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Background

Principal Components Analysis (PCA)
e Goal: Extract r leading eigenvectors of sample
covariance matrix, A,
e Typical solution: Alternate between two tasks
1. Rank-one variance maximization
X =argmax X' A_x st. x'x=1
2. Hotelling’s matrix deflation
A = AL = X% AXX
« Removes contribution of X, from A _;
 Primary drawback: Non-sparse solutions

Sparse PCA
e Goal: Extract r sparse “pseudo-eigenvectors”
e High variance directions, few non-zero components
e Typical solution: Alternate between two tasks
1. Constrained rapk-one varialT’]ce maximization
X =argmax x A_x st. x x=1 Card(x) <k
2. Hotelling’s matrix deflation (borrowed from PCA)

The Problem

Hotelling’s deflation was designed for eigenvectors, not
pseudo-eigenvectors

Compare
e Hotelling’s deflation for PCA
» Annihilates variance of X : X, AX =0
» Renders A orthogonal to X;: AXx =0

» Preserves positive semidefiniteness: A >0
e Hotelling’s deflation for Sparse PCA
* Annihilates variance of X
- Does not render Aprthogonalto X,
e Does not preserve positive semidefiniteness
Key properties lost in the Sparse PCA setting
Goal: Recover lost properties with new deflation methods

Deflation Methods for Sparse PCA
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Alternative Deflation Methods

Projection Deflation

A= =xx )AL =%xX)
Intuition: Projects data onto orthocomplement of space
spanned by X

Schur Complement Deflation
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Intuition: Conditional variance of data variables given the
new sparse principal component

Orthogonalized Projection Deflation
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Intuition : Eliminates additional variance contributed by X
« Q = orthonormal basis for extracted pseudo-eigenvectors
e Successive pseudo-eigenvectors are not orthogonal
e Annihilating full vector can reintroduce old components
e Orthogonalized Hotelling’s Deflation defined similarly

Reformulating Sparse PCA

New goal: Explicitly maximize additional variance criterion
e Solve sparse generalized eigenvector problem

maxx' (1 -Q_QT)A(I -Q_ Q)X

st. x' (1 -Q_Q’ )x=1,Card(x) < k
* Yields generalized deflation procedure
Generalized Deflation

O — Bt—lxt’ Bt = Bt—l(l _qtth)
A = (I _qtth)A—l(l _qtth)
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Deflation Properties
Method x Ax =0AX =0 A=0Ax =0,0s>t
Hotelling’s (HD) \ X | X X
Projection (PD) \ N |y X
Schur Complement (SCD)| N A N
Orthog. Hotelling’'s (OHD) | X | X X
Orthog. Projection (OPD) v N A N
Generalized (GD) \ N | A \

Experiments

Set up: Leading deflation-based Sparse PCA algorithms
« GSLDA (Moghaddam et al., ICML ‘06)
 DC-PCA (Sriperumbudur et al., ICML ‘07)
e Outfitted with each deflation technique
Pit props dataset: 13 variables, 180 observations
DC-PCA Cumulative % variance, CardinalitE 4,4,44.4.4

____HD _PD | SCD__OHD_

PC1 22.60% 22.60% 22.60% 22.60% 22.60% 22.60%
PC 2 39.60% 39.60% 38.60% 39.60% 39.60% 39.60%
PC3 46.80% 50.90% 53.40% 46.80% 50.90% 51.00%
PC4 56.80% 62.10% 62.30% 52.90% 62.10% 62.20%
PC5 66.10% 70.20% 73.70% 59.90% 70.20% 71.30%

PC6 73.40% 77.80% 79.30% 63.20% 77.20% 78.90%
Gene expression dataset: 21 genes, 5759 fly nuclel

GSLDA Cumulative % variance Cardinaliti 9:716‘5 3.2,2,2

| HD__ PD_ SCD | OHD_ _ GD__

PC1 21.00% 21.00% 21.00% 21.00% 21.00% 21.00%
PC 2 38.20% 38.10% 38.10% 38.20% 38.10% 38.20%
PC3 52.10% 51.90% 52.00% 52.00% 51.90% 52.20%
PC 4 60.50% 60.60% 60.40% 60.40% 60.40% 61.00%
PC5 65.70% 67.40% 6/7.10% 65.90% 67.10% 68.20%
PC6 69.30% 71.00% /70.40% 70.00% 70.00% 72.10%
PC 7 72.50% 74.00% /73.40% 72.80% 73.70% 75.70%
PC8 75.10% 76.80% /7/7.00% 75.90% 76.60% 79.60%




