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• Typical solution:  Alternate between two tasks
1. Rank-one variance maximization
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• Removes contribution of     from 
• Primary drawback: Non-sparse solutions

Intuition: Conditional variance of data variables given the 
new sparse principal component
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• Primary drawback: Non-sparse solutions new sparse principal component
Experiments

Sparse PCA Orthogonalized Projection Deflation
Set up: Leading deflation-based Sparse PCA algorithmsSparse PCA

• Goal: Extract r sparse “pseudo-eigenvectors” 
Orthogonalized Projection Deflation

Set up: Leading deflation-based Sparse PCA algorithms
• GSLDA (Moghaddam et al., ICML ‘06)

)( T xQQI −• Goal: Extract r sparse “pseudo-eigenvectors” 
• High variance directions, few non-zero components

• GSLDA (Moghaddam et al., ICML ‘06)
• DC-PCA (Sriperumbudur et al., ICML ‘07)
• Outfitted with each deflation technique
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• Typical solution: Alternate between two tasks • Outfitted with each deflation technique
Pit props dataset: 13 variables, 180 observations
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1. Constrained rank-one variance maximization Intuition : Eliminates additional variance contributed by 
Pit props dataset: 13 variables, 180 observations
DC-PCA Cumulative % variance, Cardinality 4,4,4,4,4,4
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1. Constrained rank-one variance maximization Intuition : Eliminates additional variance contributed by 
• = orthonormal basis for extracted pseudo-eigenvectors

DC-PCA Cumulative % variance, Cardinality 4,4,4,4,4,4tx
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HD PD SCD OHD OPD GD2. Hotelling’s matrix deflation (borrowed from PCA)
• = orthonormal basis for extracted pseudo-eigenvectors
• Successive pseudo-eigenvectors are not orthogonal
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PC 1 22.60% 22.60% 22.60% 22.60% 22.60% 22.60%• Successive pseudo-eigenvectors are not orthogonal
• Annihilating full vector can reintroduce old components

PC 1 22.60% 22.60% 22.60% 22.60% 22.60% 22.60%
PC 2 39.60% 39.60% 38.60% 39.60% 39.60% 39.60%

• Annihilating full vector can reintroduce old components
• Orthogonalized Hotelling’s Deflation defined similarly

PC 2 39.60% 39.60% 38.60% 39.60% 39.60% 39.60%
PC 3 46.80% 50.90% 53.40% 46.80% 50.90% 51.00%The Problem • Orthogonalized Hotelling’s Deflation defined similarly

Reformulating Sparse PCA

PC 3 46.80% 50.90% 53.40% 46.80% 50.90% 51.00%
PC 4 56.80% 62.10% 62.30% 52.90% 62.10% 62.20%

The Problem

Reformulating Sparse PCA PC 4 56.80% 62.10% 62.30% 52.90% 62.10% 62.20%
PC 5 66.10% 70.20% 73.70% 59.90% 70.20% 71.30%Hotelling’s deflation was designed for eigenvectors, not 

New goal: Explicitly maximize additional variance criterion

PC 5 66.10% 70.20% 73.70% 59.90% 70.20% 71.30%
PC 6 73.40% 77.80% 79.30% 63.20% 77.20% 78.90%pseudo-eigenvectors

Compare Gene expression dataset: 21 genes, 5759 fly nuclei New goal: Explicitly maximize additional variance criterion
• Solve sparse generalized eigenvector problem

PC 6 73.40% 77.80% 79.30% 63.20% 77.20% 78.90%
Compare

• Hotelling’s deflation for PCA
Gene expression dataset: 21 genes, 5759 fly nuclei 
GSLDA Cumulative % variance, Cardinality 9,7,6,5,3,2,2,2• Solve sparse generalized eigenvector problem
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• Preserves positive semidefiniteness:
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PC 3 52.10% 51.90% 52.00% 52.00% 51.90% 52.20%

• Preserves positive semidefiniteness:
• Hotelling’s deflation for Sparse PCA
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• Yields generalized deflation procedure

Generalized Deflation
PC 3 52.10% 51.90% 52.00% 52.00% 51.90% 52.20%
PC 4 60.50% 60.60% 60.40% 60.40% 60.40% 61.00%

• Hotelling’s deflation for Sparse PCA
• Annihilates variance of tx Generalized Deflation
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PC 5 65.70% 67.40% 67.10% 65.90% 67.10% 68.20%
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PC 6 69.30% 71.00% 70.40% 70.00% 70.00% 72.10%

• Does not render     orthogonal to 
• Does not preserve positive semidefiniteness
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PC 6 69.30% 71.00% 70.40% 70.00% 70.00% 72.10%
PC 7 72.50% 74.00% 73.40% 72.80% 73.70% 75.70%

• Does not preserve positive semidefiniteness
Key properties lost in the Sparse PCA setting 1 tttttt − PC 7 72.50% 74.00% 73.40% 72.80% 73.70% 75.70%

PC 8 75.10% 76.80% 77.00% 75.90% 76.60% 79.60%

Key properties lost in the Sparse PCA setting
Goal: Recover lost properties with new deflation methods PC 8 75.10% 76.80% 77.00% 75.90% 76.60% 79.60%Goal: Recover lost properties with new deflation methods


