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Motivation:
Assess quality of asymptotically
biasedMonte Carlo methods

• Large data applications have catalyzed interest in sampling methods
such as approximate MCMC and variational inference.

• Such methods are asymptotically biased: they converge to a dis-
tribution Q that is different to the original distribution of interest P .

• We introduce estimators based on couplings of Markov chains to
compute upper bounds for the Wasserstein distance,

Wp(P,Q) = inf
X∼P,Y∼Q

E[c(X,Y)p]1/p.

–Wp(P,Q) can control difference between pth-moment of P and Q.

BoundingWasserstein distance with couplings

• Consider Markov chains (Xt)t≥0 and (Yt)t≥0 with marginal transition
kernels K1 and K2 and invariant distributions P and Q.

• Construct kernel K̄ on the joint space such that for all x, y ∈ X ,

K̄
(
(x,y), (·,X )

)
= K1(x, ·) and K̄

(
(x,y), (X , ·)

)
= K2(y, ·).

• We propose the coupling upper bound (CUB) estimate

CUBp ,
( 1

I(T− S)

I∑
i=1

T∑
t=S+1

c(X
(i)
t ,Y

(i)
t )p
)1/p

.

where (Xt,
(i) Y

(i)
t )t≥0 are independent chains sampled using K̄.

A Stylized Example

•W2(P,Q) on Rd for

P = N (0,Σ) where Σi,j = 0.5|i−j|, Q = N (0, Id).

• We calculate CUB2 using common random numbers coupling
of marginal MALA kernels targeting P and Q.

–Dimension d = 100: tighter bounds for larger trajectory length T .
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–Higher dimensions d: favorable performance.
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Consistency

Proposition 1. Let (X
(i)
t , Y

(i)
t )t≥0 for i = 1, . . . , I denote independent coupled

chains generated using K̄. Suppose the marginal distributions (Pt)t≥0 and (Qt)t≥0

converge in p-Wasserstein distance to distributions P and Q which have finite mo-
ments of order p. Then, for all ε > 0 there exists some S ≥ 1 such that for all
T ≥ S, the estimator CUBp has finite moments of order p, and as I →∞,

CUBp
p

a.s.,L1

→ E
[
CUBp

p

]
≥ Wp(P,Q)p − ε.

Stochastic Gradient MCMC and
variational inference for tall data

• Baysian logistic regression with Gaussian priors:

–DSI dataset: n = 26732 observations and d = 10 covariates

–Pima Indians dataset: n = 768 observations and d = 8 covariates
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Approximate MCMC or variational procedure
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ApproximateMCMC for high-
dimensional linear regression

• Baysian linear regression with Half-t(ν) priors:

–Exact MCMC kernel: O(n2d) computation cost

– ε-approximate MCMC based on matrix approximations

X Diag(ξηt)
−1X> ≈ X Diag((ξ−1η−1

j I{ξ−1η−1j >ε})
p
j=1) X

>

– Synthetic dataset: n = 500 observations and d = 50000 covariates.

0

1

2

3

0 1e−04 0.001 0.01

Approx. MCMC threshold ε

W
2 

up
pe

r 
an

d 
lo

w
er

 b
ou

nd
s


