79.60%