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How good is my
learning algorithm?
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Cross-validation (CV) [Stone, 1974, Geisser, 1975]

Divide data into k
validation sets

Fit k prediction rules,
each with one
validation set held
out

Evaluate each
prediction rule on its
held-out set

Average the k error
estimates

Pros: Unbiased for test error & lower variance than single train-test split
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High-stakes Applications

Need: Test error confidence intervals to quantify uncertainty

Problem: CV distribution is complex & existing intervals often invalid

“The widely used approach of basing confidence intervals on an independent bino-
mial assumption of the leave-one-out cross-validation errors results in serious under-
coverage of the true prediction error.”
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Is algorithm A actually
better than algorithm B?

Need: Trustworthy hypothesis tests of error improvement

Problem: Standard tests (like the cross-validated t-test [Dietterich, 1998], the repeated
train-validation t-test [Nadeau and Bengio, 2003], and the 5× 2-fold CV test [Dietterich, 1998]) do not
appropriately account for dependence and have no correctness guarantees
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Our Contributions

ALGORITHMIC
STABILITY

CV CENTRAL LIMIT THEOREM
+

CONSISTENT VARIANCE ESTIMATOR

CV CONFIDENCE INTERVALS
FOR TEST ERROR

CV TESTS FOR ALGORITHM
IMPROVEMENT
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Problem Setup

Given

Datapoints Z1, . . . , Zn

Often each Zi = (Xi, Yi) with covariates Xi and response Yi
For any vector B of indices, ZB denotes the corresponding vector of datapoints

Loss function hn(Zi, ZB): error when training on ZB and testing on Zi
Regression: hn(Zi, ZB) = (Yi − f̂(Xi;ZB))

2 for f̂(·;ZB) trained on ZB
Classification: hn(Zi, ZB) = 1[Yi 6= f̂(Xi;ZB)]
Algorithm comparison: hn(Zi, ZB) = 1[Yi 6= f̂1(Xi;ZB)]− 1[Yi 6= f̂2(Xi;ZB)]

Validation sets {B′
j}k

j=1 and associated training sets {Bj}k
j=1

Validation sets partition datapoint indices {1, . . . , n} into k folds; k can grow with n

Goal: Characterize the distribution of cross-validation error

R̂n , 1
n

∑k
j=1

∑
i∈B′

j
hn(Zi, ZBj

)
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Why CV Error?

Cross-validation error: R̂n , 1
n

∑k
j=1

∑
i∈B′

j
hn(Zi, ZBj

)

Unbiased estimate of k-fold test error, a common inferential target [Blum, Kalai, and Langford,

1999, Dudoit and van der Laan, 2005, Kale, Kumar, and Vassilvitskii, 2011, Kumar, Lokshtanov, Vassilvitskii, and Vattani, 2013, Austern and Zhou, 2020]

Lower variance than single train-validation split

k-fold test error: Rn , 1
n

∑k
j=1

∑
i∈B′

j
E[hn(Zi, ZBj

) | ZBj
]

Average test error of the k prediction rules f̂(·;ZBj
)

Goal: Establish a central limit theorem for R̂n −Rn
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Algorithmic Stability

Stability

How much does prediction performance change when one training point changes?

Uniform stability [Bousquet and Elisseeff, 2002]: worst-case change in loss hn

Mean-square stability [Kale, Kumar, and Vassilvitskii, 2011]: mean-square change in loss hn
Loss stability [Kumar, Lokshtanov, Vassilvitskii, and Vattani, 2013]

Mean-square change in loss difference hn(Z0, ZB)− E[hn(Z0, ZB) | ZB]
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Asymptotic Normality of CV

CV Central Limit Theorem [Bayle, Bayle, Janson, and Mackey, 2020]

Suppose Z0, Z1, · · · , Zn are i.i.d., and define the expected loss function

h̄n(Z0) = E[hn(Z0, Z1:n(1−1/k)) | Z0] with σ2
n = Var(h̄n(Z0)).

If loss stability = o(σ2
n/n) and (h̄n(Z0)− E[h̄n(Z0)])

2/σ2
n is uniformly integrable then

√
n

σn
(R̂n −Rn)

d→ N (0, 1).

Sufficient condition: supn E[|h̄n(Z0)− E[h̄n(Z0)]|α/σαn ] <∞ for some α > 2
Many learning algorithms enjoy decaying loss stability

Stochastic gradient descent on convex and non-convex objectives [Hardt, Recht, and Singer, 2016]

Empirical risk minimization of strongly convex, Lipschitz objective [Bousquet and Elisseeff, 2002]

Note: training objective need not match the validation loss hn!

k-nearest neighbor methods [Devroye and Wagner, 1979], even when overfit with 0 training error
Decision trees [Arsov, Pavlovski, and Kocarev, 2019] and ensemble methods [Elisseeff, Evgeniou, and Pontil, 2005]
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Asymptotic Normality of CV: Related Work
Theorem 3 of Dudoit and van der Laan [2005]

Requires a bounded loss function

Excludes leave-one-out CV

Requires prediction rule to be loss-consistent for a risk-minimizing prediction rule

Theorem 4.1 of LeDell, Petersen, and van der Laan [2015]

Applies only to AUC loss

Requires bounded number of folds k

Requires prediction rule to be loss-consistent for a risk-minimizing prediction rule

Theorem 1 of Austern and Zhou [2020]

Assumes variance parameter σ̃n ≥ σn converging to a non-zero limit

Requires o(1/n) mean-square stability and o(1/n2) 2nd-order mean-square stability

Assumes learning algorithm is symmetric in the training points
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Application: Confidence Intervals for Test Error

Problem

Construct an asymptotically-exact (1− α)-confidence interval for k-fold test error Rn

Solution: CV Confidence Interval for Test Error

Under the assumptions of the CV CLT, if a variance estimator σ̂2
n satisfies relative error

consistency (σ̂2
n/σ

2
n

p→ 1), then the interval

Cα , R̂n ± q1−α/2 σ̂n/
√
n

satisfies

limn→∞ P(Rn ∈ Cα) = 1− α

where q1−α/2 is the (1− α/2)-quantile of a standard normal distribution
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Application: Tests for Algorithm Improvement

Problem

Construct an asymptotically-exact level α test of whether A1 has smaller k-fold test
error than A2

Solution: CV Test for Improved Test Error

For a target loss function `, define the A1-A2 loss difference

hn(Z0, ZB) = `(Y0, f̂1(X0;ZB))− `(Y0, f̂2(X0;ZB)),

and consider testing H0 : Rn ≥ 0 (A1 not better) against H1 : Rn < 0 (A1 is better).
Under the assumptions of the CV CLT, if a variance estimator σ̂2

n satisfies relative error

consistency (σ̂2
n/σ

2
n

p→ 1), then the test

reject H0 ⇔ R̂n < qασ̂n/
√
n

has asymptotic level α for qα the α-quantile of a standard normal distribution
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Consistent Variance Estimation

Goal: Find a practical estimator σ̂2
n satisfying σ̂2

n/σ
2
n

p→ 1 under weak conditions.

Within-fold variance estimator σ̂2
n,in

Computes the variance of hn(Zi, ZBj
) in each fold and takes the average across folds

All-pairs variance estimator σ̂2
n,out

σ̂2
n,out ,

1
n

∑k
j=1

∑
i∈B′

j
(hn(Zi, ZBj

)− R̂n)2

Computes the empirical variance of hn(Zi, ZBj
) across all folds

Advantage: can also be used for leave-one-out cross-validation

Low computational cost

σ̂2
n,in and σ̂2

n,out can be computed in O(n) time and in O(k) time if loss is binary
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Consistent Variance Estimation

Theorem (Consistent Estimation of CV Variance [Bayle, Bayle, Janson, and Mackey, 2020])

Under exactly the same conditions given for the CV central limit theorem
(loss stability = o(σ2

n/n) and uniform integrability), we have

σ̂2
n,in /σ

2
n
L1

→ 1.

If, additionally, mean-square stability = o(kσ2
n/n), then

σ̂2
n,out /σ

2
n
L1

→ 1.

Mean-square stability condition particularly mild for leave-one-out CV (k = n)
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Confidence Intervals for Test Error, 1− α = 0.95, k = 10
`2-regularized logistic regression (Higgs) Random forest regression (FlightDelays)
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Testing for Algorithm Improvement, α = 0.05, k = 10
Logistic vs. neural net classification Ridge vs. random forest regression
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Figure: Size when testing H1 : Err(A1) < Err(A2) (top) and power when testing H1 : Err(A2) < Err(A1) (bottom) of level-0.05 tests for improved test

error. Left: A1 = `2-regularized logistic regression, A2 = neural network classification. Right: A1 = random forest, A2 = ridge regression.
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Leave-one-out CV Confidence Intervals, 1− α = 0.95

Misconception: Leave-one-out CV (LOOCV, k = n) only relevant for small n
Reality

Ridge regression LOOCV only slightly slower than a single regression
For many models, LOOCV can be efficiently approximated with only O(1/n2) error
[Beirami, Razaviyayn, Shahrampour, and Tarokh, 2017, Giordano, Stephenson, Liu, Jordan, and Broderick, 2019, Koh, Ang, Teo, and Liang, 2019,

Wilson, Kasy, and Mackey, 2020]

Ridge regression
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Figure: Test error coverage (left) and width (right) of 95% confidence intervals for ridge regression, including leave-one-out CV intervals (see ??). The CV CLT
curves are obscured by the nearly identical LOOCV CLT curves.
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Conclusions

Summary

New CV central limit theorem under algorithmic stability

Consistent estimators of CV variance

Asymptotically exact confidence intervals and tests for k-fold test error

Opportunities for future work

Practical valid tests and confidence intervals in the absence of stability

Analogous tools for expected test error E[Rn] [see, e.g., Austern and Zhou, 2020]

Cross-validation Confidence Intervals for Test Error
Paper: https://arxiv.org/abs/2007.12671

Code: https://github.com/alexandre-bayle/cvci
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