Motivation:
Assess quality of asymptotically
biased Monte Carlo methods

e Large data applications have catalyzed interest in sampling methods
such as approximate MCMC and variational inference.

e Such methods are asymptotically biased: they converge to a dis-
tribution () that is different to the original distribution of interest P.

e We introduce estimators based on couplings of Markov chains to
compute upper bounds for the Wasserstein distance,

WP(P7 Q) — XwiPan:NQ

Elc(X, Y)p]l/p.

- W,(P, Q) can control difference between p"-moment of P and Q.

Bounding Wasserstein distance with couplings

e Consider Markov chains (X;);>¢ and (Y});>o with marginal transition
kernels /; and K5 and invariant distributions P and ().

e Construct kernel K on the joint space such that for all .y € X,

K((X> Y)v ('7 X)) — Kl(X7 ) and K((X7y)7 (‘X? )) — KZ(Y? )

e We propose the coupling upper bound (CUB) estimate
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CUBpé( 7§ Z (X, Yp) g
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where (X, Y;(i))tzo are independent chains sampled using K.
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A Stylized Example

e Wy(P, Q) on R? for
P = N(0,%) where &3; ; = 0.5, Q = N(0, I).

e We calculate C'U B, using common random numbers coupling
of marginal MALA kernels targeting PP and ().

—Dimension d = 100: tighter bounds for larger trajectory length 1"
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—Higher dimensions d: favorable performance.
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Consistency

Proposition 1. Let (X§i>,§/t(i))t20 fort = 1,...,
chains generated using K. Suppose the marginal distributions (P,);>¢ and (Q;)>0
converge in p-Wasserstein distance to distributions P and () which have finite mo-
ments of order p. Then, for all ¢ > 0 there exists some S > 1 such that for all

I denote independent coupled

T > S, the estimator CUB,, has finite moments of order p, and as I — oo,

a.s. L1

CUBPE **%" E[CUBE] > W,(P, Q)P —

Bounding Wasserstein distance with couplings
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Stochastic Gradient MCMC and
variational inference for tall data

e Baysian logistic regression with Gaussian priors:

— DSI dataset: n = 26732 observations and d = 10 covariates
— Pima Indians dataset: n = 768 observations and d = 8 covariates
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Approximate MCMC or variational procedure

Approximate MCMC for high-
dimensional linear regression

e Baysian linear regression with Half-t(v) priors:

— Exact MCMC kernel: O(n*d) computation cost
— e-approximate MCMC based on matrix approximations
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— Synthetic dataset: n = 500 observations and d = 50000 covariates.
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W, upper and lower bounds
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