

Bounding Wasserstein distance with couplings

Niloy Biswas¹ and Lester Mackey²

- 1: Harvard University (niloy_biswas@g.harvard.edu)
- 2: Microsoft Research New England (Imackey@microsoft.com)

Motivation: Assess quality of asymptotically biased Monte Carlo methods

- Large data applications have catalyzed interest in sampling methods such as approximate MCMC and variational inference.
- Such methods are **asymptotically biased**: they converge to a distribution Q that is different to the original distribution of interest P.
- We introduce estimators based on **couplings** of Markov chains to compute upper bounds for the **Wasserstein distance**,

$$\mathcal{W}_{\mathbf{p}}(\mathbf{P}, \mathbf{Q}) = \inf_{\mathbf{X} \sim \mathbf{P}, \mathbf{Y} \sim \mathbf{Q}} \mathbb{E}[\mathbf{c}(\mathbf{X}, \mathbf{Y})^{\mathbf{p}}]^{1/\mathbf{p}}.$$

 $-\mathcal{W}_p(P,Q)$ can control difference between p^{th} -moment of P and Q.

Bounding Wasserstein distance with couplings

- Consider Markov chains $(X_t)_{t\geq 0}$ and $(Y_t)_{t\geq 0}$ with marginal transition kernels K_1 and K_2 and invariant distributions P and Q.
- ullet Construct kernel $ar{\mathbf{K}}$ on the joint space such that for all $x,y\in\mathcal{X}$,

$$\mathbf{\bar{K}}\big((\mathbf{x},\mathbf{y}),(\cdot,\mathcal{X})\big) = \mathbf{K_1}(\mathbf{x},\cdot) \text{ and } \mathbf{\bar{K}}\big((\mathbf{x},\mathbf{y}),(\mathcal{X},\cdot)\big) = \mathbf{K_2}(\mathbf{y},\cdot).$$

We propose the coupling upper bound (CUB) estimate

$$\mathbf{CUB_p} \triangleq \left(\frac{1}{\mathbf{I}(\mathbf{T} - \mathbf{S})} \sum_{\mathbf{i} = 1}^{\mathbf{I}} \sum_{\mathbf{t} = \mathbf{S} + 1}^{\mathbf{T}} \mathbf{c}(\mathbf{X_t^{(i)}}, \mathbf{Y_t^{(i)}})^{\mathbf{p}}\right)^{1/\mathbf{p}}.$$

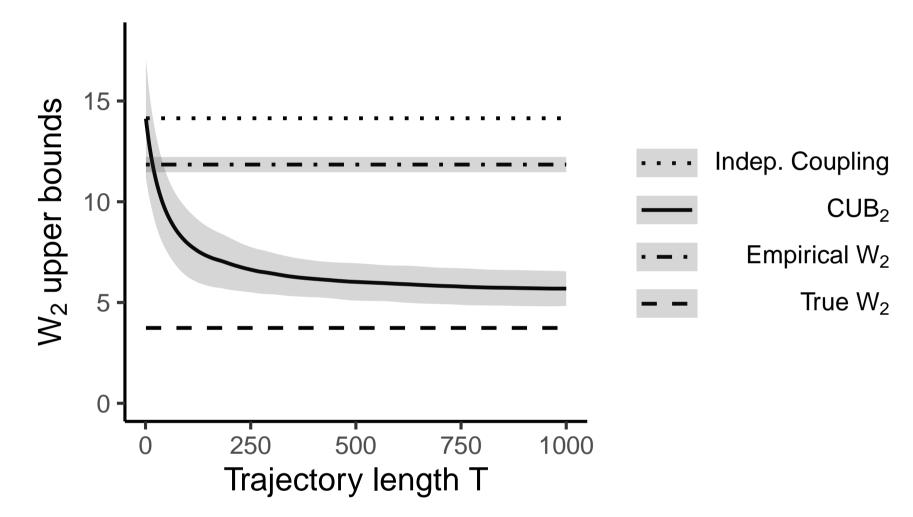
where $(X_t,^{(i)}Y_t^{(i)})_{t\geq 0}$ are independent chains sampled using \bar{K} .

A Stylized Example

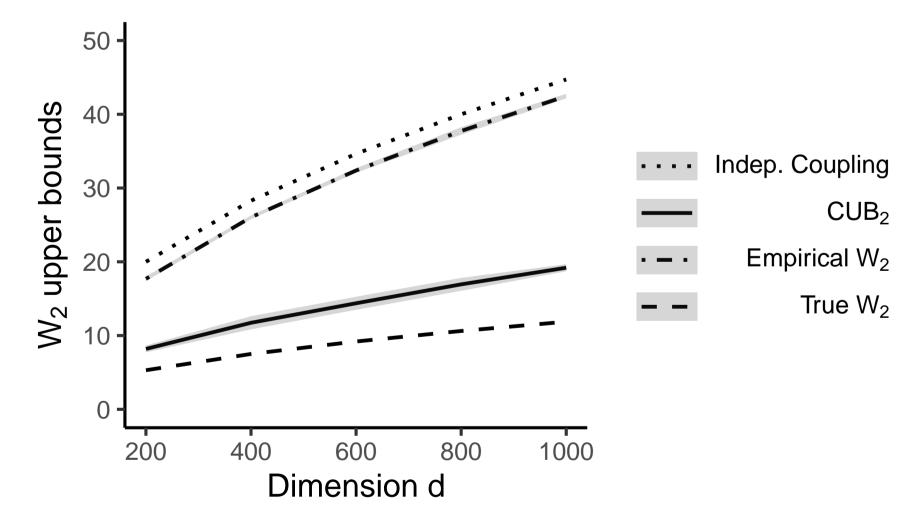
 $ullet \mathcal{W}_2(P,Q)$ on \mathbb{R}^d for

$$P = \mathcal{N}(0, \Sigma)$$
 where $\Sigma_{i,j} = 0.5^{|i-j|}, Q = \mathcal{N}(0, I_d)$.

- We calculate CUB_2 using **common random numbers** coupling of marginal MALA kernels targeting P and Q.
- -Dimension d=100: tighter bounds for larger trajectory length T.



-Higher dimensions d: favorable performance.



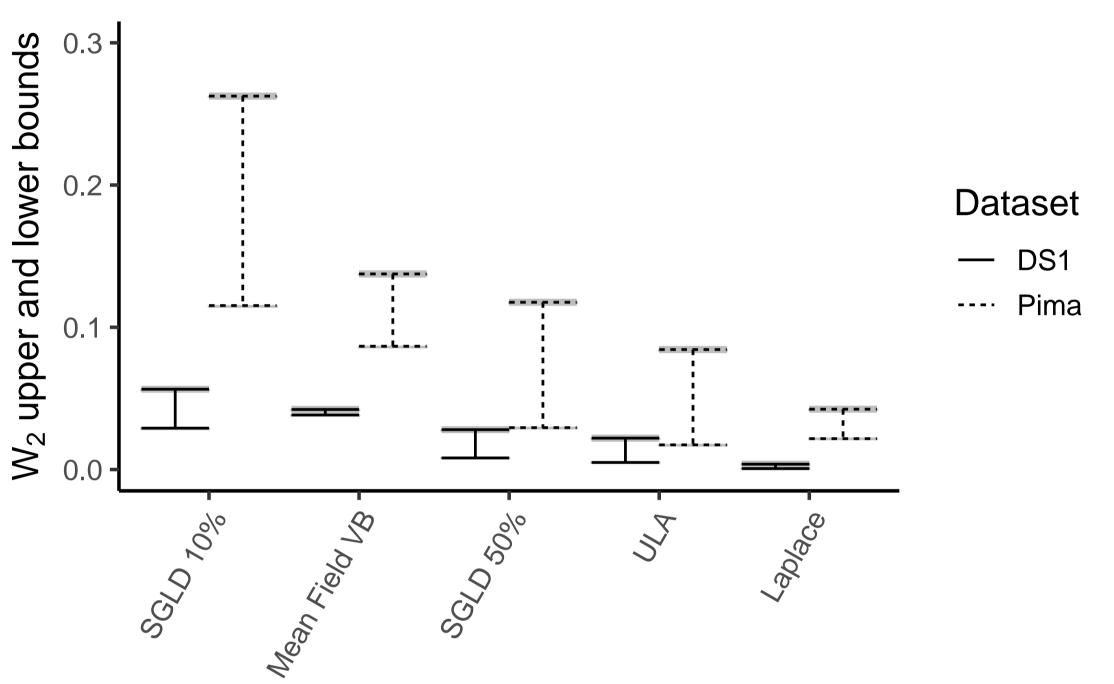
Consistency

Proposition 1. Let $(X_t^{(i)}, Y_t^{(i)})_{t \geq 0}$ for $i = 1, \ldots, I$ denote independent coupled chains generated using $\overline{\mathbf{K}}$. Suppose the marginal distributions $(P_t)_{t \geq 0}$ and $(Q_t)_{t \geq 0}$ converge in p-Wasserstein distance to distributions P and Q which have finite moments of order p. Then, for all $\epsilon > 0$ there exists some $S \geq 1$ such that for all $T \geq S$, the estimator CUB_p has finite moments of order p, and as $I \to \infty$,

$$\mathsf{CUB}^\mathbf{p}_\mathbf{p} \overset{\mathsf{a.s.}, \mathbf{L^1}}{\to} \mathbb{E} \big[\mathsf{CUB}^\mathbf{p}_\mathbf{p} \big] \geq \mathcal{W}_\mathbf{p}(\mathbf{P}, \mathbf{Q})^\mathbf{p} - \epsilon.$$

Stochastic Gradient MCMC and variational inference for tall data

- Baysian logistic regression with Gaussian priors:
- -DSI dataset: n=26732 observations and d=10 covariates
- -Pima Indians dataset: n=768 observations and d=8 covariates



Approximate MCMC or variational procedure

Approximate MCMC for high-dimensional linear regression

- ullet Baysian linear regression with Half-t(u) priors:
- -Exact MCMC kernel: $\mathcal{O}(n^2d)$ computation cost
- $-\epsilon$ -approximate MCMC based on matrix approximations

$$X \operatorname{Diag}(\xi \eta_t)^{-1} X^{\top} \approx X \operatorname{Diag}((\xi^{-1} \eta_j^{-1} I_{\{\xi^{-1} \eta_i^{-1} > \epsilon\}})_{j=1}^p) X^{\top}$$

-Synthetic dataset: n=500 observations and d=50000 covariates.

