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1 Introduction

Collimated sprays of particles, called jets, resulting from the production of high energy

quarks and gluons provide an important handle to search for signs of physics beyond the

Standard Model (SM) at the Large Hadron Collider (LHC). In many extensions of the SM,

there are new, heavy particles that decay to heavy SM particles such as W , Z, and Higgs

bosons as well as top quarks. As is often the case, the mass of the SM particles is much

smaller than the mass of the new particles and so they are imparted with a large Lorentz

boost. As a result, the SM particles from the boosted boson and top quark decays are highly

collimated in the lab frame and may be captured by a single jet. Classifying the origin

of these jets and differentiating them from the overwhelming Quantum Chromodynamic

(QCD) multijet background is a fundamental challenge for searches with jets at the LHC.

Jets from boosted bosons and top quarks have a rich internal substructure. There is a

wealth of literature addressing the topic of jet tagging by designing physics-inspired features

to exploit the jet substructure (see e.g. refs. [1–3]). However, in this paper we address the

challenge of jet tagging though the use of Machine Learning (ML) and Computer Vision

(CV) techniques combined with low-level information, rather than directly using physics

inspired features. In doing so, we not only improve discrimination power, but also gain
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new insight into the underlying physical processes that provide discrimination power by

extracting information learned by such ML algorithms.

The analysis presented here is an extension of the jet-images approach, first introduced

in ref. [4] and then also studied with similar approaches by ref. [5], whereby jets are repre-

sented as images with the energy depositions of the particles within the jet serving as the

pixel intensities. When first introduced, jet image pre-processing techniques based on the

underlying physics symmetries of the jets were combined with a linear Fisher discriminant

to perform jet tagging and to study the learned discrimination information. Here, we make

use of modern deep neural networks (DNN) architectures, which have been found to out-

perform competing algorithms in CV tasks similar to jet tagging with jet images. While

such DNNs are significantly more complex than Fisher discriminants, they also provide

the capability to learn rich high-level representations of jet images and to greatly enhance

discrimination power. By developing techniques to access this rich information, we can

explore and understand what has been learned by the DNN and subsequently improve

our understanding of the physics governing jet substructure. We also re-examine the jet

pre-processing techniques, to specifically analyze the impact of the pre-processing on the

physical information contained within the jet.

Automatic feature extraction and high-level learned feature representations via deep

learning have led to state-of-the-art performance in Computer Vision [6–8]. The focus of

this work is on robust networks architectures to investigate what information and higher

level representations a fully-connected multi-layer network and a convolutional neural net-

work learn about jets. There will be a focus on connecting the gains in performance with

the underlying physical properties of jets through visualization. This paper is organized as

follows: the details of the simulated data sets and the definition of jet-images are described

in section 2. The pre-processing techniques, including new insights into the relationship

with underlying physics information, is discussed in section 3. We then introduce the deep

neural network architectures that we use in section 4. The discrimination performance and

the exploration of the information learned by the DNNs is presented in section 5.

2 Simulation details and the jet image

In order to study jet images in a realistic scenario, we use Monte Carlo (MC) simulations of

high energy particle collisions. One important jet tagging application is the identification

of highly Lorentz boosted W bosons decaying into quarks amidst a large background from

the generic production of quarks and gluons. This classification task has been thoroughly

studied experimentally1 [9–11] and used in many analyses [12–24].

To simulate highly boosted W bosons, a hypothetical W ′ boson is generated and

forced to decay to a hadronically decaying W boson (W → qq′) and a Z boson which

decays invisibly (Z → νν̄). The mass of the W ′ boson determines the Lorentz boost of

the W boson in the lab frame since the W ′ is produced nearly at rest and the W boson

momentum is approximately mW ′/2. The invisible decay of the Z boson ensures that

1There is also an extensive literature on phenomenological studies — see references within the experi-

mental papers.
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the jet in the event with the highest transverse momentum is the W boson jet. Multijet

production of quarks and gluons is simulated as a background. Both the W ′ signal and

the multijet background are generated using Pythia 8.170 [25, 26] at
√
s = 14 TeV. The

minimum angular separation of the W boson decay products in the plane transverse to

the beam direction scales as 2mW /pT,W , where mW ≈ 80 GeV and pT,W is the component

of the W boson momentum in this plane. The tagging strategy and performance depend

strongly on pT,W , so we focus on a particular range: 250 GeV < pT,W < 300 GeV. This

corresponds to an angular spread of about ∆R =
√

∆η2 + ∆φ2 ∼ 0.6, where ∆η and

∆φ are the distances between W boson decay products in (η, φ) coordinates. The decay

products of the W bosons as well as the background are clustered into jets using the anti-kt
algorithm [27] via FastJet [28] 3.0.3. To mitigate the contribution from the underlying

event, jets are are trimmed [29] by re-clustering the constituents into R = 0.3 kt subjets

and dropping those which have psubjetT < 0.05× pjetT . Trimming also reduces the impact of

multiple proton-proton collisions occurring in the same event as the hard-scatter process

(pileup). We leave investgiation of the robustness of the neural network performance to

pileup for future studies.

Three key jet features for distinguishing between W jets and QCD jets are the jet mass,

n-subjettiness [30] and the distance in (η, φ) space between subjets of the trimmed jet (∆R).

The distributions of these three discriminating variables are shown in figure 1. The jet mass

is defined as m2
jet =

∑
i,j pipj , with jet constituent four-vectors pi, and is a proxy for the

boson mass in the case of W boson events. In the case of QCD background jets, the jet

mass scales with the transverse momentum and the size of the jet. N -subjettiness, in the

form of τ21, is a measure of the likelihood that the jet has two hard prongs instead of one

hard prong. In this application, the winner-takes-all axis [31] is used to define the axis in

the τ21 calculation. One other useful feature is the jet transverse momentum. However,

since many of the other features have a strong dependence on the jet transverse momentum,

we re-weight the signal so have the same pT distribution as the background.

To model the discretization and finite acceptance of a real detector, a calorimeter of

towers with size 0.1×0.1 in (η, φ) extends out to η = 5.0. The total energy of the simulated

particles incident upon a particular cell are added as scalars and the four-vector pj of any

particular tower j is given by

pj =
∑

i incident on j

Ei(cosφj/ cosh ηj , sinφj/ cosh ηj , sinh ηj/ cosh ηj , 1), (2.1)

where Ei is the energy of particle i and the center of the tower j is (ηj , φj). Towers are

treated as massless.

A jet image is formed by taking the constituents of a jet and discretizing its energy

into pixels in (η, φ), with the intensity of each pixel given by the sum of the energy of all

constituents of the jet inside that (η, φ) pixel. We also investigate the use of the transverse

projection of the energy in each tower as the pixel intensity. In our studies, we take the

jet image pixelation to match the simulated calorimeter tower granularity. In the next

section, we will discuss the nuances of standardizing the coordinates of a jet image as a

pre-processing step prior to applying machine learning.
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Figure 1. The distributions of the jet mass (top left), τ21 (top right) and the ∆R between subjets

(bottom) for signal (blue) and background (red) jets.

3 Pre-processing and the symmetries of space-time

In order for the machine learning algorithms to most efficiently learn discriminating features

between signal and background and to not learn the symmetries of space-time, the jet

images are pre-processed. This procedure can greatly improve performance and reduce

the required size of the sample used for testing. Our pre-processing procedure happens in

four steps: translation, rotation, re-pixelation, and inversion. To begin, the jet images are

translated so that the leading subjet is at (η, φ) = (0, 0). Translations in φ are rotations

around the z-axis and so the pixel intensity is unchanged by this operation. On the other

hand, translations in η are Lorentz boosts along the z-axis, which do not preserve the pixel

intensity. Therefore, a proper translation in η would modify the pixel intensity. One simple

modification of the jet image to circumvent this change is to replace the pixel intensity Ei
with the transverse energy pT,i = Ei/ cosh(ηi). This new definition of intensity is invariant

under translations in η and is used exclusively for the rest of this paper.2

The second step of pre-processing is to rotate the images around the center of the jet.

If a jet has a second subjet, then the rotation is performed so that the second subjet is at

−π/2. If no second subjet exists, then the jet image is rotated so that the first principle

component of the pixel intensity distribution is aligned along the vertical axis. Unless the

rotation is by an integer multiple of π/4, the rotated grid will not line up with the original

grid. Therefore, the energy in the rotated grid must be re-distributed amongst the pixels

of the original image grid. A cublic spline interpolation is used in this case — see ref. [4]

for details. The last step is a parity flip so that the right side of the jet image has the

highest sum pixel intensity.

Figure 2 shows the average jet image for W boson jets and QCD jets before and

after the rotation, re-pixelation, and parity flip steps of the pre-processing. The more

pronounced second-subjet can already be observed in the left plots of figure 2, where there

is a clear annulus for the signal W jets which is nearly absent for the background QCD

jets. However, after the rotation, the second core of energy is well isolated and localized in

2Transverse energy based pixel intensity was used in the original Jet-Images paper [4].
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Figure 2. The average jet image for signal W jets (top) and background QCD jets (bottom)

before (left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-

processing. The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV <

mass < 95 GeV.

the images. The spread of energy around the leading subjet is more diffuse for the QCD

background which consists largely of gluon jets, which have an octet radiation pattern,

compared to the singlet radiation pattern of the W jets, where the radiation is mostly

restricted to the region between the two hard cores.

One standard pre-processing step that is often additionally applied in Computer Vision

tasks is normalization. A common normalization scheme is the L2 norm such that
∑
I2i = 1

where Ii is the intensity of pixel i. This is particularly useful for the jet images where pixel

intensities can span many orders of magnitude, and when there is large pixel intensity vari-

ations between images. In this study, the jet transverse momenta are all around 250 GeV,
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but this can be spread amongst many pixels or concentrated in only a few. The L2 norm

helps mitigate the spread and thus makes training easier for the machine learning algo-

rithm. However, normalization can distort information contained within the jet image.

Some information, such as the Euclidean distance ∆R between subjets in (η, φ) is invari-

ant under all of the pre-processing steps as well as normalization. However, consider the

image mass,

m2
I =

∑
i<j

EiEj(1− cos(θij)), (3.1)

where Ei = Ii/cosh(ηi) for pixel intensity Ii and θij is the angle between massless four-

vectors with η and φ at the i and j pixel centers. The image mass is not invariant under all

pre-processing steps but does encode key information to identify highly boosted bosons that

would ideally be preserved by the pre-processing step. As discussed earlier, with the proper

choice of pixel intensity, translations preserve the image mass since it is a Lorentz invariant

quantity. However, the rotation pre-processing step does not preserve the image mass.

To understand this effect, consider two four-vectors: pµ = (1, 0, 0, 1) and qµ = (0, 1, 0, 1).

The invariant mass of these vectors is
√

2. The vector pµ is at the center of the jet image

coordinates and the vector qµ is located at π/2 degrees. If we rotate the image around the

jet axis so that the vector qµ is at 0 degrees, akin to rotating the jet image so that the sub-

leading subjet goes from π/2 to 0, then pµ is unchanged but qµ → (1, 0, sinh(1), cosh(1)).

The new invariant mass of qµ and pµ is about 1, which is reduced from its original value

of
√

2. The parity inversion pre-processing step does not impact the image mass, but a I2

normalization does modify the image mass. The easiest way to see this is to take a series of

images with exactly the same image mass but variable I2 norm. The map Ii 7→ Ii/
∑

j I
2
j

modifies the mass by mI 7→ mI/
∑

j I
2
j and so the variation in the normalizations induces

a smearing in the jet-image mass distribution.

The impact of the various stages of pre-processing on the image mass are illustrated in

figure 3. The finite segmentation of the simulated detector slightly degrades the jet mass

resolution, but the translation and parity inversion (flip) have no impact, by construction,

on the jet mass. The rotation that will have the biggest potential impact on the image

mass is when the rotation angle is π/2 (maximally changing η and φ), which does lead to a

small change in the mass distribution. A translation in η that uses the pixel energy as the

intensity instead of the transverse momentum, which we refer to as a naive translation, or

an L2 normalization scheme both significantly broaden the mass distribution. One way to

quantify the amount of information in the jet mass that is lost by various pre-processing

steps is shown in the Receiver Operator Characteristic (ROC) curve of figure 4, which shows

the inverse of the background efficiency versus the signal efficiency for passing a threshold on

the signal-to-background likelihood ratio of the mass distribution (as described in section 5).

Information about the mass is lost when the ability to use the mass to differentiate signal

and background is diminished. The naive translation and the I2 normalization schemes

are significantly worse than the other image mass curves which are themselves similar in

performance.
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Figure 3. The distribution of the image mass after various states of pre-processing for signal jets

(left) and background jets (right). The No pixelation line is the jet mass without any detector

granularity and without any pre-processing. Only pixelation has only detector granularity but no

pre-processing and all subsequent lines have this pixelation applied as well as translation to center

the image at the origin. The translation is called naive when the energy is used as the pixel intensity

instead of the pixel transverse momentum. Flip denotes the parity inversion operation and the p2T
norm is a L2 normalization scheme. The naive translation and the I2 normalization image masses

are both multiplied by constants so that the centers of the distribution are roughly in the same

location as for the other distributions.

4 Network architecture

We begin with the notion that the discretization procedure outlined in section 2 produces

25×25 “transverse-energy-scale” images in one channel — a High Energy Physics analogue

of a grayscale image. We note that the images we work with are sparse — roughly 5-10% of

pixels are active on average (see appendix A for details). Future work can build on efficient

techniques for exploiting the sparse nature of these images. However, since speed is not our

driving force in this work, we used convolution implementations defined for dense inputs.

We also study fully connected MaxOut networks [7]. Other architectures were also studied,

such as Stack Denoising Autoencoders [32], and multi-layer fully connected networks with

various activation functions, but found that convolution and MaxOut networks were the

most performant.

As a brief aside, we discuss some of the key neural network concepts which are used

in the following section to describe our network architectures. Fully connected (FC) layers

take all features as input. Convolution networks utilize convolution filters (or kernels)

which are a set of weights W that operate linearly on a small n×n (horizontal × vertical)

patch of the input image. For instance, a 3× 3 filter takes as input a 3× 3 patch of pixels

and outputs z =
∑3

i,j=1 xijWij , where xij is the input image patch. The filter output can

be considered as centered on that patch. Each filter is convolved with the input image,

– 7 –
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Figure 4. The tradeoff between W boson (signal) jet efficiency and inverse QCD (background)

efficiency for various pre-processing algorithms applied to the jet (images). The No pixelation line

is the jet mass without any detector granularity and without any pre-processing. Only pixelation

has only detector granularity but no pre-processing and all subsequent lines have this pixelation

applied as well as translation to center the image at the origin. The translation is called naive when

the energy is used as the pixel intensity instead of the pixel transverse momentum. Flip denotes

the parity inversion operation and the p2T norm is a L2 normalization scheme.

in that the filter is applied to a given input patch and then moved horizontally and/or

vertically to a new input patch on which the filter is applied. By scanning over the entire

image in this way, a the filter is convolved with the input, producing a convolved output.

An important consideration when using convolutional networks is how one handles borders

of images. Two main options exist — one can consider only n × n patches that are fully

contained within the input images, or one can consider every convolution that has at least

one pixel from the image, zero-padding as necessary to create valid convolutions. We use

the latter, as we found better performance and better, more physics-driven filters.

A non-linear activation function is typically applied to these convolution outputs, for

which we use the Rectified Linear Unit (ReLU) [33] that takes an input z and outputs

max{0, z}. ReLU’s have been found to improve network training time, whilst having

enough non-linear behavior to not degrade network performance. In addition, Rectified

Linear Units do not suffer from a vanishing gradient, and speed up computation time

while allowing for sparse networks by having true zero-valued activations. After convolu-

tion(+activation) layers, a non-linear down-sampling is frequently performed using Max-

pooling [34] which takes non-overlapping patches of convolution outputs as input, and

outputs the maximum value for each patch. A conceptual visualization of the convolution

+ Max-pooling network architecture that we employ can be seen in figure 5.

Finally, the MaxOut network makes use of the dense (Fully Connected) Max-

Out activation unit, which takes an input vector x and computes k linear weightings

– 8 –
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Figure 5. The convolution neural network concept as applied to jet-images.

zj∈[1,k] =
∑

i xiWij + bj and outputs maxj∈[1,k] zj . Natural extensions of MaxOut layers

to convolutional units exist, but were not examined. Conceptually, one can view the Recti-

fied Linear Unit as a special case of the MaxOut with k = 2 and with one of the weightings

forced to output only zero. Though MaxOut units do not force sparsity of activation out-

puts in the same way as ReLU units, MaxOut networks provide the desirable attribute

that they pair nicely with the model averaging effects of dropout in a natural way [7].

4.1 Architectural selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first

with 256 units, the second with 128 units, both of which have 5 piecewise components in

the MaxOut-operation), followed by two FC layers with ReLU activations (the first with 64

units, the second with 25 units), followed by a FC sigmoid layer for classification. We found

that the He-uniform initialization [35] for the initial MaxOut layer weights was needed in

order to train the network, which we suspect is due to the sparsity of the jet-image input.

In cases where other initialization schemes were used, the networks often converged to very

sub optimal solutions. This network is trained (and evaluated) on un-normalized jet-images

using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of

three sequential [Conv + Max-Pool + Dropout] units, followed by a local response nor-

malization (LRN) layer [8], followed by two fully connected, dense layers. We note that

the convolutional layers used are so called “full” convolutions — i.e., zero padding is added

the the input pre-convolution. Our architecture can be succinctly written as:

[Dropout→Conv→ReLU→MaxPool] ∗ 3→LRN→ [Dropout→FC→ReLU]→Dropout→Sigmoid.

(4.1)

The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11×11,

3 × 3, and 3 × 3 respectively. All convolution layers are regularized with the L2 weight

matrix norm. A down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max
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Kernel size (3× 3) (4× 4) (5× 5) (7× 7) (9× 9) (11× 11) (15× 15)

AUC 14.770 12.452 11.061 13.308 17.291 20.286 18.140

Table 1. First layer convolution size vs. performance.

pooling layers, respectively. A dropout [8] of 20% is used before the first FC layer, and a

dropout 10% is used before the output layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 × 3 filter size, we discovered significantly

worse performance over a more basic MaxOut [7] feedforward network. After further

investigation into larger convolutional filter size, we discovered that larger-than-normal

filters work well on our application. Though not common in the Deep Learning community,

we hypothesize that this larger filter size is helpful when dealing with sparse structures in

the input images. In table 1, we compare different filter sizes, finding the optimal filter

size of 11× 11, when considering the Area Under the ROC Curve (AUC) metric, based on

the ROC curve outlined in sections 3 and 5.

Two convolution networks, which differ in their pre-processing, are studied in this

paper. The first, which we refer to as the ConvNet, is trained (and evaluated) on un-

normalized jet-images using the transverse energy for the pixel intensities. The second,

which we refer to as ConvNet-Norm, is trained (and evaluated) on L2 normalized jet-

images using the transverse-energy for the pixel intensities. Examining the performance of

both networks allows us to study the possible effects of normalization in the pre-processing.

4.2 Implementation and training

All Deep Learning experiments were conducted in Python with the Keras [36] Deep

Learning library, utilizing NVIDIA C2070 graphics cards. One GPU was used per train-

ing, but several architectures were trained in parallel on different GPU’s to optimize the

performance of networks with different hyper-parameters.

We used 8 million training examples, with an additional 2 million validation samples for

tuning the hyper-parameters, and 3 million testing samples. Signal examples are weighted

such that the total sum of weights is the same as the total number of background examples

(as explained in section 2). These weights are used by the cost function in the training and

in the ROC curve computations of the test samples. The networks were trained with the

Adam [37] algorithm (Stochastic Gradient Descent with Nesterov Momentum [38] was also

examined, but did not provide performance gains). The training consisted of 100 epochs,

with a 10 epoch patience parameter on the increase in AUC between 0.2 and 0.8 on a

validation set. Batch sizes of 32 were used for the MaxOut network, while batch sizes of

96 were used for the convolution networks.

5 Analysis and visualization

In this section, we examine the performance of the MaxOut and Convolution deep neural

networks, described in section 4, in classifying boosted W± → qq′ from QCD jets. As one

of our primary goals is to understand what these NN’s can learn about jet topology for
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discrimination, we focus on a restricted phase space of the mass and transverse momentum

of the jets. In particular, we restrict our studies to 250 GeV ≤ pT ≤ 300 GeV, and confine

ourselves to a 65 GeV ≤ m ≤ 95 GeV mass window that contains the peak of the W . We

also perform studies in which the discrimination power of the most discriminating physics

variables has been removed, either though sample weighting or highly restrictive phase

space selections, which allows us to focus on information learned by the networks beyond

such known physics variables. In this way, we construct a scaffolded and multi-approach

methodology for understanding, visualizing, and validating neural networks within this

jet-physics study, though these approaches could be used broadly.

The primary figure of merit used to compare the performance of different classifiers

is the ROC curve. The ROC curves allow us to examine the entire spectrum of trade-off

between Type-I and Type-II errors,3 as many applications of such classifiers will choose

different points along the trade-off curve. Since the classifier output distributions are not

necessarily monotonic in the signal-to-background ratio, for each classifier we compute

the signal-to-background likelihood ratio.4 The ROC curves are computed by applying a

threshold to the classifier output likelihood ratio, and plotting the inverse of the fraction

of background jet passing the threshold (the background rejection) versus the fraction of

signal events passing the threshold (the signal efficiency). We say that a classifier is strictly

more performant if the ROC curve is above a baseline for all efficiencies. In decision theory,

this is often referred to as domination (i.e. one classifier dominates another). It should be

noted that any weights used to modify the distributions of jets (e.g. the pT weighting

described in section 2) are also used when computing the ROC curves.

For information exploration, several techniques were used:

• ROC curve comparisons to multi-dimensional likelihood ratios. By combining several

physics-inspired variables and computing their joint likelihood ratio, we can explore

the difference between such multi-dimensional likelihood ratios and the neural net-

works’ performance. We also compute the joint likelihood ratio of the neural network

output and physics-inspired variables. If such joint classifiers improve upon the neural

network performance, then we can consider the information in the physics-inspired

variable (conditioned on the neural network output) as having been learned by the

neural network. If the joint classifier shows improved performance over the neural

network, then the neural network has not completely learned the information con-

tained in the physics-inspired variable.

• Convolution filters. For convolution neural networks, we display the weights of the

11x11 filters as images. These filters show how discrimination information is dis-

tributed throughout patches of the jets and give a view of the higher level represen-

tations learned by the network. However, such filters are not always easy to interpret,

and thus we also convolve each filter with a set of signal and background jet-images.

3In this context, Type-I errors refer to incorrectly rejecting the signal, while Type-II errors refer to

incorrectly accepting the background.
4Practically, this is done by binning the distribution using variable width bins such that each bin has a

fixed number of background events. This number of background events is used to regulate the approximation

and we check that the results are not sensitive to this choice.
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We then examine the difference between the convolution output on the average signal

jet-images and average background jet-images. These difference give deeper insight

into how the filters act on the jets to accentuate discriminating information.

• Joint and conditional distributions. We examine the joint and conditional distribu-

tions of various physics inspired features and the neutral network outputs. If the

conditional distribution of the physics variable v given the neural network output O

is not independent of the neutral network output, i.e. P (v|O) 6= P (v) ∀ O, then we

consider the network to have learned information about this physics feature.

• Average, difference, and fisher jet-images. We examine average images for signal

and background and their differences, as well as the Fisher Jets. This is particularly

illuminating when we select jets with specific values of highly discriminating physics-

inspired variables. This allows us to explore discriminating information contained in

the jet images beyond the physics inspired variables.

• Neural network correlations per pixel. We compute the linear correlations (i.e. Pear-

son correlation coefficient) between the neural network output and the distributions

of intensity in each pixel. This allows for a visualization of how the discriminating

information learned by the neural network is distributed throughout the jet. These

visualizations are an approximation to the neural network discriminator and can be

used to aid the development of new physics inspired variables (much like the Fisher

Jet visualization).

The performance evaluation and information exploration techniques are examined in three

settings, all of which require the aforementioned mass and transverse momentum selection.

1. General phase space. No alterations are made to the phase space. This gives an

overview of the performance and information learned by the networks

2. Uniform phase space. The weight of each jet is altered such that the joint distributions

of mass, n-subjettiness, and pT are non-discriminative. Specifically, we derive weights

such that:

f(m, τ21, pT |W ′ →WZ) ≈ f(m, τ21, pT |QCD). (5.1)

Both the weighting and network evaluation are performed in a slightly more restricted

phase space requiring τ21 ∈ [0.2, 0.8]. While pT is weighted in all phase space setting,

mass and n-subjettiness are also weighted in this setting as they are amongst the

most discriminating physics-inspired variables. This weighting ensures that mass, n-

subjettiness, and pT do not contribute to differences between signal and background,

and thus this information is essentially removed from the discrimination power of

the samples. This allows us to examine what information beyond these variables

has been learned and to understand where the neural network performance improve-

ments beyond these physics derived variables comes from. Neural networks that

are trained in the General Phase Space are applied as the discriminant under this

“flattening” transformation. We also use the training weights inside this window to

train an additional convolution network. We look for increases in performance that
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would indicate information learned beyond the information contained in the weighted

physics variables.

3. Highly restricted phase space. The phase space of mass, n-subjettiness, and pT are

restricted to very small windows of size: m ∈ [79, 81] GeV, pT ∈ [250, 255] GeV, and

τ21 ∈ [0.19, 0.21]. No weighting (beyond the pT weighted described in section 2)

is performed, and the networks trained in the General Phase Space are used for

discrimination and evaluation. This highly restricted window provides a different

method to effectively remove the discrimination power of mass, n-subjettiness, and

pT as there is little to no variation of the variables in this phase space for either signal

or background. Thus, any discrimination improvements of the neural networks over

the physics-inspired variables would be coming from information learned beyond these

variables. While the weighting in the Uniform Phase Space is designed also to remove

such discrimination, it produces a non-physical phase space. The Highly Restricted

Phase Space allows us to ensure that the neural network performance improvements

are valid and transferrable to a less contrived phase space.

By examining the performance of the neural networks in these different phase spaces,

we aim to systematically remove known discriminative information from the networks’

performance and thereby probe the information learned beyond what is already known by

physics inspired variables.

5.1 Studies in the general phase space

In order to evaluate the overall discrimination performance of the DNNs to that of the

physics-driven variables, we examine the ROC curves in figure 6. In particular, we compare

the DNNs to n-subjettiness [30] τ21 = τ2/τ1, the jet mass, and the distance ∆R between

the two leading pT subjets. In figure 6a, we can see that the three DNNs have similar

performance, but the MaxOut networks outperforms the ConvNet networks. We suspect

that the MaxOut outperforms the ConvNets due to sparsity of the jet-images, whereby the

MaxOut network views the full jet-image from the inital hidden layer while the sparsity

tends to make it difficult for the ConvNets to learn meaningful convolution filters. We

also see that the ConvNet-Norm outperforms the ConvNet trained on the un-normalized

jet-images. We observe that the classification performance of the ConvNet discriminant is

highest when jet images are normalized, despite the fact that image normalization destroys

jet mass information from the images. As we will see soon, it is difficult for these networks

to fully learn the jet mass, so the lack of of mass information from pre-processing does not

necessarily lead to worse discrimination performance. On the other hand, normalization

is having an impact on the ability to effectively train the ConvNet network on jet images.

Finally, we see that the DNNs significantly improve the discrimination power relative to the

Fisher-Jet discriminant,5 as described in reference [4]. In addition, in figure 6b we see that

5The Fisher discriminant is trained in three partitions of ∆R (∆R ∈ [0.25, 0.5], [0.5, 0.75], [> 0.75]),

in order to account for the non-linear variation in jet-images from the differing positions of the two sub-

jets. Also note that unlike in the original implementation, here we do not normalize the jet images when

computing the Fisher Jet. This leads to slightly better performance.
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Figure 6. Left: ROC curves for individual physics-motivated features as well as three deep neural

network discriminants. Right: the DNNs are compared with pairwise combinations of the physics-

motivated features.

the DNNs also outperform the two-variable combinations of the physics inspired variables

(computed using the 2D likelihood ratio).6 It is interesting to note that combining mass

and τ21, or τ21 and ∆R, achieve much higher performance than the individual variables and

are significantly closer to the performance of the DNNs. However, the large difference in

performance between the DNNs and the physics-variable combinations implies the DNNs

are learning information beyond these physics variables.

While we can see in figure 6 that the DNNs outperform the individual and two-variable

physics inspired discriminators, we want to understand if these physics variables have been

learned by the networks. As such, we compute the combination of the DNNs with each of

the physics inspired variables (using the 2D likelihood), as seen for the ConvNet in figure 7a

and for the MaxOut network in figure 7b. In both cases, we see that the discriminators

combining ∆R or τ21 with the DNNs does not improve performance. This indicate that the

discriminating information in these variables relevant for the classification task has already

been fully learned by the networks.7 However, adding mass in combination with the DNNs

shows a noticeable improvement in performance over the DNNs alone. This indicates that

not all of the discriminating information relevant for jet tagging contained in the mass

variable has been learned by the DNNs. While it is not shown, similar patterns are found

for the Convnet-Norm network.

6This is computed using the same regulated binning scheme as the 1D likelihoods described earlier.
7This is not strictly speaking true, since there may be other variables that are needed in order to fully

capture the full information of a given variable. For example, consider independent random variables Xi

that are ±1 with probability 1/2. If Y = X1X2, then X1 is independent of Y but the joint distribution of

(X1, X2) is not independent of Y . The statement is true in the absence of interactions with other variables.
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Figure 7. ROC curves that combined the DNN outputs with physics motivated features for the

Convnet (left) and MaxOut (right) architectures.

The conditional distributions between the DNN output and the physics-variables are

shown in figure 8a for the ConvNet network against the jet mass, ∆R, and τ21. These

distributions are normalized in bins of the DNN output, and thus the z-axis shows a

discretized estimate of the conditional probability density of a physics variable value given

the network output (i.e. Pr(variable|network output)). Normalizing the distributions in

this way allows us to see the most probable values of the physics variables at each point

of the network output, without being affected by the overall distribution of jets in this

2D space. There is a strong non-linear relationship between τ21 and ∆R, giving further

evidence that this information has been learned by the network. However, the correlations

are much weaker with the jet mass variable. While it is not shown, similar patterns are

found for the MaxOut and Conv-Norm networks. For reference, the full joint distributions

can be found in appendix B.

5.2 Understanding what is learned

In order to gain a deeper understanding of the physics leaned by the DNNs, in this section

we examine how the internal structure of the network relates to the substructure and

properties of W bosons versus QCD jets.

In figure 9a, we show the first layer 11×11 convolutional filters learned by the Conv-

Norm network. Each filter is visualized by showing the learned weight in each position of

the filter Wij from section 4. We can see that there is variation between filters, indicating

that they are learning different features of the jet-images, but this variation is not as large

as seen in many CV problems due to the sparsity of the jet-images. We also see that they

tend to learn representations of the subjets and distances between subjets, as seen by the

circular features found in many of the filters.
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Figure 8. Network output versus mass (left), ∆R (middle), and τ21 (right) for the ConvNet

network (MaxOut distributions are similar). Each row is normalized and represents the probability

distribution of the variable shown on the x-axis given the network output.

To get a better understanding of how these filters provide discrimination, we mimic

the operation in the first layer of the network by convolving each filter with average of large

samples of signal and background jet images. The difference between the convolved average

signal and background jet-images helps to provide an understanding of what difference in

features the network learns at the first layer in order to help discriminate.

More formally, let Js = 1
n

∑
i:i is signal J

(i) and Jb = 1
n

∑
i:i is background J

(i) represent

the average signal and background jet over a sample, where J (i) is the ith jet image. In

addition, we can select a filter wi ∈ R11×11 from the first convolutional layer. We then

examine the differences in the post convolution layer by computing:

Js ∗ wi − Jb ∗ wi, ∀i, (5.2)

where ∗ is the convolution operator. We arrange these new “convolved jet-images” in a

grid, and show in red regions where signal has a stronger representation, and in blue where

background has a stronger representation. In figure 9b, we show the convolved differences

described above, where each (i, j) image is the representation under the (i, j) convolutional

filter. We note the existence of interesting patterns around the regions where the leading

and subleading subjets are expected to be. We also draw attention to the fact that there

is a large diversity in the the convolved representations, indicating that the DNN is able

to learn and pick up on multiple features that are descriptive.

A related way to visualize the information learned by various nodes in the network is

to consider the jet images which most activate a given node. Figure 10 shows the average

of the 500 jet images with the highest node activation for the last hidden layer of the

MaxOut network (the layer before the classification layer). The first row of images in

figure 10 show clear two-prong signal-like structure whereas the second and third rows

show one-prong diffuse radiation patterns that are more background-like. The remaining

rows have a variety of ∆R distances between subjets and have a mix of background and

signal-like features.
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(a) (11×11) convolutional kernels from first layer (b) Convolved Jet Image differences

Figure 9. Convolutional Kernels (left), and convolved feature differences in jet images (right).

5.3 Physics in deep representations

To get a tangible and more intuitive understanding of what jet structures a DNN learns, we

compute the correlation of the DNN output with each pixel of the jet-images. Specifically,

let y be the DNN output, and consider the intensity of each pixel Iij in transformed (η, φ)

space. We the construct an image, which we denote the deep correlation jet-image, where

each pixel (i, j) is ρIij ,y, the Pearson Correlation Coefficient of the pixels intensity with

the final DNN output, across images. While this this image does not give a direct view

of the discriminating information learned within the network, it does provide a guide to

how such information may be contained within the network. In figure 11, we construct this

deep correlation jet-image for both the ConvNet and the MaxOut networks. We can see

that the location and energy of the subleading subjet, found at the bottom of the image,

is highly correlated with the DNN output and important for identifying signal jet-images.

In contrast, the information contained in the leading subjet, seen at (x, y) ∼ (0, 0) in the

image, is not particularly correlated with the network output owing to the fact that both

signal and background jets have high energy leading subjets. We also see asymmetric

regions around both subjets that are correlated with the DNN output and is indicating the

presence of additional radiation expected in the QCD background jets. Finally, a small

negative correlation with the rest of the jet area is seen, indicating that radiation from the

background jets is more likely to be observed in these regions. The exact function form of

these distribution are not known, nor does it seem to describe exactly any known physics

inspired variable.
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99.33% signal 99.33% signal 99.00% signal 99.33% signal 99.33% signal

99.34% signal 1.608% signal 1.264% signal 1.509% signal 2.249% signal

1.310% signal 1.509% signal 1.310% signal 1.739% signal 74.46% signal

18.99% signal 75.93% signal 60.11% signal 59.43% signal 69.99% signal

68.22% signal 53.63% signal 43.59% signal 42.06% signal 48.38% signal

Figure 10. The average of the 500 jet images with the highest node activation for the last hidden

layer of the MaxOut network. The nodes are ordered from top left to bottom right by increasing

sparsity. The top left is the most commonly activated node whereas the bottom right node is least

activated and frequently zero.

5.4 Studies in the uniform phase space

An important part of the investigation into what the neutral networks are learning be-

yond the standard physics features is to quantify the performance when these features are

removed. This represents the unique information learned by the network. One way to re-

move the discrimination power from a given feature is to apply a transformation such that

the marginal likelihood ratio is constant at unity. In other words, we derive event-by-event

weights such that

f(m, τ21, pT |W ′ →WZ) ≈ f(m, τ21, pT |QCD), (5.3)

where f(X|Y ) is the probability density function of X given Y . This is done practically

by binning the mass and τ21 distributions and then assigning to each event a weight given

by the inverse bin content corresponding to the jet mass and τ21 of that particular event.

Figure 12 shows the ROC curve for various features with this weighting scheme applied.
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Figure 11. Per-pixel linear correlation with DNN output for the Convnet (left) and the MaxOut

network (right). Signal and background jets are combined.

By construction, τ21 and the jet mass do not have any discrimination power between

signal and background, evident by the fact that εbkg = εsignal = the random guess line.

However, the convolutional network that is trained inclusively (without the weights from

equation (5.3)) does have some discrimination power when the weights from equation (5.3)

are applied. For a fixed signal efficiency, the overall performance is significantly degraded

with respect to the un-weighted ROC curve in figure 6, but the improvement over a random

guess is significant. Interestingly, the network performance is significantly better in this re-

weighted setting when the same weighting is applied during training (effort by the network

is not needed to learn τ21, for instance). The ConvNet and MaxOut procedures training

inclusively have similar performance.

Figure 11 already suggested that information about colorflow is contributing to the

performance of the tagger since the signal is a color singlet and the background is predom-

inantly a color octet (gluon). The radiation pattern in the former case is expected to be

concentrated between the subjets of the jet and in the latter case around the subjets. One

variable designed [39] and recently shown [40] to be sensitive to the colorflow is the jet pull

angle, θP (j1, j2) for jets j1 and j2. The jet pull vector is given by ~vjp = 1

pjT

∑
i∈j p

i
T |~ri|~ri,

where i runs over the jet’s constituents and ri is the vector in (y, φ) that points from the

jet axis to the constituent i. The pull angle θP (j1, j2) is the angle the pull vector of jet

j1 makes with respect to the vector in (y, φ) pointing from the j1 jet axis to the j2 jet

axis. Note that θP (j1, j2) 6= θP (j2, j1) because the former uses the substructure of j1 and

the latter uses the substructure of j2. We adapt the pull angle to the case of large-radius

trimmed jets by using the leading (J) and subleading (j) subjets. The red and blue dashed

lines in figure 12 show that a significant fraction of the DNNs performance can be explained

by colorflow information contained within the jet pull angles. However, especially for the

network trained with the weights, the DNN performance is also significantly better than

the jet pull angles.
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Figure 12. Various ROC curves with event weights that enforce eq. (5.3) inside m ∈ [65, 95] GeV,

pT ∈ [250, 300] GeV, and τ21 ∈ [0.2, 0.8]. By construction, the τ21 and likelihood combination of τ21
and mass are non-discriminating (and are thus equal to a random guess). The ConvNet, MaxOut,

and MaxOut-Norm networks are trained without the weights applied and the MaxOut (weighted)

line was trained with the weights applied during training.

One can gain intuition about the unique information learned by the network by study-

ing the correlation of the network output and the pixel intensities with the equation (5.3)

weights applied. This is shown in figure 13 with and without the weights applied dur-

ing training. The two correlation plots are qualitatively similar, but the region to the

right of the subjets is more enhanced when the weights are applied during the training.

This suggests that information about radiation surrounding the subjets contains important

discrimination power contributing to the network’s unique information.

5.5 Studies in the highly restricted phase space

Another way to quantify the unique information learned by the network that also provides

useful information about physical information learned by the network is to restrict the

considered phase space such that τ21 and the jet mass distributions do not vary appreciably

over the reduced space. Figure 14 shows the average signal and background jet image in

three small windows of τ21, jet mass, and jet pT . In all three windows, the jet mass is

restricted to be between 79 GeV and 81 GeV and the jet pT is required to be in the interval

[250,260] GeV. The three windows are then defined by their value of τ21: [0.19,0.21] in

the most two-prong-like case, [0.39,0.41] in a region with likelihood ratio near unity and

[0.59,0.61] in a mostly one-prong-like case. The key physics features of the jets falling

in these windows are easily visualized from the average jet images. The most striking

observation is that in these three windows, signal jets look very similar to background

jets. When τ21 ∈ [0.19, 0.21], both signal and background jets have a second subjet that is

distinct from the leading subjet, which becomes less prominent as the value of τ21 increases.
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Figure 13. Pearson Correlation Coefficient for pixel intensity and the convolutional neural network

output for W ′ →WZ and QCD (combined) for the MaxOut network training inclusively and then

weighted (left) and for the MaxOut network training with the weights from equation (5.3) applied

also during the training.

The differences between images in these small windows tells us about what information

could be learned by the networks beyond τ21 and the jet mass. Since the differences are

subtle, the average difference is explicitly computed and plotted in figure 15 for the three

narrow windows of τ21. In the window with τ21 ∈[0.19,0.21], there are five features: a

localized blue patch in the bottom center, a localized red patch just above that, a red

diffuse region between the red patch and the center and then a blue dot just left of center

surrounded by a red shell to the right. Each of these have a physics meaning: the lower two

localized patches give information about the orientation of the second subjet (∆R) which

is slightly wider for the QCD jets which need a slightly wider angle to satisfy the mass

requirement. The red diffuse region just above the localized patches is likely an indication

of colorflow as introduced earlier: the W bosons are color singlets compared to the color

octet gluon jet background, and thus we expect the radiation pattern to be mostly between

the two subjets for the W . One can draw similar conclusions for all the features in each of

the plots in figure 15.

Now, we turn back to the neutral network and their performance in these small windows

of jet mass and τ21. Figure 16 shows three ROC curves in the window τ21 ∈[0.19,0.21]. By

construction, the τ21 and jet mass curves are not much better than a random guess, since

these variables do not significantly vary over the small window. The other curves show

the performance of ∆R and the ConvNet and MaxOut neural networks trained inclusively,

which have similar performance to each other. As in the previous section, this allows us

to quantify the unique information in the neural network. Figure 16 also includes the jet

pull angle introduced in the context of figure 12. As with the earlier figure, the jet pull

angles do provide useful discriminating information in this small region of phase space, but

cannot account for the entire performance from the DNNs.

One way to visualize the unique information is to look at the per-pixel correlation

between the intensity and neural network output (figure 17). The physical interpretation

of the red and blue areas in figure 17 are related to the colorflow of W and background jets.

– 21 –



J
H
E
P
0
7
(
2
0
1
6
)
0
6
9

 [
G

e
V

]
T

P
ix

e
l 
p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (

-1 -0.5 0 0.5 1

)
φ

[T
ra

n
s
la

te
d
] 
A

z
im

u
th

a
l 
A

n
g
le

 (

-1

-0.5

0

0.5

1

 = 13 TeV, Pythia 8s WZ, →W'

 < 0.21, 79 < mass/GeV < 81
21

τ/GeV < 260 GeV, 0.19 < 
T

250 < p

 [
G

e
V

]
T

P
ix

e
l 
p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (

-1 -0.5 0 0.5 1

)
φ

[T
ra

n
s
la

te
d
] 
A

z
im

u
th

a
l 
A

n
g
le

 (

-1

-0.5

0

0.5

1

 = 13 TeV, Pythia 8s WZ, →W'

 < 0.41, 79 < mass/GeV < 81
21

τ/GeV < 260 GeV, 0.39 < 
T

250 < p

 [
G

e
V

]
T

P
ix

e
l 
p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (

-1 -0.5 0 0.5 1

)
φ

[T
ra

n
s
la

te
d
] 
A

z
im

u
th

a
l 
A

n
g
le

 (

-1

-0.5

0

0.5

1

 = 13 TeV, Pythia 8s WZ, →W'

 < 0.61, 79 < mass/GeV < 81
21

τ/GeV < 260 GeV, 0.59 < 
T

250 < p

 [
G

e
V

]
T

P
ix

e
l 
p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (

-1 -0.5 0 0.5 1

)
φ

[T
ra

n
s
la

te
d
] 
A

z
im

u
th

a
l 
A

n
g
le

 (

-1

-0.5

0

0.5

1

 = 13 TeV, Pythia 8sQCD, 

 < 0.21, 79 < mass/GeV < 81
21

τ/GeV < 260 GeV, 0.19 < 
T

250 < p

 [
G

e
V

]
T

P
ix

e
l 
p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (

-1 -0.5 0 0.5 1

)
φ

[T
ra

n
s
la

te
d
] 
A

z
im

u
th

a
l 
A

n
g
le

 (

-1

-0.5

0

0.5

1

 = 13 TeV, Pythia 8sQCD, 

 < 0.41, 79 < mass/GeV < 81
21

τ/GeV < 260 GeV, 0.39 < 
T

250 < p

 [
G

e
V

]
T

P
ix

e
l 
p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (

-1 -0.5 0 0.5 1

)
φ

[T
ra

n
s
la

te
d
] 
A

z
im

u
th

a
l 
A

n
g
le

 (

-1

-0.5

0

0.5

1

 = 13 TeV, Pythia 8sQCD, 

 < 0.61, 79 < mass/GeV < 81
21

τ/GeV < 260 GeV, 0.59 < 
T

250 < p

Figure 14. W ′ →WZ (top) and QCD (bottom) average jet-images in three small windows of τ21:

[0.19, 0.21] (left), [0.39, 0.41] (middle), and [0.59, 0.61] (right). In all cases, jet mass is restricted

to be between 79 GeV and 81 GeV and the jet pT is required to be in the interval [250,260] GeV.
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Figure 15. The average difference between W ′ → WZ jet-images in three small windows of τ21:

[0.19, 0.21] (left), [0.39, 0.41] (middle), and [0.59, 0.61] (right). In all cases, jet mass is restricted

to be between 79 GeV and 81 GeV and the jet pT is required to be in the interval [250,260] GeV.

The red colors are more signal-like and the blue is more background-like.

The area in-between the subjets should have more radiation than the area around and out-

side of the subjets for W jets and vice-versa for QCD jets. While figure 17 is not directly the

discriminant used in the network and only represents linear correlations with the network

output, it does show non-linear spatial information and gives a sense of where in the image

the network is looking for discriminating features. Some of this information is contained

in the jet pull angles, but the DNN must be learning additional information (figure 16).
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Figure 17. Pearson Correlation Coefficient for pixel intensity and the convolutional neural network

output for W ′ →WZ and QCD (combined) in three small windows of τ21: [0.19, 0.21] (left), [0.39,

0.41] (middle), and [0.59, 0.61] (right). In all cases, jet mass is restricted to be between 79 GeV and

81 GeV and the jet pT is required to be in the interval [250,260] GeV.

6 Outlook and conclusions

Jet Images are a powerful paradigm for visualizing and classifying jets. We have shown

that when applied directly to jet images, deep neural networks are a powerful tool for

identifying boosted hadronically decaying W bosons from QCD multijet processes. These

advanced Computer Vision algorithms outperform several known and highly discriminating
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engineered physics-inspired features such as the jet mass and n-subjettiness, τ21. Through

a variety of studies, we have shown that some of these features are learned by the network.

However, despite detailed studies to preserve the jet mass, this important variable seems

to not be fully captured by the neural networks studied in this article. Understanding how

to fully learn the jet mass is a goal of our future work.

In this paper, we propose several techniques for quantifying and visualizing the in-

formation learned by the DNNs, and connect these visualizations with physics properties.

This is studied by removing the information from jet mass and τ21 through a re-weighting

or redaction of the phase space. In this way, we can evaluate the performance of the net-

work beyond these features to quantify the unique information learned by the network.

In addition to quantifying the amount of additional discrimination achieved by the net-

work, we also show how the new information can be visualized through through the deep

correlation jet image which displays the network output correlation with each input pixel.

These visualizations are a powerful tool for understanding what the network is learning.

In this case, colorflow patterns suggest that at least part of the unique information comes

from the octet versus singlet nature of W bosons and gluon jets. However, not all of the

information is contained in well-known physically motivated color-flow-sensitive features

like the jet pull angle. The visualizations may even be useful in the future for engineering

other simple variables which may be able to match the performance of the neural network.

Both ATLAS and CMS have collected and will continue to collect large datasets filled

with SM sources of boosted top quarks and W bosons. The collaborations have shown that

event selections targeting these objects can be used to determine the systematic uncertain-

ties of both simple and complex jet tagging techniques [9, 41–43]. These techniques can

be readily adapted for the jet images DNN tagger as a first step toward applying the tools

developed in this paper to improve tagging performance in practice. Additionally, both

ATLAS and CMS have achieved a better spatial resolution than their 0.1 × 0.1 hadronic

calorimeter granularity. Figures 4 and 6 show that the DNN tagger presented in this paper

significantly out-performs the unpixelated jet mass. The DNN tagger would do no worse

than its stated performance with 0.1×0.1 granularity because one can always down-sample

the images before processing. With more information available to the network, it is likely

the DNN tagger could do even better. Taking into account the non-uniform detector gran-

ularity in order to reduce the feature size is therefore an interesting direction of future work

in adapting the methods presented here to a particular detector.

This edition of the study of jet images has built a new link between particle physics

and computer vision by using state of the art deep neural networks for classifying high-

dimensional high energy physics data. By processing the raw jet image pixels with these

advanced techniques, we have shown that there is a great potential for jet classification.

Many analyses at the LHC use boosted hadronically decaying bosons as probes of physics

beyond the Standard Model and the methods presented in this paper have important

implications for improving the sensitivity of these analyses. In addition to improving

tagging capabilities, further studies with deep neural networks will help us discover new

features to improve our understanding and improve upon existing features to fully capture

the wealth of information inside jets.
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Figure 18. The distribution of the fraction of pixels (occupancy) that have a nonzero entry (blue)

or at least 1% of the scalar sum of the pixel intensities from all pixels (red).
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A Image sparsity

Figure 18 quantifies the sparsity of the jet images by showing the distribution of the pixel

occupancy: the fraction of pixels that have a non-zero entry. Also plotted is the fraction

of pixels that have at least 1% of the intensity of the scalar sum of the pixel intensities

from all pixels. In general, the background has a more diffuse radiation pattern and thus

the corresponding jet images have a higher average occupancy.

B Joint and marginal distributions

Figure 19 shows the marginal distributions of the network outputs for signal and back-

ground jets. The MaxOut network has a wavy feature in the distribution near 0.5 where

the likelihood ratio is unity. In that regime, the network cannot differentiate between sig-

nal and background and in this particular case results in a non-smooth distribution at the

fixed likelihood ratio value.

The joint distributions of the network with the jet mass, τ21, and the ∆R between sub-

jets are shown in figure 20, figure 21, and figure 22, respectively. The joint distributions be-

tween the various combinations of the physics features are shown in figure 23 and figure 24.
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Figure 19. The marginal distributions of the ConvNet (left) and MaxOut (right) network outputs

for signal and background jet images.
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Figure 20. The joint probability distribution the jet mass and the ConvNet (left) and MaxOut

(right) network outputs for the background.
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(right) network outputs for the background.
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Figure 22. The joint probability distribution between the ∆R between subjets and the ConvNet

(left) and MaxOut (right) network outputs for the background.
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