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Abstract

We develop a Bayesian nonparametric approach to a general family of latent class problems in which individuals

can belong simultaneously to multiple classes and where each class can be exhibited multiple times by an individual.

We introduce a combinatorial stochastic process known as the negative binomial process (NBP) as an infinite-

dimensional prior appropriate for such problems. We show that the NBP is conjugate to the beta process, and we

characterize the posterior distribution under the beta-negative binomial process (BNBP) and hierarchical models

based on the BNBP (the HBNBP). We study the asymptotic properties of the BNBP and develop a three-parameter

extension of the BNBP that exhibits power-law behavior. We derive MCMC algorithms for posterior inference under

the HBNBP, and we present experiments using these algorithms in the domains of image segmentation, object

recognition, and document analysis.

Index Terms

beta process, admixture, mixed membership, Bayesian, nonparametric, integer latent feature model

✦

1 INTRODUCTION

In traditional clustering problems the goal is to induce a set of latent classes and to assign each data point

to one and only one class. This problem has been approached within a model-based framework via the use

of finite mixture models, where the mixture components characterize the distributions associated with the

classes, and the mixing proportions capture the mutual exclusivity of the classes (Fraley and Raftery, 2002;

McLachlan and Basford, 1988). In many domains in which the notion of latent classes is natural, however, it

is unrealistic to assign each individual to a single class. For example, in genetics, while it may be reasonable

to assume the existence of underlying ancestral populations that define distributions on observed alleles,

each individual in an existing population is likely to be a blend of the patterns associated with the ancestral

populations. Such a genetic blend is known as an admixture (Pritchard et al., 2000). A significant literature

on model-based approaches to admixture has arisen in recent years (Blei et al., 2003; Erosheva and Fienberg,
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2005; Pritchard et al., 2000), with applications to a wide variety of domains in genetics and beyond, including

document modeling and image analysis.1

Model-based approaches to admixture are generally built on the foundation of mixture modeling. The basic

idea is to treat each individual as a collection of data, with an exchangeability assumption imposed for the data

within an individual but not between individuals. For example, in the genetics domain the intra-individual

data might be a set of genetic markers, with marker probabilities varying across ancestral populations. In

the document domain the intra-individual data might be the set of words in a given document, with each

document (the individual) obtained as a blend across a set of underlying “topics” that encode probabilities for

the words. In the image domain, the intra-individual data might be visual characteristics like edges, hue, and

location extracted from image patches. Each image is then a blend of object classes (e.g., grass, sky, or car), each

defining a distinct distribution over visual characteristics. In general, this blending is achieved by making use

of the probabilistic structure of a finite mixture but using a different sampling pattern. In particular, mixing

proportions are treated as random effects that are drawn once per individual, and the data associated with that

individual are obtained by repeated draws from a mixture model having that fixed set of mixing proportions.

The overall model is a hierarchical model, in which mixture components are shared among individuals and

mixing proportions are treated as random effects.

Although the literature has focused on using finite mixture models in this context, there has also been

a growing literature on Bayesian nonparametric approaches to admixture models, notably the hierarchical

Dirichlet process (HDP) (Teh et al., 2006), where the number of shared mixture components is infinite. Our

focus in the current paper is also on nonparametric methods, given the open-ended nature of the inferential

objects with which real-world admixture modeling is generally concerned.

Although viewing an admixture as a set of repeated draws from a mixture model is natural in many

situations, it is also natural to take a different perspective, akin to latent trait modeling, in which the individual

(e.g., a document or a genotype) is characterized by the set of “traits” or “features” that it possesses, and

where there is no assumption of mutual exclusivity. Here the focus is on the individual and not on the “data”

associated with an individual. Indeed, under the exchangeability assumption alluded to above it is natural

to reduce the repeated draws from a mixture model to the counts of the numbers of times that each mixture

component is selected, and we may wish to model these counts directly. We may further wish to consider

hierarchical models in which there is a linkage among the counts for different individuals.

This idea has been made explicit in a recent line of work based on the beta process. Originally developed

for survival analysis, where an integrated form of the beta process was used as a model for random hazard

functions (Hjort, 1990), more recently it has been observed that the beta process also provides a natural

framework for latent feature modeling (Thibaux and Jordan, 2007). In particular, as we discuss in detail in

1. While we refer to such models generically as “admixture models,” we note that they are also often referred to as topic models or
mixed membership models.
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Section 2, a draw from the beta process yields an infinite collection of coin-tossing probabilities. Tossing

these coins—a draw from a Bernoulli process—one obtains a set of binary features that can be viewed as a

description of an admixed individual. A key advantage of this approach is the conjugacy between the beta

and Bernoulli processes: this property allows for tractable inference, despite the countable infinitude of coin-

tossing probabilities. A limitation of this approach, however, is its restriction to binary features; indeed, one

of the virtues of the mixture-model-based approach is that a given mixture component can be selected more

than once, with the total number of selections being random.

We develop a model for admixture that meets all of the desiderata outlined thus far. Unlike the Bernoulli

process likelihood, our featural model allows each feature to be exhibited any non-negative integer number of

times by an individual. Unlike admixture models based on the HDP, our model cohesively includes a random

total number of features (e.g., words or traits) per individual (e.g., a document or genotype).

As inspiration, we note that in the setting of classical random variables, beta-Bernoulli conjugacy is not the

only form of conjugacy involving the beta distribution—the negative binomial distribution is also conjugate to

the beta. Anticipating the value of conjugacy in the setting of nonparametric models, we define and develop

a stochastic process analogue of the negative binomial distribution, which we refer to as the negative binomial

process (NBP),2 and provide a rigorous proof of its conjugacy to the beta process. We use this process as

part of a new model—the hierarchical beta negative binomial process (HBNBP)—based on the NBP and the

hierarchical beta process (Thibaux and Jordan, 2007). Our theoretical and experimental development focus

on the usefulness of the HBNBP in the admixture setting, where flexible modeling of feature totals can lead

to improved inferential accuracy (see Figure 3a and the surrounding discussion). However, the utility of the

HBNBP is not limited to the admixture setting and should extend readily to the modeling of latent factors and

the identification of more general latent features. Moreover, the negative binomial component of our model

offers addtional flexibility in the form of a new parameter unavailable in either the Bernoulli or multinomial

likelihoods traditionally explored in Bayesian nonparametrics.

The remainder of the paper is organized as follows. In Section 2 we present the framework of completely

random measures that provides the formal underpinnings for our work. We discuss the Bernoulli process,

introduce the NBP, and demonstrate the conjugacy of both to the beta process in Section 3. Section 4 focuses

on the problem of modeling admixture and on general hierarchical modeling based on the negative binomial

process. Section 5 and Section 6 are devoted to a study of the asymptotic behavior of the NBP with a beta

process prior, which we call the beta-negative binomial process (BNBP). We describe algorithms for posterior

inference in Section 7. Finally, we present experimental results. First, we use the BNBP to define a generative

model for summaries of terrorist incidents with the goal of identifying the perpetrator of a given terrorist

attack in Section 8. Second, we demonstrate the utility of a finite approximation to the BNBP in the domain

2. Zhou et al. (2012) have independently investigated negative binomial processes in the context of integer matrix factorization. We
discuss their concurrent contributions in more detail in Section 4.
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of automatic image segmentation in Section 9. Section 10 presents our conclusions.

2 COMPLETELY RANDOM MEASURES

In this section we review the notion of a completely random measure (CRM), a general construction that

yields random measures that are closely tied to classical constructions involving sets of independent random

variables. We present CRM-based constructions of several of the stochastic processes used in Bayesian non-

parametrics, including the beta process, gamma process, and Dirichlet process. In the following section we

build on the foundations presented here to consider additional stochastic processes.

Consider a probability space (Ψ,F , P). A random measure is a random element µ such that µ(A) is a non-

negative random variable for any A in the sigma algebra F . A completely random measure (CRM) µ is a random

measure such that, for any disjoint, measurable sets A, A′ ∈ F , we have that µ(A) and µ(A′) are independent

random variables (Kingman, 1967). Completely random measures can be shown to be composed of at most

three components:

1) A deterministic measure. For deterministic µdet, it is trivially the case that µdet(A) and µdet(A′) are inde-

pendent for disjoint A, A′.

2) A set of fixed atoms. Let (u1, . . . , uL) ∈ ΨL be a collection of deterministic locations, and let (η1, . . . , ηL) ∈

RL
+ be a collection of independent random weights for the atoms. The collection may be countably

infinite, in which case we say L = ∞. Then let µfix =
∑L

l=1 ηlδul
. The independence of the ηl implies

the complete randomness of the measure.

3) An ordinary component. Let νPP be a Poisson process intensity on the space Ψ×R+. Let {(v1, ξ1), (v2, ξ2), . . .}

be a draw from the Poisson process with intensity νPP. Then the ordinary component is the measure

µord =
∑∞

j=1 ξjδvj . Here, the complete randomness follows from properties of the Poisson process.

One observation from this componentwise breakdown of CRMs is that we can obtain a countably infinite

collection of random variables, the ξj , from the Poisson process component if νPP has infinite total mass (but

is still sigma-finite). Consider again the criterion that a CRM µ yield independent random variables when

applied to disjoint sets. In light of the observation about the collection {ξj}, this criterion may now be seen as

an extension of an independence assumption in the case of a finite set of random variables. We cover specific

examples next.

2.1 Beta process

The beta process (Hjort, 1990; Kim, 1999; Thibaux and Jordan, 2007) is an example of a CRM. It has the following

parameters: a mass parameter γ > 0, a concentration parameter θ > 0, a purely atomic measure Hfix =
∑

l ρlδul

with γρl ∈ (0, 1) for all l a.s., and a purely continuous probability measure Hord on Ψ. Note that we have

explicitly separated out the mass parameter γ so that, e.g., Hord is a probability measure; in Thibaux and

Jordan (2007), these two parameters are expressed as a single measure with total mass equal to γ. Typically,
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though, the normalized measure Hord is used separately from the mass parameter γ (as we will see below),

so the notational separation is convenient. Often the final two measure parameters are abbreviated as their

sum: H = Hfix + Hord.

Given these parameters, the beta process has the following description as a CRM:

1) The deterministic measure is uniformly zero.

2) The fixed atoms have locations (u1, . . . , uL) ∈ ΨL, where L is potentially infinite though typically finite.

Atom weight ηl has distribution

ηl
ind
∼ Beta (θγρl, θ(1 − γρl)) , (1)

where the ρl parameters are the weights in the purely atomic measure Hfix.

3) The ordinary component has Poisson process intensity Hord × ν, where ν is the measure

ν(db) = γθb−1(1 − b)θ−1 db, (2)

which is sigma-finite with finite mean. It follows that the number of atoms in this component will be

countably infinite with finite sum.

As in the original specification of Hjort (1990) and Kim (1999), Eq. (2) can be generalized by allowing θ

to depend on the Ψ coordinate. The homogeneous intensity in Eq. (2) seems to be used predominantly in

practice (Thibaux and Jordan, 2007; Fox et al., 2009) though, and we focus on it here for ease of exposition.

Nonetheless, we note that our results below extend easily to the non-homogeneous case.

The CRM is the sum of its components. Therefore, we may write a draw from the beta process as

B =
∞
∑

k=1

bkδψk
!

L
∑

l=1

ηlδul
+

∞
∑

j=1

ξjδvj , (3)

with atom locations equal to the union of the fixed atom and ordinary component atom locations {ψk}k =

{ul}L
l=1 ∪ {vj}∞j=1. Notably, B is a.s. discrete. We denote a draw from the beta process as B ∼ BP(θ, γ, H).

The provenance of the name “beta process” is now clear; each atom weight in the fixed atomic component is

beta-distributed, and the Poisson process intensity generating the ordinary component is that of an improper

beta distribution.

From the above description, the beta process provides a prior on a potentially infinite vector of weights, each

in (0, 1) and each associated with a corresponding parameter ψ ∈ Ψ. The potential countable infinity comes

from the Poisson process component. The weights in (0, 1) may be interpreted as probabilities, though not as

a distribution across the indices as we note that they need not sum to one. We will see in Section 4 that the

beta process is appropriate for feature modeling (Thibaux and Jordan, 2007; Griffiths and Ghahramani, 2006).

In this context, each atom, indexed by k, of B corresponds to a feature. The atom weights {bk}, which are

each in [0, 1] a.s., can be viewed as representing the frequency with which each feature occurs in the dataset.

The atom locations {ψk} represent parameters associated with the features that can be used in forming a

likelihood.
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In Section 5, we will show that an extension to the beta process called the three-parameter beta process has

certain desirable properties beyond the classic beta process, in particular its ability to generate power-law

behavior (Teh and Görür, 2009; Broderick et al., 2012), which roughly says that the number of features grows

as a power of the number of data points. In the three-parameter case, we introduce a discount parameter

α ∈ (0, 1) with θ > −α and γ > 0 such that:

1) There is again no deterministic component.

2) The fixed atoms have locations (u1, . . . , uL) ∈ ΨL, with L potentially infinite but typically finite. Atom

weight ηl has distribution ηl
ind
∼ Beta (θγρl − α, θ(1 − γρl) + α), where the ρl parameters are the weights

in the purely atomic measure Hfix and we now have the constraints θγρl − α, θ(1 − γρl) + α ≥ 0.

3) The ordinary component has Poisson process intensity Hord × ν, where ν is the measure:

ν(db) = γ
Γ(1 + θ)

Γ(1 − α)Γ(θ + α)
b−1−α(1 − b)θ+α−1 db.

Again, we focus on the homogeneous intensity ν as in the beta process case though it is straightforward to

allow θ to depend on coordinates in Ψ.

In this case, we again have the full process draw B as in Eq. (3), and we say B ∼ 3BP(α, θ, γ, H).

2.2 Full beta process

The specification that the atom parameters in the beta process be of the form θγρl and θ(1 − γρl) can be

unnecessarily constraining; θγρl−α and θ(1−γρl)+α are even more unwieldy in the power-law case. Indeed,

the classical beta distribution has two free parameters. Yet, in the beta process as described above, θ and γ

are determined as part of the Poisson process intensity, so there is essentially one free parameter for each of

the beta-distributed weights associated with the atoms (Eq. (1)). A related problematic issue is that the beta

process forces the two parameters in the beta distribution associated with each atom to sum to θ, which is

constant across all of the atoms.

One way to remove these restrictions is to allow θ = θ(ψ), a function of the position ψ ∈ Ψ as mentioned

above. However, we demonstrate in Appendix A that there are reasons to prefer a fixed concentration

parameter θ for the ordinary component; there is a fundamental relation between this parameter and similar

parameters in other common CRMs (e.g., the Dirichlet process, which we describe in Section 2.4). Moreover,

the concern here is entirely centered on the behavior of the fixed atoms of the process, and letting θ depend

on ψ retains the unusual—from a classical parametric perspective—form of the beta distribution in Eq. (1).

As an alternative, we provide a generalization of the beta process that more closely aligns with the classical

perspective in which we allow two general beta parameters for each atom. As we will see, this generalization

is natural, and indeed necessary, in considering conjugacy.

We thus define the full beta process (FBP) as having the following parameterization: a mass parameter γ > 0, a

concentration parameter θ > 0, a number of fixed atoms L ∈ {0, 1, 2, . . .}∪{∞} with locations (u1, . . . , uL) ∈ ΨL,
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two sets of strictly positive atom weight parameters {ρl}L
l=1 and {σl}L

l=1, and a purely continuous measure

Hord on Ψ. In this case, the atom weight parameters satisfy the simple condition ρl,σl > 0 for all l ∈ {1, . . . , L}.

This specification is the same as the beta process specification introduced above with the sole exception of a

more general parameterization for the fixed atoms. We obtain the following CRM:

1) There is no deterministic measure.

2) There are L fixed atoms with locations (u1, . . . , uL) ∈ ΨL and corresponding weights ηl
ind
∼ Beta (ρl,σl) .

3) The ordinary component has Poisson process intensity Hord×ν, where ν is the measure ν(db) = γθb−1(1−

b)θ−1 db.

As discussed above, we favor the homogeneous intensity ν in exposition but note the straightforward extension

to allow θ to depend on Ψ location.

We denote this CRM by B ∼ FBP(θ, γ,u, ρ, σ, Hord).

2.3 Gamma process

While the beta process provides a countably infinite vector of frequencies in (0, 1] with associated parameters

ψk, it is sometimes useful to have a countably infinite vector of positive, real-valued quantities that can be

used as rates rather than frequencies for features. We can obtain such a prior with the gamma process (Ferguson,

1973), a CRM with the following parameters: a concentration parameter θ > 0, a scale parameter c > 0, a purely

atomic measure Hfix =
∑

l ρlδul
with ∀l, ρl > 0, and a purely continuous measure Hord with support on Ψ.

Its description as a CRM is as follows (Thibaux, 2008):

1) There is no deterministic measure.

2) The fixed atoms have locations (u1, . . . , uL) ∈ ΨL, where L is potentially infinite but typically finite. Atom

weight ηl has distribution ηl
ind
∼ Gamma(θρl, c), where we use the shape-inverse-scale parameterization

of the gamma distribution and where the ρl parameters are the weights in the purely atomic measure

Hfix.

3) The ordinary component has Poisson process intensity Hord × ν, where ν is the measure:

ν(dg̃) = θg̃−1 exp (−cg̃) dg̃. (4)

As in the case of the beta process, the gamma process can be expressed as the sum of its components:

G̃ =
∑

k g̃kδψk
!

∑L
l=1 ηlδul

+
∑

j ξjδvj . We denote this CRM as G̃ ∼ ΓP(θ, c, H), for H = Hfix + Hord.

2.4 Dirichlet process

While the beta process has been used as a prior in featural models, the Dirichlet process is the classic Bayesian

nonparametric prior for clustering models (Ferguson, 1973; MacEachern and Müller, 1998; McCloskey, 1965;

Neal, 2000; West, 1992). The Dirichlet process itself is not a CRM; its atom weights, which represent cluster

frequencies, must sum to one and are therefore correlated. But it can be obtained by normalizing the gamma

process (Ferguson, 1973).
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In particular, using facts about the Poisson process (Kingman, 1993), one can check that, when there are

finitely many fixed atoms, we have G̃(Ψ) < ∞ a.s.; that is, the total mass of the gamma process is almost

surely finite despite having infinitely many atoms from the ordinary component. Therefore, normalizing the

process by dividing its weights by its total mass is well-defined. We thus can define a Dirichlet process as

G =
∑

k

gkδψk
! G̃/G̃(Ψ),

where G̃ ∼ ΓP(θ, 1, H), and where there are two parameters: a concentration parameter θ and a base measure H

with finitely many fixed atoms. Note that while we have chosen the scale parameter c = 1 in this construction,

the choice is in fact arbitrary for c > 0 and does not affect the G distribution (Eq. (4.15) and p. 83 of Pitman

(2006)).

From this construction, we see immediately that the Dirichlet process is almost surely atomic, a property

inherited from the gamma process. Moreover, not only are the weights of the Dirichlet process all contained

in (0, 1) but they further sum to one. Thus, the Dirichlet process may be seen as providing a probability

distribution on a countable set. In particular, this countable set is often viewed as a countable number of

clusters, with cluster parameters ψk.

3 CONJUGACY AND COMBINATORIAL CLUSTERING

In Section 2, we introduced CRMs and showed how a number of classical Bayesian nonparametric priors

can be derived from CRMs. These priors provide infinite-dimensional vectors of real values, which can be

interpreted as feature frequencies, feature rates, or cluster frequencies. To flesh out such interpretations we

need to couple these real-valued processes with discrete-valued processes that capture combinatorial structure.

In particular, viewing the weights of the beta process as feature frequencies, it is natural to consider binomial

and negative binomial models that transform these frequencies into binary values or nonnegative integer

counts. In this section we describe stochastic processes that achieve such transformations, again relying on

the CRM framework.

The use of a Bernoulli likelihood whose frequency parameter is obtained from the weights of the beta process

has been explored in the context of survival models by Hjort (1990) and Kim (1999) and in the context of

feature modeling by Thibaux and Jordan (2007). After reviewing the latter construction, we discuss a similar

construction based on the negative binomial process. Moreover, recalling that Thibaux and Jordan (2007),

building on work of Hjort (1990) and Kim (1999), have shown that the Bernoulli likelihood is conjugate to the

beta process, we demonstrate an analogous conjugacy result for the negative binomial process.

3.1 Bernoulli process

One way to make use of the beta process is to couple it to a Bernoulli process (Thibaux and Jordan, 2007). The

Bernoulli process, denoted BeP(H̃), has a single parameter, a base measure H̃; H̃ is any discrete measure with
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atom weights in (0, 1]. Although our focus will be on models in which H̃ is a draw from a beta process, as

a matter of the general definition of the Bernoulli process the base measure H̃ need not be a CRM or even

random—just as the Poisson distribution is defined relative to a parameter that may or may not be random

in general but which is sometimes given a gamma distribution prior. Since H̃ is discrete by assumption, we

may write

H̃ =
∞
∑

k=1

bkδψk
(5)

with bk ∈ (0, 1]. We say that the random measure I is drawn from a Bernoulli process, I ∼ BeP(H̃), if

I =
∑∞

k=1 ikδψk
with ik

ind
∼ Bern(bk) for k = 1, 2, . . .. That is, to form the Bernoulli process, we simply make a

Bernoulli random variable draw for every one of the (potentially countable) atoms of the base measure. This

definition of the Bernoulli process was proposed by Thibaux and Jordan (2007); it differs from a precursor

introduced by Hjort (1990) in the context of survival analysis.

One interpretation for this construction is that the atoms of the base measure H̃ represent potential features

of an individual, with feature frequencies equal to the atom weights and feature characteristics defined by

the atom locations. The Bernoulli process draw can be viewed as characterizing the individual by the set

of features that have weights equal to one. Suppose H̃ is derived from a Poisson process as the ordinary

component of a completely random measure and has finite mass; then the number of features exhibited by

the Bernoulli process, i.e. the total mass of the Bernoulli process draw, is a.s. finite. Thus the Bernoulli process

can be viewed as providing a Bayesian nonparametric model of sparse binary feature vectors.

Now suppose that the base measure parameter is a draw from a beta process with parameters θ > 0, γ > 0,

and base measure H . That is, B ∼ BP(θ, γ, H) and I ∼ BeP(B). We refer to the overall process as the beta-

Bernoulli process (BBeP). Suppose that the beta process B has a finite number of fixed atoms. Then we note

that the finite mass of the ordinary component of B implies that I has support on a finite set. That is, even

though B has a countable infinity of atoms, I has only a finite number of atoms. This observation is important

since, in any practical model, we will want an individual to exhibit only finitely many features.

Hjort (1990) and Kim (1999) originally established that the posterior distribution of B under a constrained

form of the BBeP was also a beta process with known parameters. Thibaux and Jordan (2007) went on to

extend this analysis to the full BBeP. We cite the result by Thibaux and Jordan (2007) here, using the completely

random measure notation established above.

Theorem 1 (The beta process prior is conjugate to the Bernoulli process likelihood). Let H be a measure

with atomic component Hfix =
∑L

l=1 ρlδul
and continuous component Hord. Let θ and γ be strictly positive scalars.

Consider N conditionally-independent draws from the Bernoulli process: In =
∑L

l=1 ifix,n,lδul
+

∑J
j=1 iord,n,jδvj

iid
∼

BeP(B), for n = 1, . . . , N with B ∼ BP(θ, γ, H). That is, the Bernoulli process draws have J atoms that are not located

at the atoms of Hfix. Then, B|I1, . . . , IN ∼ BP(θpost, γpost, Hpost) with θpost = θ+N , γpost = γ θ
θ+N , and Hpost,ord =

Hord. Further, Hpost,fix =
∑L

l=1 ρpost,lδul
+

∑J
j=1 ξpost,jδvj , where ρpost,l = ρl + (θpostγpost)−1

∑N
n=1 ifix,n,l and
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ξpost,j = (θpostγpost)−1
∑N

n=1 iord,n,j.

Note that the posterior beta-distributed fixed atoms are well-defined since ξpost,j > 0 follows from
∑N

n=1 iord,n,j >

0, which holds by construction. As shown by Thibaux and Jordan (2007), if the underlying beta process is

integrated out in the BBeP, we recover the Indian buffet process of Griffiths and Ghahramani (2006).

Since the FBP and BP only differ in the fixed atoms, where conjugacy reduces to the finite-dimensional

case, Theorem 1 immediately implies the following.

Corollary 2 (The FBP prior is conjugate to the Bernoulli process likelihood).

Assume the conditions of Theorem 1, and consider N conditionally-independent Bernoulli process draws: In =
∑L

l=1 ifix,n,lδul
+

∑J
j=1 iord,n,jδvj

iid
∼ BeP(B), for n = 1, . . . , N with B ∼ FBP(θ, γ,u, ρ, σ, Hord) and {ρl}L

l=1 and {σl}L
l=1 strictly

positive scalars. Then, B|I1, . . . , IN ∼ FBP(θpost, γpost,upost, ρpost, σpost, Hpost,ord), for θpost = θ + N , γpost =

γ θ
θ+N , Hpost,ord = Hord, and L + J fixed atoms, {upost,l′} = {ul}L

l=1 ∪ {vj}J
j=1. The ρpost and σpost parameters

satisfy ρpost,l = ρl+
∑N

n=1 ifix,n,l and σpost,l = σl+N−
∑N

n=1 ifix,n,l for l ∈ {1, . . . , L} and ρpost,L+j =
∑N

n=1 iord,n,j

and σpost,L+j = θ + N −
∑N

n=1 iord,n,j for j ∈ {1, . . . , J}.

The usefulness of the FBP becomes apparent in the posterior parameterization; the distributions associated

with the fixed atoms more closely mirror the classical parametric conjugacy between the Bernoulli distribution

and the beta distribution. This is an issue of convenience in the case of the BBeP, but it is more significant in

the case of the negative binomial process, as we show in the following section, where conjugacy is preserved

only in the FBP case (and not for the traditional, more constrained BP).

3.2 Negative binomial process

The Bernoulli distribution is not the only distribution that yields conjugacy when coupled to the beta distri-

bution in the classical parametric setting; conjugacy holds for the negative binomial distribution as well. As

we show in this section, this result can be extended to stochastic processes via the CRM framework.

We define the negative binomial process as a CRM with two parameters: a shape parameter r > 0 and a

discrete base measure H̃ =
∑

k bkδψk
whose weights bk take values in (0, 1]. As in the case of the Bernoulli

process, H̃ need not be random at this point. Since H̃ is discrete, we again have a representation for H̃ as in

Eq. (5), and we say that the random measure I is drawn from a negative binomial process, I ∼ NBP(r, H̃),

if I =
∑∞

k=1 ikδψk
with ik

ind
∼ NB(r, bk) for k = 1, 2, . . .. That is, the negative binomial process is formed

by simply making a single draw from a negative binomial distribution at each of the (potentially countably

infinite) atoms of H̃ . This construction generalizes the geometric process studied by Thibaux (2008).

As a Bernoulli process draw can be interpreted as assigning a set of features to a data point, so can we

interpret a draw from the negative binomial process as assigning a set of feature counts to a data point. In

particular, as for the Bernoulli process, we assume that each data point has its own draw from the negative

binomial process. Every atom with strictly positive mass in this draw corresponds to a feature that is exhibited
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by this data point. Moreover, the size of the atom, which is a positive integer by construction, dictates how

many times the feature is exhibited by the data point. For example, if the data point is a document, and

each feature represents a particular word, then the negative binomial process draw would tell us how many

occurrences of each word there are in the document.

If the base measure for a negative binomial process is a beta process, we say that the combined process

is a beta-negative binomial process (BNBP). If the base measure is a three-parameter beta process, we say that

the combined process is a three-parameter beta-negative binomial process (3BNBP). When either the BP or 3BP

has a finite number of fixed atoms, the ordinary component of the BP or 3BP still has an infinite number of

atoms, but the number of atoms in the negative binomial process is a.s. finite. We prove this fact and more

in Section 5.

We now suppose that the base measure for the negative binomial process is a draw B from an FBP with pa-

rameters θ > 0, γ > 0, {ul}L
l=1, {ρl}L

l=1, {σl}L
l=1, and Hord. The overall specification is B ∼ FBP(θ, γ,u, ρ, σ, Hord)

and I ∼ NBP(r, B). The following theorem characterizes the posterior distribution for this model. The proof

is given in Appendix E.

Theorem 3 (The FBP prior is conjugate to the negative binomial process likelihood.). Let θ and γ be strictly

positive scalars. Let (u1, . . . , uL) ∈ ΨL. Let the members of {ρl}L
l=1 and {σl}L

l=1 be strictly positive scalars. Let

Hord be a continuous measure on Ψ. Consider the following model for N draws from a negative binomial process:

In =
∑L

l=1 ifix,n,lδul
+

∑J
j=1 iord,n,jδvj

iid
∼ NBP(B), for n = 1, . . . , N with B ∼ FBP(θ, γ,u, ρ, σ, Hord). That is,

the negative binomial process draws have J atoms that are not located at the atoms of Hfix. Then, B|I1, . . . , IN ∼

FBP(θpost, γpost,upost, ρpost, σpost, Hpost,ord) for θpost = θ + Nr, γpost = γ θ
θ+Nr , Hpost,ord = Hord, and L + J

fixed atoms, {upost,l} = {ul}L
l=1 ∪ {vj}J

j=1. The ρpost and σpost parameters satisfy ρpost,l = ρl +
∑N

n=1 ifix,n,l and

σpost,l = σl + Nr for l ∈ {1, . . . , L} and ρpost,L+j =
∑N

n=1 iord,n,j and σpost,L+j = θ + Nr for j ∈ {1, . . . , J}.

For the posterior measure to be a BP, we must have ρpost,k + σpost,k = θpost for all k, but this equality

can fail to hold even when the prior is a BP. For instance, whenever there are new fixed atom locations in

the posterior relative to the prior, this equality will fail. So the BP is not conjugate to the negative binomial

process likelihood.

4 MIXTURES AND ADMIXTURES

We now assemble the pieces that we have introduced and consider Bayesian nonparametric models of ad-

mixture. Recall that the basic idea of an admixture is that an individual (e.g., an organism, a document, or an

image) can belong simultaneously to multiple classes. This can be represented by associating a binary-valued

vector with each individual; the vector has value one in components corresponding to classes to which the

individual belongs and zero in components corresponding to classes to which the individual does not belong.

More generally, we wish to remove the restriction to binary values and consider a general notion of admixture
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in which an individual is represented by a nonnegative, integer-valued vector. We refer to such vectors as

feature vectors, and view the components of such vectors as counts representing the number of times the

corresponding feature is exhibited by a given individual. For example, a document may exhibit a given word

zero or more times.

As we discussed in Section 1, the standard approach to modeling an admixture is to assume that there is

an exchangeable set of data associated with each individual and to assume that these data are drawn from a

finite mixture model with individual-specific mixing proportions. There is another way to view this process,

however, that opens the door to a variety of extensions. Note that to draw a set of data from a mixture, we can

first choose the number of data points to be associated with each mixture component (a vector of counts) and

then draw the data point values independently from each selected mixture component. That is, we randomly

draw nonnegative integers ik for each mixture component (or cluster) k. Then, for each k and each n = 1, . . . , ik,

we draw a data point xk,n ∼ F (ψk), where ψk is the parameter associated with mixture component k. The

overall collection of data for this individual is {xk,n}k,n, with N =
∑

k ik total points. One way to generate

data according to this decomposition is to make use of the NBP. We draw I =
∑

k ikδψk
∼ NBP(r, B), where

B is drawn from a beta process, B ∼ BP(θ, γ, H). The overall model is a BNBP mixture model for the counts,

coupled to a conditionally independent set of draws for the individual’s data points {xk,n}k,n.

An alternative approach in the same spirit is to make use of a gamma process (to obtain a set of rates) that

is coupled to a Poisson likelihood process (PLP)3 to convert the rates into counts (Titsias, 2008). In particular,

given a base measure G̃ =
∑

k g̃kδψk
, let I ∼ PLP(G̃) denote I =

∑

k ikδψk
, with ik ∼ Pois(g̃k). We then

consider a gamma Poisson likelihood process (ΓPLP) as follows: G̃ ∼ ΓP(θ, c, H), I =
∑

k ikδψk
∼ PLP(G̃), and

xk,n ∼ F (ψk), for n = 1, . . . , ik and each k.

Both the BNBP approach and the ΓPLP approach deliver a random measure, I =
∑

k ikδψk
, as a repre-

sentation of an admixed individual.4 While the atom locations, (ψk), are subsequently used to generate data

points, the pattern of admixture inheres in the vector of weights (ik). It is thus natural to view this vector as

the representation of an admixed individual. Indeed, in some problems such a weight vector might itself be

the observed data. In other problems, the weights may be used to generate data in some more complex way

that does not simply involve conditionally i.i.d. draws.

This perspective on admixture—focusing on the vector of weights (ik) rather than the data associated with

an individual—is also natural when we consider multiple individuals. The main issue becomes that of linking

these vectors among multiple individuals; this linking can readily be achieved in the Bayesian formalism via a

hierarchical model. In the remainder of this section we consider examples of such hierarchies in the Bayesian

nonparametric setting.

Let us first consider the standard approach to admixture in which an individual is represented by a set of

3. We use the terminology “Poisson likelihood process” to distinguish a particular process with Poisson distributions affixed to each
atom of some base distribution from the more general Poisson point process of Kingman (1993).

4. We elaborate on the parallels and deep connections between the BNBP and ΓPLP in Appendix A.
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draws from a mixture model. For each individual we need to draw a set of mixing proportions, and these

mixing proportions need to be coupled among the individuals. This can be achieved via a prior known as the

hierarchical Dirichlet process (HDP) (Teh et al., 2006):

G0 ∼ DP(θ, H)

Gd =
∑

k

gd,kδψk

ind
∼ DP(θd, G0), d = 1, 2, . . . ,

where the index d ranges over the individuals. Note that the global measure G0 is a discrete random probability

measure, given that it is drawn from a Dirichlet process. In drawing the individual-specific random measure

Gd at the second level, we therefore resample from among the atoms of G0 and do so according to the weights

of these atoms in G0. This shares atoms among the individuals and couples the individual-specific mixing

proportions gd,k. We complete the model specification as follows:

zd,n
iid
∼ (gd,k)k for n = 1, . . . , Nd

xd,n
ind
∼ F (ψzd,n

),

which draws an index zd,n from the discrete distribution (gd,k)k and then draws a data point xd,n from a

distribution indexed by zd,n. For instance, (gd,k) might represent topic proportions in document d; ψzd,n
might

represent a topic, i.e. a distribution over words; and xd,n might represent the nth word in the dth document.

In the HDP, Nd is known for each d and is part of the model specification. We propose to instead take

the featural approach as follows; we draw an individual-specific set of counts from an appropriate stochastic

process and then generate the appropriate number of data points for each individual. Then the number of data

points for each individual is itself a random variable and potentially coupled across individuals. In particular,

one might consider the following conditional independence hierarchy involving the NBP:

B0 ∼ BP(θ, γ, H) (6)

Id =
∑

k

id,kδψk

ind
∼ NBP(rd, B0),

where we first draw a random measure B0 from the beta process and then draw multiple times from an NBP

with base measure given by B0.

Although this conditional independence hierarchy does couple count vectors across multiple individuals,

it uses a single collection of mixing proportions, the atom weights of B0, for all individuals. By contrast,

the HDP draws individual-specific mixing proportions from an underlying set of population-wide mixing

proportions—and then converts these mixing proportions into counts. We can model individual-specific, but

coupled, mixing proportions within an NBP-based framework by simply extending the hierarchy by one level:

B0 ∼ BP(θ, γ, H) (7)

Bd
ind
∼ BP(θd, γd, B0/B0(Ψ))
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Id =
∑

k

id,kδψk

ind
∼ NBP(rd, Bd).

Since B0 is almost surely an atomic measure, the atoms of each Bd will coincide with those of B0 almost surely.

The weights associated with these atoms can be viewed as individual-specific feature probability vectors. We

refer to this prior as the hierarchical beta-negative binomial process (HBNBP).

We also note that it is possible to consider additional levels of structure in which a population is decomposed

into subpopulations and further decomposed into subsubpopulations and so on, bottoming out in a set of

individuals. This tree structure can be captured by repeated draws from a set of beta processes at each level

of the tree, conditioning on the beta process at the next highest level of the tree. Hierarchies of this form have

previously been explored for beta-Bernoulli processes by Thibaux and Jordan (2007).

Comparison with Zhou et al. (2012). Zhou et al. (2012) have independently proposed a (non-hierarchical)

beta-negative binomial process prior

B0 =
∑

k

bkδrk,ψk
∼ BP(θ, γ, R × H)

Id =
∑

k

id,kδψk
where id,k

ind
∼ NB(rk, bk),

where R is a continuous finite measure over R+ used to associate a distinct failure parameter rk with each

beta process atom. Note that each individual is restricted to use the same failure parameters and the same beta

process weights under this model. In contrast, our BNBP formulation (6) offers the flexibility of differentiating

individuals by assigning each its own failure parameter rd. Our HBNBP formulation (7) further introduces

heterogeneity in the individual-specific beta process weights by leveraging the hierarchical beta process. We

will see that these modeling choices are particularly well-suited for admixture modeling in the coming sections.

Zhou et al. (2012) use their prior to develop a Poisson factor analysis model for integer matrix factorization,

while our primary motivation is mixture and admixture modeling. Our differing models and motivating

applications have led to different challenges and algorithms for posterior inference. While Zhou et al. (2012)

develop an inexact inference scheme based on a finite approximation to the beta process, we develop both an

exact Markov chain Monte Carlo sampler and a finite approximation sampler for posterior inference under

the HBNBP (see Section 7). Finally, unlike Zhou et al. (2012), we provide an extensive theoretical analysis of

our priors including a proof of the conjugacy of the full beta process and the NBP (given in Section 3) and

an asymptotic analysis of the BNBP (see Section 5).

5 ASYMPTOTICS

An important component of choosing a Bayesian prior is verifying that its behavior aligns with our beliefs

about the behavior of the data-generating mechanism. In models of clustering, a particular measure of interest

is the diversity—the dependence of the number of clusters on the number of data points. In speaking of the

diversity, we typically assume a finite number of fixed atoms in a process derived from a CRM, so that
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asymptotic behavior is dominated by the ordinary component.

It has been observed in a variety of different contexts that the number of clusters in a dataset grows as a

power law of the size of the data; that is, the number of clusters is asymptotically proportional to the number

of data points raised to some positive power (Gnedin et al., 2007). Real-world examples of such behavior are

provided by Newman (2005) and Mitzenmacher (2004).

The diversity has been characterized for the Dirichlet process (DP) and a two-parameter extension to the

Dirichlet process known as the Pitman-Yor process (PYP) (Pitman and Yor, 1997), with extra parameter α ∈ (0, 1)

and concentration parameter θ > −α. We will see that while the number of clusters generated according to a

DP grows as a logarithm of the size of the data, the number of clusters generated according to a PYP grows

as a power of the size of the data. Indeed, the popularity of the Pitman-Yor process—as an alternative prior

to the Dirichlet process in the clustering domain—can be attributed to this power-law growth (Goldwater

et al., 2006; Teh, 2006; Wood et al., 2009). In this section, we derive analogous asymptotic results for the BNBP

treated as a clustering model.

We first highlight a subtle difference between our model and the Dirichlet process. For a Dirichlet process,

the number of data points N is known a priori and fixed. An advantage of our model is that it models

the number of data points N as a random variable and therefore has potentially more predictive power in

modeling multiple populations. We note that a similar effect can be achieved for the Dirichlet process by using

the gamma process for feature modeling as described in Section 4 rather than normalizing away the mass that

determines the number of observations. However, there is no such unnormalized completely random measure

for the PYP (Pitman and Yor, 1997). We thus treat N as fixed for the DP and PYP, in which case the number

of clusters K(N) is a function of N . On the other hand, the number of data points N(r) depends on r in the

case of the BNBP, and the number of clusters K(r) does as well. We also define Kj(N) to be the number of

clusters with exactly j elements in the case of the DP and PYP, and we define Kj(r) to be the number of

clusters with exactly j elements in the BNBP case.

For the DP and PYP, K(N) and Kj(N) are random even though N is fixed, so it will be useful to also

define their expectations:

Φ(N) ! E[K(N)], Φj(N) ! E[Kj(N)]. (8)

In the BNBP and 3BNBP cases, all of K(r), Kj(r), and N(r) are random. So we further define

Φ(r) ! E[K(r)], Φj(r) ! E[Kj(r)], ξ(r) ! E[N(r)]. (9)

We summarize the results that we establish in this section in Table 1, where we also include comparisons

to existing results for the DP and PYP.5 The full statements of our results, from which the table is derived,

can be found in Appendix C, and proofs are given in Appendix D.

5. The reader interested in power laws may also note that the generalized gamma process is a completely random measure that, when
normalized, provides a probability measure for clusters that has asymptotic behavior similar to the PYP; in particular, the expected
number of clusters grows almost surely as a power of the size of the data (Lijoi et al., 2007).
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TABLE 1: Let N be the number of data points when this number is fixed and ξ(r) be the expected number of
data points when N is random. Let Φ(N), Φj(N), Φ(r), and Φj(r) be the expected number of clusters under
various scenarios and defined as in Eqs. (8) and (9). The upper part of the table gives the asymptotic behavior
of Φ up to a multiplicative constant, and the bottom part of the table gives the multiplicative constants. For
the DP, θ > 0. For the PYP, α ∈ (0, 1) and θ > −α. For the BNBP, θ > 1. For the 3BNBP, α ∈ (0, 1) and
θ > 1 − α.

Process Expected number of clusters Expected number of clusters of size j
Function of N or ξ(r)

DP log(N) 1
PYP Nα Nα

BNBP log(ξ(r)) 1
3BNBP (ξ(r))α (ξ(r))α

Constants
DP θ θj−1

PYP Γ(θ+1)
αΓ(θ+α)

Γ(θ+1)
Γ(1−α)Γ(θ+α)

Γ(j−α)
Γ(j+1)

BNBP γθ γθj−1

3BNBP γ1−α

α
Γ(θ+1)
Γ(θ+α)

(

θ+α−1
θ

)α
γ1−α Γ(θ+1)

Γ(1−α)Γ(θ+α)
Γ(j−α)
Γ(j+1)

(

θ+α−1
θ

)α

The table shows, for example, that for the DP, Φ(N) ∼ θ log(N) as N → ∞, and, for the BNBP, Φj(r) ∼ γθj−1

as r → ∞ (i.e., constant in r). The result for the expected number of clusters for the DP can be found in Korwar

and Hollander (1973); results for the expected number of clusters for both the DP and PYP can be found in

Pitman (2006, Eq. (3.24) on p. 69 and Eq. (3.47) on p. 73). Note that in all cases the expected counts of clusters

of size j are asymptotic expansions in terms of r for fixed j and should not be interpreted as asymptotic

expansions in terms of j.

We conclude that, just as for the Dirichlet process, the BNBP can achieve both logarithmic cluster number

growth in the basic model and power law cluster number growth in the expanded, three-parameter model.

6 SIMULATION

Our theoretical results in Section 5 are supported by simulation results, summarized in Figure 1; in particular,

our simulation corroborated the existence of power laws in the three-parameter beta process case examined in

Section 5. The simulation was performed as follows. For values of the negative binomial parameter r evenly

spaced between 1 and 1,001, we generated beta process weights according to a beta process (or three-parameter

beta process) using a stick-breaking representation (Paisley et al., 2010; Broderick et al., 2012). For each of the

resulting atoms, we simulated negative binomial draws to arrive at a sample from a BNBP. For each such

BNBP, we can count the resulting total number of data points N and total number of clusters K . Thus, each

r gives us an (r, N, K) triple.

In the simulation, we set the mass parameter γ = 3. We set the concentration parameter θ = 3; in particular,

we note that the analysis in Section 5 implies that we should always have θ > 1. Finally, we ran the simulation

for both the α = 0 case, where we expect no power law behavior, and the α = 0.5 case, where we do expect

power law behavior. The results are shown in Figure 1. Is this figure, we scatter plot the (r, K) tuples from

the generated (r, N, K) triples on the left and plot the (N, K) tuples on the right.
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In the left plot, the upper black points represent the simulation with α = 0.5, and the lower blue data points

represent the α = 0 case. The lower red line illustrates the asymptotic theoretical result corresponding to the

α = 0 case (Lemma 12 in Appendix C), and we can see that the anticipated logarithmic growth behavior agrees

with our simulation. The upper red line illustrates the theoretical result for the α = 0.5 case (Lemma 13 in

Appendix C). The agreement between simulation and theory here demonstrates that, in contrast to the α = 0

case, the α = 0.5 case exhibits power law growth in the number of clusters K as a function of the negative

binomial parameter r.

Our simulations also bear out that the expectation of the random number of data points N increases linearly

with r (Lemmas 10 and 11 in Appendix C). We see, then, on the right side of Figure 1 the behavior of the

number of clusters K now plotted as a function of N . As expected given the asymptotics of the expected

value of N , the behavior in the right plot largely mirrors the behavior in the left plot. Just as in the left plot,

the lower red line (Theorem 16 in Appendix C) shows the anticipated logarithmic growth of K and N when

α = 0. And the upper red line (Theorem 17 in Appendix C) shows the anticipated power law growth of K

and N when α = 0.5.

We can see the parallels with the DP and PYP here. Clusters generated from the Dirichlet process (i.e.,

Pitman-Yor process with α = 0) exhibit logarithmic growth of the expected number of clusters K as the

(deterministic) number of data points N grows. And clusters generated from the Pitman-Yor process with

α ∈ (0, 1) exhibit power law behavior in the expectation of K as a function of (fixed) N . So too do we see

that the BNBP, when applied to clustering problems, yields asymptotic growth similar to the DP and that

the 3BNBP yields asymptotic growth similar to the PYP.

7 POSTERIOR INFERENCE

In this section we present posterior inference algorithms for the HBNBP. We focus on the setting in which,

for each individual d, there is an associated exchangeable sequence of observations (xd,n)Nd

n=1. We seek to

infer both the admixture component responsible for each observation and the parameter ψk associated with

each component. Hereafter, we let zd,n denote the unknown component index associated with xd,n, so that

xd,n ∼ F (ψzd,n
).

Under the HBNBP admixture model introduced in Section 4, the posterior over component indices and

parameters has the form

p(z·,·, ψ· | x·,·, Θ) ∝ p(z·,·, ψ·,b0,·,b·,· | x·,·, Θ),

where Θ ! (F, H, γ0, θ0, γ·, θ·, r·) is the collection of all fixed hyperparameters. As is the case with HDP

admixtures (Teh et al., 2006) and earlier hierarchical beta process featural models (Thibaux and Jordan, 2007),

the posterior of the HBNBP admixture cannot be obtained in analytical form due to complex couplings in

the marginal p(x·,· | Θ). We therefore develop Gibbs sampling algorithms (Geman and Geman, 1984) to draw

samples of the relevant latent variables from their joint posterior.
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Fig. 1: For each r evenly spaced between 1 and 1,001, we simulate (random) values of the number of data
points N and number of clusters K from the BNBP and 3BNBP. In both plots, we have mass parameter
γ = 3 and concentration parameter θ = 3. On the left, we see the number of clusters K as a function of the
negative binomial parameter r (see Lemma 12 and Lemma 13 in Appendix C); on the right, we see the number
of clusters K as a function of the (random) number of data points N (see Theorem 16 and Theorem 17 in
Appendix C). In both plots, the upper black points show simulation results for the case α = 0.5, and the
lower blue points show α = 0. Red lines indicate the theoretical asymptotic mean behavior we expect from
Section 5.

A challenging aspect of inference in the nonparametric setting is the countable infinitude of component

parameters and the countably infinite support of the component indices. We develop two sampling algorithms

that cope with this issue in different ways. In Section 7.1, we use slice sampling to control the number of

components that need be considered on a given round of sampling and thereby derive an exact Gibbs sampler

for posterior inference under the HBNBP admixture model. In Section 7.2, we describe an efficient alternative

sampler that makes use of a finite approximation to the beta process. Throughout we assume that the base

measure H is continuous. We note that neither procedure requires conjugacy between the base distribution

H and the data-generating distribution F .

7.1 Exact Gibbs slice sampler

Slice sampling (Damien et al., 1999; Neal, 2003) has been successfully employed in several Bayesian nonpara-

metric contexts, including Dirichlet process mixture modeling (Walker, 2007; Papaspiliopoulos, 2008; Kalli

et al., 2011) and beta process feature modeling (Teh et al., 2007). The key to its success lies in the introduction

of one or more auxiliary variables that serve as adaptive truncation levels for an infinite sum representation

of the stochastic process.

This adaptive truncation procedure proceeds as follows. For each observation associated with individual d,

we introduce an auxiliary variable ud,n with conditional distribution

ud,n ∼ Unif(0, ζd,zd,n
),
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where (ζd,k)∞k=1 is a fixed positive sequence with limk→∞ ζd,k = 0. To sample the component indices, we recall

that a negative binomial draw id,k ∼ NB(rd, bd,k) may be represented as a gamma-Poisson mixture:

λd,k ∼ Gamma

(

rd,
1 − bd,k

bd,k

)

id,k ∼ Pois(λd,k).

We first sample λd,k from its full conditional. By gamma-Poisson conjugacy, this has the simple form

λd,k ∼ Gamma (rd + id,k, 1/bd,k) .

We next note that, given λd,· and the total number of observations associated with individual d, the

cluster sizes id,k may be constructed by sampling each zd,n independently from λd,·/
∑

k λd,k and setting

id,k =
∑

n I(zd,n = k). Hence, conditioned on the number of data points Nd, the component parameters ψk,

the auxiliary variables λd,k, and the slice-sampling variable ud,n, we sample the index zd,n from a discrete

distribution with

P(zd,n = k) ∝ F (dxd,n | ψk)
I(ud,n ≤ ζd,k)

ζd,k
λd,k

so that only the finite set of component indices {k : ζd,k ≥ ud,n} need be considered when sampling zd,n.

Let Kd ! max{k : ∃n s.t. ζd,k ≥ ud,n} and K ! maxd Kd. Then, on a given round of sampling, we need only

explicitly represent λd,k and bd,k for k ≤ Kd and ψk and b0,k for k ≤ K . The simple Gibbs conditionals for

bd,k and ψk can be found in Appendix F.1. To sample the shared beta process weights b0,k, we leverage the

size-biased construction of the beta process introduced by Thibaux and Jordan (2007):

B0 =
∞
∑

m=0

Cm
∑

i=1

b0,m,iδψm,i,· ,

where

Cm
ind
∼ Pois

(

θ0γ0
θ0 + m

)

, b0,m,i
ind
∼ Beta(1, θ0 + m), and ψm,i,·

iid
∼ H,

and we develop a Gibbs slice sampler for generating samples from its posterior. The details are deferred to

Appendix F.1.

7.2 Finite approximation Gibbs sampler

An alternative to the size-biased construction of B0 is a finite approximation to the beta process with a fixed

number of components, K :

b0,k
iid
∼ Beta(θ0γ0/K, θ0(1 − γ0/K)), ψk

iid
∼ H, k ∈ {1, . . . , K}. (10)

It is known that, when H is continuous, the distribution of
∑K

k=1 b0,kδψk
converges to BP(θ0, γ0, H) as the

number of components K → ∞ (see the proof of Theorem 3.1 by Hjort (1990) with the choice A0(t) = γ). Hence,

we may leverage the beta process approximation (10) to develop an approximate posterior sampler for the

HBNBP admixture model with an approximation level K that trades off between computational efficiency and
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Fig. 2: Number of admixture components used by the finite approximation sampler with K = 100 (left) and
the exact Gibbs slice sampler (right) on each iteration of HBNBP admixture model posterior inference. We use
a standard “toy bars” dataset with ten underlying admixture components (cf. Griffiths and Steyvers (2004)).
We declare a component to be used by a sample if the sampled beta process weight, b0,k, exceeds a small
threshold. Both the exact and the finite approximation sampler find the correct underlying structure, while
the finite sampler attempts to innovate more because of the larger number of proposal components available
to the data in each iteration.

fidelity to the true posterior. We defer the detailed conditionals of the resulting Gibbs sampler to Appendix F.3

and briefly compare the behavior of the finite and exact samplers on a toy dataset in Figure Figure 2. We note

finally that the beta process approximation in Eq. (10) also gives rise to a new finite admixture model that

may be of interest in its own right; we explore the utility of this HBNBP approximation in Section 9.

8 DOCUMENT TOPIC MODELING

In the next two sections, we show how the HBNBP admixture model and its finite approximation can be used

as practical building blocks for more complex supervised and unsupervised inferential tasks.

We first consider the unsupervised task of document topic modeling, in which each individual d is a document

containing Nd observations (words) and each word xd,n belongs to a vocabulary of size V . The topic modeling

framework is an instance of admixture modeling in which we assume that each word of each document is

generated from a latent admixture component or topic, and our goal is to infer the topic underlying each word.

In our experiments, we let Hord, the Ψ dimension of the ordinary component intensity measure, be a

Dirichlet distribution with parameter η1 for η = 0.1 and 1 a V -dimensional vector of ones and let F (ψk)

be Mult(1,ψk). We use the setting (γ0, θ0, γd, θd) = (3, 3, 1, 10) for the global and document-specific mass and

concentration parameters and set the document-specific negative binomial shape parameter according to the

heuristic rd = Nd(θ0 − 1)/(θ0γ0). We arrive at this heuristic by matching Nd to its expectation under a non-

hierarchical BNBP model and solving for rd:

E[Nd] = rdE
[

∑∞

k=1
bd,k/(1 − bd,k)

]

= γ0θ0/(θ0 − 1).

When applying the exact Gibbs slice sampler, we let the slice sampling decay sequence follow the same pattern

across all documents: ζd,k = 1.5−k.
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TABLE 2: The number of incidents claimed by each organization in the WITS perpetrator identification
experiment.

Group ID Perpetrator # Claimed Incidents
1 taliban 2647
2 al-aqsa 417
3 farc 76
4 izz al-din al-qassam 478
5 hizballah 89
6 al-shabaab al-islamiya 426
7 al-quds 505
8 abu ali mustafa 249
9 al-nasser salah al-din 212

10 communist party of nepal (maoist) 291

8.1 Worldwide Incidents Tracking System

We report results on the Worldwide Incidents Tracking System (WITS) dataset.6 This dataset consists of reports

on 79,754 terrorist attacks from the years 2004 through 2010. Each event contains a written summary of the

incident, location information, victim statistics, and various binary fields such as “assassination,” “IED,” and

“suicide.” We transformed each incident into a text document by concatenating the summary and location

fields and then adding further words to account for other, categorical fields: e.g., an incident with seven

hostages would have the word “hostage” added to the document seven times. We used a vocabulary size of

V = 1,048 words.

Perpetrator Identification. Our experiment assesses the ability of the HBNBP admixture model to discrim-

inate among incidents perpetrated by different organizations. We first grouped documents according to the

organization claiming responsibility for the reported incident. We considered 5,390 claimed documents in

total distributed across the ten organizations listed in Table 2. We removed all organization identifiers from all

documents and randomly set aside 10% of the documents in each group as test data. Next, for each group, we

trained an independent, organization-specific HBNBP model on the remaining documents in that group by

drawing 10,000 MCMC samples. We proceeded to classify each test document by measuring the likelihood of

the document under each trained HBNBP model and assigning the label associated with the largest likelihood.

The resulting confusion matrix across the ten candidate organizations is displayed in Table 3a. Results are

reported for the exact Gibbs slice sampler; performance under the finite approximation sampler is nearly

identical.

For comparison, we carried out the same experiment using the more standard HDP admixture model in

place of the HBNBP. For posterior inference, we used the HDP block sampler code of Yee Whye Teh7 and

initialized the sampler with 100 topics and topic hyperparameter η = 0.1 (all remaining parameters were set

to their default values). For each organization, we drew 250,000 MCMC samples and kept every twenty-fifth

sample for evaluation. The confusion matrix obtained through HDP modeling is displayed in Table 3b. We see

6. https://wits.nctc.gov
7. http://www.gatsby.ucl.ac.uk/∼ywteh/research/npbayes/npbayes-r1.tgz

http://www.gatsby.ucl.ac.uk/~ywteh/research/npbayes/npbayes-r1.tgz
https://wits.nctc.gov
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TABLE 3: Confusion matrices for WITS perpetrator identification. See Table 2 for the organization names
matching each group ID.

(a) HBNBP Confusion Matrix

Predicted Groups
1 2 3 4 5 6 7 8 9 10

A
ct

u
al

G
ro

u
p

s
1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.38 0.00 0.02 0.00 0.00 0.29 0.29 0.02 0.00
3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.54 0.00 0.00 0.15 0.27 0.04 0.00
5 0.11 0.33 0.00 0.11 0.44 0.00 0.00 0.00 0.00 0.00
6 0.02 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00
7 0.00 0.10 0.00 0.06 0.02 0.00 0.48 0.30 0.04 0.00
8 0.00 0.04 0.00 0.00 0.00 0.00 0.16 0.76 0.04 0.00
9 0.00 0.10 0.00 0.05 0.10 0.00 0.29 0.43 0.05 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

(b) HDP Confusion Matrix

Predicted Groups
1 2 3 4 5 6 7 8 9 10

A
ct

u
al

G
ro

u
p

s

1 0.46 0.00 0.26 0.00 0.03 0.23 0.00 0.00 0.00 0.01
2 0.00 0.31 0.02 0.02 0.00 0.00 0.29 0.36 0.00 0.00
3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.52 0.04 0.00 0.06 0.31 0.06 0.00
5 0.11 0.00 0.00 0.00 0.44 0.00 0.11 0.11 0.11 0.11
6 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
7 0.00 0.10 0.00 0.04 0.00 0.00 0.38 0.42 0.06 0.00
8 0.00 0.04 0.00 0.00 0.00 0.00 0.08 0.84 0.04 0.00
9 0.00 0.05 0.00 0.10 0.00 0.00 0.24 0.62 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

that, overall, HBNBP modeling leads to more accurate identification of perpetrators than its HDP counterpart.

Most notably, the HDP wrongly attributes more than half of all documents from group 1 (taliban) to group

3 (farc) or group 6 (al-shabaab al-islamiya). We hypothesize that the HBNBP’s superior discriminative power

stems from its ability to distinguish between documents both on the basis of word frequency and on the basis

of document length.

We would expect the HBNBP to have greatest difficulty discriminating among perpetrators when both word

usage frequencies and document length distributions are similar across groups. To evaluate the extent to which

this occurs in our perpetrator identification experiment, for each organization, we plotted the density histogram

of document lengths in Figure 3a and the heat map displaying word usage frequency across all associated

documents in Figure 3b. We find that the word frequency patterns are nearly identical across groups 2, 7, 8,

and 9 (al-aqsa, al-quds, abu ali mustafa, and al-nasser salah al-din, respectively) and that the document length

distributions of these four groups are all well aligned. As expected, the majority of classification errors made

by our HBNBP models result from misattribution among these same four groups. The same group similarity

structure is evidenced in a display of the ten most probable words from the most probable HBNBP topic

for each group, Table 4. There, we also find an intuitive summary of the salient regional and methodological

vocabulary associated with each organization.
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TABLE 4: The ten most probable words from the most probable topic in the final MCMC sample of each group
in the WITS perpetrator identification experiment. The topic probability is given in parentheses. See Table 2
for the organization names matching each group ID.

HBNBP: Top topic per organization

group 1 (0.29) afghanistan, assailants, claimed, responsibility, armedattack, fired, police, victims, armed, upon
group 2 (0.77) israel, assailants, armedattack, responsibility, fired, claimed, district, causing, southern, damage
group 3 (0.95) colombia, victims, facility, wounded, armed, claimed, forces, revolutionary, responsibility, assailants
group 4 (0.87) israel, fired, responsibility, claimed, armedattack, causing, injuries, district, southern, assailants
group 5 (0.95) victims, wounded, facility, israel, responsibility, claimed, armedattack, fired, rockets, katyusha
group 6 (0.54) wounded, victims, somalia, civilians, wounding, facility, killing, mortars, armedattack, several
group 7 (0.83) israel, district, southern, responsibility, claimed, fired, armedattack, assailants, causing, injuries
group 8 (0.94) israel, district, southern, armedattack, claimed, fired, responsibility, assailants, causing, injuries
group 9 (0.88) israel, district, southern, fired, responsibility, claimed, armedattack, assailants, causing, injuries
group 10 (0.80) nepal, victims, hostage, assailants, party, communist, claimed, front, maoist/united, responsibility
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(a) Density histograms of document lengths.
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(b) Heat map of word frequencies for the 200 most common words across all documents (best viewed in color).

Fig. 3: Document length distributions and word frequencies for each organization in the WITS perpertrator
identification experiment.

9 IMAGE SEGMENTATION AND OBJECT RECOGNITION

Two problems of enduring interest in the computer vision community are image segmentation, dividing an

image into its distinct, semantically meaningful regions, and object recognition, labeling the regions of images

according to their semantic object classes. Solutions to these problems are at the core of applications such as

content-based image retrieval, video surveying, and object tracking. Here we will take an admixture modeling

approach to jointly recognizing and localizing objects within images (Cao and Li, 2007; Russell et al., 2006;

Sivic et al., 2005; Verbeek and Triggs, 2007). Each individual d is an image comprised of Nd image patches
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(observations), and each patch xd,n is assumed to be generated by an unknown object class (a latent component

of the admixture). Given a series of training images with image patches labeled, the problem of recognizing

and localizing objects in a new image reduces to inferring the latent class associated with each new image

patch. Since the number of object classes is typically known a priori, we will tackle this inferential task with

the finite approximation to the HBNBP admixture model given in Section 7.2 and compare its performance

with that of a more standard model of admixture, latent Dirichlet allocation (LDA) (Blei et al., 2003).

9.1 Representing an Image Patch

We will represent each image patch as a vector of visual descriptors drawn from multiple modalities. Verbeek

and Triggs (2007) suggest three complementary modalities: texture, hue, and location. Here, we introduce a

fourth: opponent angle. To describe hue, we use the robust hue descriptor of Van De Weijer and Schmid (2006),

which grants invariance to illuminant variations, lighting geometry, and specularities. For texture description

we use “dense SIFT” features (Lowe, 2004; Dalal and Triggs, 2005), histograms of oriented gradients computed

not at local keypoints but rather at a single scale over each patch. To describe coarse location, we cover each

image with a regular c x c grid of cells (for a total of V loc = c2 cells) and assign each patch the index of

the covering cell. The opponent angle descriptor of Van De Weijer and Schmid (2006) captures a second

characterization of image patch color. These features are invariant to specularities, illuminant variations, and

diffuse lighting conditions.

To build a discrete visual vocabulary from these raw descriptors, we vector quantize the dense SIFT, hue,

and opponent angle descriptors using k-means, producing V sift, V hue, and V opp clusters respectively. Finally,

we form the observation associated with a patch by concatenating the four modality components into a single

vector, xd,n = (xsift
d,n, xhue

d,n , xloc
d,n, xopp

d,n ). As in Verbeek and Triggs (2007), we assume that the descriptors from

disparate modalities are conditionally independent given the latent object class of the patch. Hence, we define

our data generating distribution and our base distribution over parameters ψk = (ψsift
k ,ψhue

k ,ψloc
k ,ψopp

k ) via

ψm
k

ind
∼ Dirichlet(η1V m) for m ∈ {sift, hue, loc, opp}

xm
d,n | zd,n, ψ·

ind
∼ Mult(1,ψm

zd,n
) for m ∈ {sift, hue, loc, opp}

for a hyperparameter η ∈ R and 1V m a V m-dimensional vector of ones.

9.2 Experimental Setup

We use the Microsoft Research Cambridge pixel-wise labeled image database v1 in our experiments.8 The

dataset consists of 240 images, each of size 213 x 320 pixels. Each image has an associated pixel-wise ground

truth labeling, with each pixel labeled as belonging to one of 13 semantic classes or to the void class. Pixels have

a ground truth label of void when they do not belong to any semantic class or when they lie on the boundaries

8. http://research.microsoft.com/vision/cambridge/recognition/
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Fig. 4: MSRC-v1 test image segmentations inferred by the HBNBP admixture model (best viewed in color).

between classes in an image. The dataset provider notes that there are insufficiently many instances of horse,

mountain, sheep, or water to learn these classes, so, as in Verbeek and Triggs (2007), we treat these ground

truth labels as void as well. Thus, our general task is to learn and segment the remaining nine semantic object

classes.

From each image, we extract 20 x 20 pixel patches spaced at 10 pixel intervals across the image. We choose

the visual vocabulary sizes (V sift, V hue, V loc, V opp) = (1000, 100, 100, 100) and fix the hyperparameter η = 0.1.

As in Verbeek and Triggs (2007), we assign each patch a ground truth label zd,n representing the most frequent

pixel label within the patch. When performing posterior inference, we divide the dataset into training and test

images. We allow the inference algorithm to observe the labels of the training image patches, and we evaluate

the algorithm’s ability to correctly infer the label associated with each test image patch.

Since the number of object classes is known a priori, we employ the HBNBP finite approximation Gibbs

sampler of Section 7.2 to conduct posterior inference. We again use the hyperparameters (γ0, θ0, γd, θd) =

(3, 3, 1, 10) for all documents d and set rd according to the heuristic rd = Nd(θ0 − 1)/(θ0γ0). We draw 10,000

samples and, for each test patch, predict the label with the highest posterior probability across the samples.

We compare HBNBP performance with that of LDA using the standard variational inference algorithm of Blei

et al. (2003) and maximum a posteriori prediction of patch labels. For each model, we set K = 10, allowing for

the nine semantic classes plus void, and, following Verbeek and Triggs (2007), we ensure that the void class

remains generic by fixing ψm
10 = ( 1

V m , · · · , 1
V m ) for each modality m.

9.3 Results

Figure 4 displays sample test image segmentations obtained using the HBNBP admixture model. Each pixel

is given the predicted label of its closest patch center. Test patch classification accuracies for the HBNBP

admixture model and LDA are reported in Tables 5a and 5b respectively. All results are averaged over twenty

randomly generated 90% training / 10% test divisions of the dataset. The two methods perform comparably,

with the HBNBP admixture model outperforming LDA in the prediction of every object class save building.

Indeed, the mean object class accuracy is 0.79 for the HBNBP model versus 0.76 for LDA, showing that the
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TABLE 5: Confusion matrices for patch-level image segmentation and object recognition on the MSRC-v1
database. We report test image patch inference accuracy averaged over twenty randomly generated 90%
training / 10% test divisions.

(a) HBNBP Confusion Matrix

Predicted Class Label
building grass tree cow sky aeroplane face car bicycle

A
ct

u
al

C
la

ss
L

ab
el

building 0.66 0.01 0.05 0.00 0.03 0.09 0.01 0.03 0.09
grass 0.00 0.89 0.06 0.02 0.00 0.01 0.00 0.00 0.00
tree 0.01 0.08 0.75 0.01 0.04 0.03 0.00 0.00 0.07
cow 0.00 0.10 0.04 0.72 0.00 0.00 0.05 0.01 0.01
sky 0.04 0.00 0.01 0.00 0.93 0.01 0.00 0.00 0.00

aeroplane 0.10 0.04 0.01 0.00 0.02 0.81 0.00 0.02 0.00
face 0.04 0.00 0.01 0.04 0.00 0.00 0.84 0.00 0.00
car 0.20 0.00 0.01 0.00 0.01 0.01 0.00 0.73 0.02

bicycle 0.16 0.00 0.04 0.00 0.00 0.00 0.00 0.02 0.73

(b) LDA Confusion Matrix

Predicted Groups
building grass tree cow sky aeroplane face car bicycle

A
ct

u
al

G
ro

u
p

s

building 0.69 0.01 0.04 0.01 0.03 0.07 0.01 0.03 0.08
grass 0.00 0.88 0.05 0.02 0.00 0.01 0.00 0.00 0.00
tree 0.02 0.08 0.75 0.01 0.04 0.02 0.00 0.00 0.05
cow 0.00 0.10 0.03 0.70 0.00 0.00 0.05 0.01 0.01
sky 0.05 0.00 0.02 0.00 0.91 0.01 0.00 0.00 0.00

aeroplane 0.12 0.04 0.01 0.00 0.02 0.75 0.00 0.03 0.00
face 0.04 0.00 0.01 0.05 0.00 0.00 0.80 0.00 0.00
car 0.19 0.00 0.01 0.00 0.01 0.01 0.00 0.71 0.03

bicycle 0.19 0.00 0.04 0.01 0.00 0.00 0.00 0.02 0.68

TABLE 6: Sensitivity of HBNBP admixture model to hyperparameter specification for joint image segmentation
and object recognition on the MSRC-v1 database. Each hyperparameter is varied across the specified range
while the remaining parameters are held fixed to the default values reported in Section 9.2. We report test
patch inference accuracy averaged across object classes and over twenty randomly generated 90% training /
10% test divisions. For each test patch, we predict the label with the highest posterior probability across 2,000
samples.

Hyperparameter Parameter range Minimum accuracy Maximum accuracy
γ0 [0.3, 30] 0.786 0.787
θ0 [1.5, 30] 0.786 0.786
η [2 × 10−16, 1] 0.778 0.788

HBNBP provides a viable alternative to more classical approaches to admixture.

9.4 Parameter Sensitivity

To test the sensitivity of the HBNBP admixture model to misspecification of the mass, concentration, and

likelihood hyperparameters, we measure the fluctuation in test set performance as each hyperparameter

deviates from its default value (with the remainder held fixed). The results of this study are summarized

in Table 6. We find that the HBNBP model is rather robust to changes in the hyperparameters and maintains

nearly constant predictive performance, even as the parameters vary over several orders of magnitude.

10 CONCLUSIONS

Motivated by problems of admixture, in which individuals are represented multiple times in multiple latent

classes, we introduced the negative binomial process, an infinite-dimensional prior for vectors of counts. We
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developed new nonparametric admixture models based on the NBP and its conjugate prior, the beta process,

and characterized the relationship between the BNBP and preexisting models for admixture. We also analyzed

the asymptotics of our new priors, derived MCMC procedures for posterior inference, and demonstrated the

effectiveness of our models in the domains of image segmentation and document analysis.

There are many other problem domains in which latent vectors of counts provide a natural modeling

framework and where we believe that the HBNBP can prove useful. These include the computer vision task

of multiple object recognition, where one aims to discover which and how many objects are present in a given

image (Titsias, 2008), and the problem of modeling copy number variation in genomic regions, where one seeks

to infer the underlying events responsible for large repetitions or deletions in segments of DNA (Chen et al.,

2011).
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