Anomaly Detection for Asynchronous and Incomplete Data

John Duchi, Lester Mackey, Fabian Wauthier
University of California Berkeley
EECS
{jduchi,iImackey,flw}@cs.berkeley.edu

ABSTRACT

Traffic anomalies, node failures, and attacks are common
occurrences in today’s computer networks, and identifying
them quickly and accurately is important for any large net-
work. Algorithms for detection of anomalies have typically
been centralized algorithms that assume synchronous mea-
surements from a series of monitor nodes that always pro-
vide clean and complete data. This assumption is unrealistic
when monitoring nodes or links fail or are not well coor-
dinated and so provide data asynchronously. We develop
a series of algorithms for anomaly detection in this incom-
plete and asynchronous data framework. We compare our
approaches to other state of the art algorithms for detecting
aberrations in network flow on a trace-based simulator for
network traffic using real tier-1 ISP data.

1. INTRODUCTION

Large scale computer systems are susceptible to fail-
ure. Recovering from these failures and improving the
system require knowing that, when, and where a prob-
lem occurs. Consider the example of a networked sys-
tem. Requirements for additional network bandwidth
can be assessed by analysis and detection of excessive
network loads, while particularly low network utiliza-
tion can be an indication of system malfunction. Mod-
ern systems allow the collection of amounts of data well
beyond the scope of human processing, and this has mo-
tivated the application of machine learning techniques
to automatically flag anomalous state for further pro-
cessing by specialized methods [16, 19, 12]. Detect-
ing anomalous system behavior at a local level can be
difficult, so modern systems increasingly focus on de-
termining anomalies globally rather than in individual
components of a system.

In this work, we take as our motivating example vol-
ume anomaly detection in the network link traffic of
distributed systems. Anomalous traffic can happen for
many reasons: a distributed denial of service attack
or the well known “Slashdot Effect” are just two of
many [7]. We assume a set of monitors located across
a network that continually send link volume measure-
ments to a central coordinator for anomaly detection.

Pioneering work by Lakhina et al. [16] introduced an ap-
proach for anomaly detection based on subspace projec-
tion, which essentially attempts to find the most com-
mon modes of variation in the network traffic and clas-
sifies variation outside of those principal components
as anomalous. More recent work [19, 12] extends the
principal component analysis anomaly detection frame-
work. The literature to this point, however, has relied
on synchronous data arrival at regularly spaced time
points, and aside from [12], that data is assumed never
to be missing.

We posit that these assumptions do not always hold
in practice and that it is as such useful to design a sys-
tem that can function in the face of missing data and
asynchrony in data arrival rates from different compo-
nents across the network. For example, in a setting
where no global clock is available and precise synchro-
nization between monitors is impossible, it is natural to
allow asynchronous measurements. In other settings,
some local measurements may be expensive to compute
so that it is preferable to take measurements at vary-
ing rates. Finally, data may be intentionally filtered to
reduce communication costs. In general, we focus on a
scenario in which the local monitors provide data to the
coordinator asynchronously and at varying rates that
depend on local monitor constraints. The coordinator
must combine multiple sources and detect anomalies ac-
curately in the face of this asynchrony.

As a step toward a solution to the asynchronous and
incomplete data problem, this work proposes a two-
phase methodology. Phase I is the imputation—filling
in missing values—of missing data. We look at and
propose a variety of methods, ranging from constant
propagation to combining autoregressive modeling tech-
niques [3, 4] with function approximators such as splines
[2, 8] to deal with asynchronous measurements. We use
spline and function interpolation techniques to itera-
tively fit a model to asynchronous measurements re-
ceived from a particular monitor, which we are able
to use to impute data at unobserved time points. In
the case of function approximators, this takes the form
of resampling the fitted model. Using autoregressive

modeling, we are able to learn a joint model of the
evolution of system state; we use this to impute miss-
ing data by a combination of forward prediction and
statistical estimation. We estimate our model parame-
ters efficiently and dynamically, a contrast to previous
network anomaly detection work. Since imputation al-
lows us to produce regularly spaced measurements from
asynchronous data, in Phase II of our methodology we
apply complete data anomaly detectors (like subspace
projection and autoregression) to the imputed data of
Phase I.

The remainder of this report is organized as follows.
In Section 2 we detail methods for imputing missing
data in asynchronous data streams and our strategies
for efficient online learning of ARMA models. Sec-
tion 3 outlines the subspace projection and autoregres-
sive methods for anomaly detection. Section 4 describes
a distributed implementation of our method on a set of
networked computers. The experimental design and re-
sults are given in Section 5. We contrast our approach
to previous approaches and give pointers to related work
in Section 6, then give our conclusions.

2. IMPUTATION ALGORITHMS

Imputation is the important first step of our two-
stage approach to anomaly detection in asynchronous
or incomplete data settings. It is the task of filling
missing values into a data stream, or imputing them. In
this section, we describe several methods for imputing
unobserved data, briefly describing prior techniques and
expounding more on techniques we develop. Figure 1
contrasts the prototypical behaviors of some of these
techniques.

2.1 Baseline Methods

Our baseline methods for imputing unobserved data
are simple, low-cost, and intuitive techniques for for-
ward prediction, predicting the current datapoint given
past observations. Each makes the (strong) assumption
that incoming data streams are independent. We will
use the performance of these methods as benchmarks
for more advanced solutions.

Constant propagation.

Constant propagation is the simplest of the baseline
methods. For a given stream of data x;, the value x;
for an unobserved time t is predicted as the most recent
observation z, made at a time s < t.

Averaging.

Averaging generalizes constant propagation. The
value z; for an unobserved time t is predicted as the
average of the k most recent observations made before
time ¢t. Averaging over a short sequence of past data
points incorporates more of the relevant information in

the data stream and yields predictions that are more
robust to noisy measurements.

Window averaging.

The window averaging method attempts to use tem-
poral locality more strongly than does averaging, which
can use uninformative very old data in rarely sampled
streams. To predict a value x; for an unobserved time
t, window averaging takes the last observation time s
and average over all observed values in the sequence
Ts—k+1,---,Ts. Here, k is the size of the window used
for averaging. Fewer than k values contribute to the
prediction when some value in zg_gy1,...,2s is unob-
served. Any contributing datapoint is guaranteed to be
within k£ — 1 time steps of the most recent observation.

Linear propagation.

A slightly more advanced scheme than constant im-
putation estimates a missing observation by fitting a
line to the most recently observed k observations and
uses the linear function as a predictor for the future.

2.2 Splines

Splines are piecewise polynomial functions that can
either interpolate or smooth irregularly sampled data.
A spline is defined by a knot sequence tq,...,t; of k
(not-necessarily uniformly spaced) points that breaks
up an interval of R into subintervals [t;,t;), and the
spline uses one parametric function for each subinter-
val. In many applications the knot sequence is taken to
be the times at which measurements are made, and the
purpose of the piecewise parameterization is to fill in the
gaps; however, most applications of splines focus exclu-
sively on situations in which all the available data is al-
ready known rather than being iteratively observed [10,
17]. Splines permit us to efficiently make more informed
predictions of past unobserved data given newer obser-
vations, and because they do not assume uniformity of
the knot sequence, allow flexibility in dealing with asyn-
chrony. As such, we use splines to integrate information
from points before and after a missing measurement into
improved estimates. Splines in our framework primar-
ily serve to update our predictions of past datapoints,
and we leave the task of forward prediction to one of
the other presented methods.

Linear splines.

A very simple family of splines is the linear spline,
which interpolates between neighboring points though
a linear function. Given two measurements x, and xy,
for r < t, the estimate zs for the unobserved time s,
with 7 < s < t is calculated simply as ;. +“="=(s —7).

-T

Cubic splines.
A flexible family of splines that is frequently used in

computer graphics is the cubic spline. Cubic splines
are popular in many fields due to their simplicity of
construction, modelling flexibility, and ease of evalua-
tion. It can be shown that cubic splines can describe
the minimum-curvature curve that runs through a set
of data points. Heuristically, cubic splines can model
data streams in the smoothest way possible [10]. Cubic
splines (also called splines of order d = 4) use a set of
cubic functions on knot intervals. To smoothly join the
cubics at knot points, constraints are imposed between
cubics lying on neighboring intervals. Different flavours
of cubic splines differ in the kinds of contraints that are
imposed and the type of continuity that can be achieved
globally, and it is straightforward to efficiently compute
and update cubic splines [8].

B-splines.

Cubic splines, because they often interpolate the ob-
servation sequence exactly, can be sensitive to outliers
and hence are unsuitable for data interpolation or impu-
tation. In this case an alternative cubic spline, such as
a B-Spline, that smooths the data while retaining conti-
nuity through the 2¢ derivative may be more desirable.
Smoothing introduces robustness into the imputation
process by requiring the spline to fit the data only ap-
proximately. In addition to this smoothing property, B-
Splines provide local control, which means that changes
to individual measurements change the estimated func-
tion only locally. As noted before, this property is key
for more efficient spline update schemes—in the sequen-
tial setting where new measurements are only added
to the end of an observation sequence, re-estimation of
imputed values is limited to the last few time points.
All points beyond a time horizon in the past cannot
be affected by future measurements and are effectively
frozen.

B-splines of order d are defined through a blending
function By 4(t) which specifies how observed measure-
ments should be mixed together to produce a smoothed
estimated at an unobserved time t. The estimate for
the unobserved measurement xz; using a B-spline of or-
der d and a knot sequence t1,...,t; of length k is z; =
> r—oZkBr,a(t). De Boor [6] showed that the blending
function for B-splines of order d on a knot sequence of
length k satisfies the following recursive expression:

o 1 if tr <t <trgl
Bra(t) = { 0 otherwise
t— 1k
By a(t) —————Bra-1(t)
tktd—1 — tk
thaqg — 1
+7Bk+1,d—1(t)~
thtrd — Tkt

The key propety of the blending function alluded to
earlier is that it encodes local control during the im-
putation process. The estimate of an unobserved mea-

surement can only be affected by measurements were
taken near the unobserved time.

Figure 1 illustrates several imputation techniques on
a sample dataset.

2.3 ARMA Modeling

The Box-Jenkins methodology, or AutoRegressive In-
tegrated Moving Average (ARIMA) modeling technique
[3, 4] is a class of linear time-series forecasting tech-
niques that capture linear dependency of future vari-
ables on the past. An ARIMA model includes three
different order parameters: p, the autoregressive pa-
rameter; ¢, the moving average parameter; and d, the
differencing parameter. We focus on d = 0 models,
which means that we perform ARMA modeling directly
on the sequence of values we receive.

When we receive points in a time series z; € R?, the
mean-0 ARMA(p, ¢) model can be written as

ry = Allit_l + AQI’t_Q 4+ ...+ Apxt—p
—|—Blzt + BQZt—l + ...+ qut—q+1

where z; ~ N(0,X) are normally-distributed noise pa-
rameters independent of x;. The standard ARMA pro-
cedure, employed, for example, in [19], is to estimate A;,
B;, and X, usually via a procedure such as maximum
likelihood or moment-matching via the Yule-Walker equa-
tions [4]. Solving for A4;, B;, and ¥ above, however, is
non-convex, so it is effectively impossible to get the true
maximum likelihood estimates. Further, estimating the
parameters requires maintaining all data from previ-
ous times x1,x9,..., and repeated estimation passes
over the entire time series can be prohibitively expen-
sive. Many approaches to learning ARMA parameters
are thus done offline rather than dynamically, which
is undesirable (see our experiments in Sec. 5.1). For
these reasons, we use an AR(p) model with no moving-
average parameters. As we show in the sequel, this
allows efficient and exact computation of the A; and
noise covariance Y.

We now derive the maximum likelihood estimates for
our AR(p) model. We can write the sequence from
Eq. (1) as ¢ = Arwy—1 + Aoxp—o + ... + Apzi—p + 24,
wrapping B; into the covariance for z. We can now
write the likelihood of a sequence x,,...,z; given the
first observations z1,...,2,—1 as

T
Fapoar) = [[flee | wiors. o 2y)
t=p

where f(z; | ®4—1,...,24—p) is the Gaussian density
with mean Ajx¢—1 + ... Apz,—1 and covariance ¥. The
log-loss for one term in the sequence (ignoring constants
not dependent on ¥ or the 4;) is

L(AY) = logdetS +tr (57 (zp — Aimpmy — ... — Apmp_y)

(SCt — Alxt—l — ... ApIt_p)T) .

x 10"

- — - — Constant Prop. — — — Linear Spline

Cubic Spline

ot
(6]
T

o)

Byte counts

N
wl

Time

Figure 1: Prototypical imputation behavior of constant propagation, linear splines, and cubic splines.

For notational convenience in the rest of this section,
we define the following variables:

Ti—1

x(t) & , A=A A,

T

X(T) 23 ae)’, Xi(T) 23 ()]

t=p t=p
The derivative of the log-loss with respect to A4; is
Vali(AX) = 27 (Ax(t) -z

We can thus sum over all time steps and set the result
to 0 to find the maximum likelihood parameters for A;:

T
0= Z Az(t)z] , —] ,, so
t=p

X(T) = X,.(T)AT.

(2)

Estimating ¥ is similarly straightforward given that

the estimation of A can be done without consideration

of ¥. Summing the log-loss per-example and letting
K =X~!, we have

T
D (B, A)=—(T - p+1)logdet K
t=p

T
+ 3 tr (K (a0 — Ax(t)) (e — Ax(t))T)

and by taking derivatives with respect to K, we find
that

T

> (@ — Ax(t))(z — Ax(t) . (3)

t=p

B 1
T —-p+1

Fast Parameter Updates.
Using an AR(p) model, it is straightforward to quickly
update the set of learned matrices A using new ob-

servations of the time series. Indeed, because AT =
X(T)"1X,(T) by Eq. (2), we would like to efficiently
update X,.(T)~! given a new point (it is clear that
Xi(T) is trivial to update). The Sherman-Morrison-
Woodbury identity [9] shows that given a new point
TT41,
X (T+1)"'=x,.(T)*
X (T) (T + 1)z(T +1)T X, ()"
L+2(T+1)TX(T)'a(T + 1)

As we see in the sequel, we often multiply vectors by
the matrix A, but it is really unnecessary to keep the
matrix A at all; we can simply multiply any vector by
X,(T)~! and X;(T). This means that we do not need
the O(d3p?) operations to recompute A per iteration—
we only need d?p?, a significant savings when d is large.
Similar updates can be derived for ¥ and K = 2!
if we only iteratively update the sum with each new
point in Eq. (3) rather than recalculating it every time
we update A. Admittedly, this is incorrect, but it is
possible to show asymptotic stability as the AR model
continues to run.

Imputation with AR.

AR modeling is useful in that it allows (often accu-
rate) predictions of future variables and gives a frame-
work for joint inference over unobserved variables. We
consider prediction of the linear process in two modes.
For the first, we assume that we have observed all past
data and are only attempting to predict future data.

Starting with prediction of z; from x;_1,%¢_o,..., we
have
E[{L’t | Tt—1,y--]

= E [Ala'}t,1 +...+ Apa?t,p + 2¢ | Tt—1,y--

p
= E Ajz;
i=1

Denoting by Z; the prediction for time step ¢, it is

-

straightforward to derive the recursive update

E [$t+j | Tt—1y--] = Al,’fitjpj,l +...+ Ap,fprj,p,

which shows that we can simply compute the 1-step
predictions, followed by the 2-step predictions, etc.

Now suppose that we observe only parts of a previous
sample. In particular, we want to predict x; based on
ry_1,..., but we observe only part of z;_;. Denote the
observed portion of x;_1 by 01 and the unobserved
by us;_1. We have

E[$t+1 | Otamtflw--]
=]E[All't + ...+ Apl't,ijl + 2t | Oty Lt—1,--]

= AlE [Jﬁt | Oty LTt—1,--] + Agl‘t_l + ...+ Apxt_p+1.

It is straightforward to see that u; is Gaussian given
04, Ty—1,.... Let K = X~ for notational convenience,
and note that our likelihood term in the expectation of
x4 is now proportional to

o (<5 ([o] - as) o ([] a0)

Expanding the terms dependent on u; and ignoring the
exp, we have

T T
Ot Koo Kou O Ot
) e k] [] s

= 0] Kp00; + 20 Koyus + 1) Kyt
_2utT [Kuo Kuu}(A1$t_1 +...+ Apxt_p) + C(oy)

where C'(0;) is not dependent on u;. To find the expec-
tation (and mode) of the above with respect to u;, we
take the derivative and find

Ku00t+Kuuut_[Kuo Kuu](Alxtfl—f—. . '+At7pxt7p) — 07
or that
Ut = KJJ (Kuo Kuu]Az(t) — KJulKuoOt-

Once we have estimated the unobserved part of x;, we
can use it to easily predict xy41. It is possible to derive
similar exact updates for computations with more un-
observed variables, but we focused on efficient updates
in our system and so, if there are multiple unobserved
variabels in sequence, we simply perform one (inexact)
pass from the most recently fully observed variables,
estimating as we propagate from z;_ to x;.

In this paper, we also combine splines and AR model-
ing to do imputation—we can use past predicted values
of the AR process as “hints” to the spline’s interpola-
tion of previously observed points. Effectively, we give
the spline slope information from the AR predictions to
shape the function we use for interpolation. In all our
experiments with AR imputation in Sec. 5, we use the
joint interpolation.

3. DETECTION ALGORITHMS

The second stage of our approach to detecting anoma-
lies in asynchronous and incomplete data settings con-
sists of applying a complete data anomaly detector to
our imputed data. In this section, we describe our
adaptations of two leading methods for complete data
anomaly detection.

3.1 Subspace Projection

3.1.1 Original Formulations

Subspace projection for anomaly detection [16, 19,
12] operates by dividing the input space of data points
into “normal” and “abnormal” subspaces, projecting
each new data point onto the abnormal subspace, and
declaring that point to be anomalous if the magnitude of
its abnormal projected component exceeds a threshold.
The division into normal and abnormal subspaces is
achieved by Principal Component Analysis (PCA) [14],
a popular and powerful technique for finding the direc-
tions of maximum variation in a dataset.

More formally, the subspace projection detector of [16]
receives a data matrix Y € R"*? as input (where row
4 is an observation at time t; and each column corre-
sponds to a single monitor) and performs PCA on Y,
extracting the first k& directions of maximum variance
{p1,...,pk}. These first k principal components direc-
tions are assumed to be a basis for the normal subspace,
so we obtain the abnormal component a; of a given data
point 4, € R? by projecting y, onto the orthocomple-
ment of the space spanned by {pi,...,pr}. That is,
a; = (I — PPT)y; where P = [p1,...,px]. We then
compare the magnitude of a; to Q,, the 1 — a confi-
dence level Q-statistic [13], and declare y; an anomaly
if ||at||? > Qa. An explicit procedure for computing Q.
is given in [16].

There are two principal drawbacks of this original
subspace projection formulation. First, the authors of
[16] compute the principal components of Y only once,
offline, prior to any detection, and do not update the
components over time. Thus, the system does not adapt
to changes in normalcy over time. Second, and perhaps
more seriously, the algorithm as presented only works
in a batch setting, where the data from all time points
are observed prior to performing any detection. This
restriction is due to the matrix Y, which contains ob-
servations from all timepoints of interest. The principal
components used to classify each time point are there-
fore based on future information, making this procedure
infeasible in an online detection setting.

The subspace projection formulation of [12] solves
both of these problems by computing at each time point
t the principal components of Y; = [yt—m, ..., Yt—-1], &
window containing the previous m observations, and
using these dynamic components to classify the current

vector y;. This method, however, suffers from using
only m observations for the principal component com-
putation at each time step; all other observations are
ignored.

3.1.2 Alternative Online Formulation

We present here an online bookkeeping method to
help subspace projection that adapts dynamically to
changes in normalcy while utilizing all data seen so
far in computing principal components. The key is
to maintain at each time step the outer product ma-
trix A; = 22:1 yiy;r and the vector sum z; = Zle Y-
Given these quantities, the covariance matrix of the first
t datapoints can be computed as C; = ﬁ(At - %ztz;),
and PCA can be peformed directly on the covariance
matrix Cy. This formulation yields efficient updates for
stored quantities A; = A;_1 + yty;r and z; = z¢_1 + Ys
with update time and space complexities independent
of the number of time steps.

To allow our imputation methods the flexibility of
updating their past imputations, our subspace detector
also stores the window Y; of the past m imputed vec-
tors received. When an imputer module provides an
update for any of the m past vectors at time ¢, the orig-
inal contribution of that vector is subtracted from A;_;
and z;_1, and the new vector’s contribution is added in
its place: e.g., Ai—1 = Ai_1 — Yola¥dlq + Ynewloew and
Zt—1 = Zt—1 — Yold + Ynew-

3.1.3 Redundancy Filtering

A key contribution of [12] was its demonstration that
the communication cost of anomaly detection can be
drastically reduced without a significant sacrifice of de-
tection accuracy over standard subspace projection. This
reduction is achieved by filtering out redundant data
values from each monitor node’s datastream. Monitor
node ¢ maintains a prediction value R; and only reports
its statistic v; to the detector node at time ¢ if the value
vy falls outside of the window [R; —, R; 4+ 6]. The value
0 is known as the monitor slack. The slack is automat-
ically selected by the subspace detector node to ensure
that the reduction in detection accuracy is bounded and
is then propagated to all monitor nodes.

When a monitor node reports a statistic, it updates
its prediction value to equal the average of its last five
statistics and reports the new R; value to the detector
node as well. The detector then uses the value R; to
impute the missing values in datastream ¢. Thus, the
redundancy filtering for reduced communication sce-
nario of [12] is a special case of our incomplete data
framework. We call this method of imputation monitor
imputation. We implement monitor imputation along
with our other imputation methods to compare their
performances in the redundancy filtering setting. Note
that monitor imputation enjoys a significant advantage

over our methods: it computes its prediction value using
complete data, while our methods must infer predictors
from an incomplete data stream. On the other hand,
monitor imputation must transmit twice as much data
in the redundancy filtering setting as one of our im-
putation methods, as R; must be packaged along with
v;. Hence, improved imputation methods on the detec-
tor node’s end could halve the communication cost of
network anomaly detection.

3.2 AR Detection

As suggested in [19], we can use the AR(p) models de-
scribed in Sec. 2 to perform anomaly detection as well
as imputation of time series data. The basic idea is
to use the previous p steps, x¢—1,...,T+—p to form the
prediction of z;, &+ = A1x¢t—1 + ... Apzi—p. Anomalous
data is then the error in prediction z; = z; — ;. We
now derive a statistic for detection of anomalies with an
AR(p) model; we are unsure whether this particular test
has been considered in the network anomaly detection
literature. According to our modeling assomputions,z;
should be distributed as N(0,%). To check if z is
“anomalous” at a probability level a;, we find the ¢ such
that the probability a point lies outside the ellipsoid
given by {z : x"X 7'z > ¢} is equal to a—these are
the level curves of the N(0,X) distribution. To that
end, let & be the ellipsoid set for level ¢ and let L
be the lower Cholesky decomposition of Y. Now note
that if w ~ N(0,I), z = Lw is distributed as N (0,).
Likewise, w = L'z is distributed as AV'(0,I). By a
straightforward change of variables,

Plw'w>¢c)=PE'L L7 '2>¢)=P>"S712 > ¢).

By inspection, w ' w is distributed as a x? random vari-

able with n degrees of freedom. Thus, let F,, be the
cumulative distribution function for a x?(n) random
variable. To say that a point z; is anomalous with prob-
ability a, we set ¢ = F;71(1 — «), and we classify the
point x; as anomalous at if z, X1z, > c.

4. SYSTEM DETAILS

To simulate a true networked anomaly detection sys-
tem, we implemented a full trace-driven distributed sys-
tem. Monitor nodes run on networked machines and
read in the appropriate data stream from a trace file
populated across the network. The nodes then send
messages with monitor statistics to a centralized de-
tector according to a protocol for filtering trace data.
The detector node, at some fixed interval, reads in the
messages received from each monitor (and their time
stamps), imputes missing data according to the impu-
tation mode being used, and performs anomaly detec-
tion on the imputed data. We implemented each of the
imputation and detection modes described in previous
sections to run on the detector node.

Monitor 1

S S

>€ >€ >€ >€

S
>€ >

Measurements

Monitor 2

Detector

Measurements

Monitor 3

Measurements

Figure 2: Networked anomaly detection with asynchronous data arrival.

We further implemented four data filtering protocols
for the monitor nodes, corresponding to natural data
arrival scenarios:

1. Filter mode NONE: All data is reported.

2. Filter mode RANDOM(p): Each node statistic is
reported independently with probability p.

3. Filter mode PERIODIC(f): Monitor i reports statis-
tics with frequency f;.

4. Filter mode REDUNDANT: Each monitor reports
its statistics according to the decreased redundancy
filtering method of Sec. 3.1.3.

Filter mode NONE provides a complete data benchmark
against which the peformance on other filter modes can
be compared. Filter mode RANDOM models data that is
lost or corrupted at random or that exhibits some non-
deterministic arrival rate. Filter mode PERIODIC mod-
els monitors with characteristic frequencies of reporting
data and allows those frequencies to vary from node to
node. This model is especially appropriate when the
computation time of statistics varies from node to node
or when monitor nodes realize different costs for trans-
mitting data across the network. Filter mode REDUN-
DANT implements the deliberate filtering scheme de-
tailed in Sec. 3.1.3. The goal is to reduce the amount
of monitor/detector communication while maintaining
reasonable detection accuracy. The deliberate filtering
scheme requires some moderate additional infrastruc-
ture for communicating permissible slack values in the
monitor nodes. To handle this, we implemented a sec-
ond signalling mechanism that on each time step broad-
casts the new slack value computed by the detector to
all monitor nodes.

Note that the purpose of this work is to investigate
the efficacy and accuracy of our methods for handling
asynchronous latent data. Hence, we report system per-
formance mainly in terms of anomaly detection accu-
racy and not in terms of run time or communication
overhead.

S. EXPERIMENTS AND RESULTS

In this section we describe the series of experiments
that we performed using the system we built. Our ex-
periments were all run using our trace-driven simulator
on real network data. We used four one-week traces
collected from the Abilene network!. Each of the Abi-
lene traces consists of measurements for the 41 links in
the network, which aggregate data from 121 incoming
flows as specified by the routing matrix. Network data
is collected every 10 minutes for all 41 links and 121 in-
coming flows, and a complete datapoint consists of the
number of bytes flowing over a link in 10-minute win-
dow. To develop more statistically significant tests, we
used the method of [16] to inject synthetic anomalies
into the datasets. We use the strategy of [12] and inject
multiple anomalies into each trace.

5.1 Dynamic AR Models

Before we describe our results on anomaly detection,
we make a brief detour to demonstrate the benefits of
dynamically learning an autoregressive model of our se-
quence data rather than learning an offline or rarely
updated model. In Fig. 3, we plot the f3-norm of the
prediction errors of a dynamically updated AR(2) pro-
cess versus the prediction errors over time of an AR(2)

! An Internet2 high-performance backbone network connect-
ing a large number of universities and a few research insti-
tutions

process learned on the previous week’s data. The figure
makes clear that the model learned offline has far infe-
rior performance for tracking the process (and one can
argue that the two points at which the dynamic model
has larger error are likely anomalies in network traffic).

80¢ Static model errors
70t —— Dynamic model errors
60 |

_ 50t

o

@ 40
30 j' { ‘
20 1 | m | “ “‘)

il
10§ ‘
200 400 600 800
Time

Figure 3: Comparison of dynamically learned
AR(2) model on Abilene flow versus statically
learned AR(2) model.

5.2 Imputation and Detection Methods

We ran a suite of experiments to test the various
methods for imputation of missing and asynchronous
data presented in Sec. 2. Each imputer-detector com-
bination was evaluated on each trace under various pa-
rameterizations of each of the four modes of data fil-
tering (see Sec. 4): NONE, RANDOM, PERIODIC, and
REDUNDANT. Aside from NONE, each of these reduces
the amount of data observed by the central detector,
and each captures a different operating regime from the
others. The results under filter mode PERIODIC were
similar to those obtained under filter mode RANDOM,
so we only report findings from RANDOM and REDUN-
DANT modes. For each trace dataset, we further ran
each experiment with 0, 15, 35, and 70 synthetic anoma-
lies injected into the trace. Results were qualitatively
similar for differing injection levels, so we report results
only for tests in which we inserted 70 anomalies or no
anomalies.

Our primary evaluation metrics are the true positive
rate (the fraction of true anomalies detected) and the
false positive rate (the fraction of non-anomalies marked
as anomalies). To evaluate whether a detected anomaly
is a true anomaly, we compare to the set of anomalies we
synthetically inject as well as the original set of anoma-
lies in trace data. We extract the original set of anoma-
lies by performing subspace anomaly detection on the
full origin-destination flow matrices.

Fig. 4 shows the anomaly detection performance of
the different imputation methods we consider, where
the anomaly detection is done using the subspace pro-
jection algorithm of Sec. 3 with significance level o =
.001. On the left side of the figure, we plot the true
positive rate for each of the different imputation algo-
rithms as we increase the amount of data missing from
10% to 50%. On the right, we plot the false positive
rate, which gives the fraction of points each algorithm
erroneously flags as anomalous. For these experiments,
we randomly remove monitor measurements. From the
figure, we see that most of the imputation methods
exhibit similar performance with a few notable excep-
tions. B-splines imputation records the highest true-
positive rate, but its significantly higher false-positive
rate is troubling. At a false positive rate of just 2.5%,
B-splines makes 25 errors on a 1000 sample set of data.
Thus, with a true positive rate of 45%, B-splines classi-
fies correctly about 32 of 70 anomalies and incorrectly
identifies 25. Linear propagation was the worst per-
former at this task, with the lowest true positive rate
and highest false positive rate. Among the remaining
imputation methods, window average most consistently
demonstrates the lowest false positive rate and highest
true positive rate.

Fig. 5 shows similar results to Fig. 4, but instead
of using subspace projection to detect anomalies, we
use AR detection (see Sec. 3.2) with significance level
« = .05. In this case, the choice of imputation method
had little effect on the true positive rate, while false pos-
itive rate varied considerably from method to method.
In particular, spline-based methods and constant prop-
agation methods are outperformed significantly by AR
imputation, windowing, averaging imputation. It is also
worth noting that the true positive rate for the detection
using an autoregressive model is around 20% more than
that for the subspace projection methods, and the false
positive rates are only slightly (less than .5%) worse.
At least in this regime, then, it seems that principled
detection of anomalies via an AR model is more effec-
tive than examination of the principal components of
variation in the data.

Finally, Table 1 shows the performance of our various
imputation methods under subspace projection, with-
out anomalies injected, and using REDUNDANT filtering.
Included also is the monitor imputation mode of [12] de-
scribed in Sec. 3.1.3. We see that monitor imputation
and averaging exhibit the best performance with iden-
tical true positive rates and the lowest false positive
rates. Notably, monitor imputation enjoys a significant
advantage over our methods: it computes its prediction
value using complete data, while our methods must in-
fer predictors from an incomplete data stream. On the
other hand, monitor imputation must transmit twice as
much data in the redundancy filtering setting as one of

True Positive Rate
0.5 T T T T
—+— Const
L —#— Linear
04sf ~ T - - TATAR Y
—O. CubSpline
~ — B8 — B-Spline

~ —<— Window
N —v— Average ||
S al —<+— LinSpline

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Percent data removed

(a)

False Positive Rate
0.055 T T T T
—+— Const
—#— Linear
_A— AR 4
CubSpline
— 8 —B-Spline
—<— Window [
—v— - Average
—<— LinSpline

0.045 -

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Percent data removed

(b)

Figure 4: Subspace projection detection. (a) True positive rates of different imputation algorithms
as percentage of missing data grows. (b) False positive rates as missing data grows.

our imputation methods, as R; must be packaged along
with v;. Hence, utilizing averaging or one of the other
high performing methods under the redundancy filter-
ing framework could halve the communication cost of
network anomaly detection with little loss of accuracy.

6. RELATED WORK

Lakhina et al. [16] presented the original work on
PCA-based anomaly detection. Zhang et al. [19] fur-
ther extend the framework, showing how to infer net-
work anomalies in both spatial and temporal domains.
Similar to our work, they assume a distributed set of
monitors that send link volume measurements to a cen-
tral coordinator for anomaly detection. In principle,
this approach works very well, and both [16] and [19]
give experimental results validating their approaches. A
limitation of the continuous synchronous update is its
lack of scalability. In order to function, monitors must
continually send measurements to the central coordina-
tor, which increases network load when many monitors
are present, or when measurements occur on small time
scales. Huang et al. [12] address the scalability issue.
They describe a method that allows monitors to with-
hold measurements that have not changed significantly.
The quantization is achieved through parametrised lo-
cal sliding filters at monitors. An analysis based on
stochastic matrix perturbation theory is then used to
determine a local sliding filter parameter that bounds
the detection error rate.

A limitation of the monitors communicating to a cen-
tralized server not addressed by any of [16, 19, 12] is

the method’s reliance on synchronous measurements at
regularly spaced time points. In [12] for example, the
data are link-wise byte counts measured at 10-minute
intervals. While [12] shows how local nodes can with-
old measurements such that the global detection error
is bounded, their method relies on discrete time points
and the assumption that monitors withhold measure-
ments because the measurements are not changing sig-
nificantly; we avoid both of these limitations through in-
terpolation and constructing a joint autoregressive model
of the system. Beyond this, our asynchronous frame-
work subsumes issues of missing and censored data.

Certainly there is a large literature for anomaly or
outlier detection in time-series in statistics and machine
learning. Many sophisticated (such as [1], which used a
wavelet-based detection method) and unsophisticated
(i.e. [5], which uses simple Holt-Winters forecasting)
methods have been applied to network anomaly detec-
tion. See also, for example, [11, 15, 18]. All these
assume a standard time-series model of synchronous
data arrivals with full data. Sketch-based change de-
tection [15] aggregates data from multiple streams into
a probabilistic summary, or sketch, and might in prin-
ciple be able to handle asynchronous data by hiding it
within a sketch; the authors do not address this, how-
ever. To our knowledge, previous papers on network
anomaly detection such as the above and [19] that use
autoregressive modeling techniques do so in an offline,
non-dynamic fashion, which we handle via a few restric-
tions to our model class and give very efficient updates
for.

True Positive Rate
0.65 T T T T
—+— Const
—A— AR
CubSpline ||
— B —B-Spline
—<%— Window

0.6

<

TR —V— Average
3 —<}— LinSpline [|

0.55

05

0.451-

0.351-

0.3

0.25 I I I I I I I
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Percent data removed

(a)

False Positive Rate

T T T
—+— Const
4= AR fes
0.028 CubSpline
— 8 —B-Spline
—<— Window
0.026 —V—-Average [
—<— LinSpline
0.024% B
0.022 B
0.02 b
A
A~<;<747A‘\ -
0.018- - - - 4
Y T~ A - }
RS B 4
0.016 - ST—o— -
_ -
- -
0.014 B SR -7 B
- -
-V
0.012 I I I I I I I
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05

Percent data removed

(b)

Figure 5: AR detection. (a) True positive rates of different imputation algorithms as percentage of
missing data grows. (b) False positive rates as missing data grows.

Imputation Method | Const | Linear | AR | B-spline | Window | Avg. | Lin-Spline | Monitor
True Pos. Rate 0.4028 | 0.2500 | 0.4778 | 0.3292 0.4569 | 0.4986 0.3361 0.4986
False Pos. Rate 0.0175 | 0.1093 | 0.0268 | 0.0240 0.0178 | 0.0173 0.0178 0.0170

Table 1: Redundant mode error
detection.

Finally, there are additional problems within the sphere

of anomaly detection that we do not address. In partic-
ular, anomography [19] attempts to use routing matrices
and information to infer true underlying system state.
This could potentially allow localization of anomalies
within a network, but we do not address this problem
in the interests of keeping this paper manageable.

7. CONCLUSION

In this paper, we introduced the problem of anomaly
detection in streaming data settings with frequent data
loss and incomplete data. We proposed a general frame-
work for solving the anomaly detection problem: first,
to impute missing data, and second, to apply complete
data anomaly detection methods. We believe there is
ample future work to be done in this vein. The time-
series literature is relatively mature, and seems to have
a good hold of synchronous data; however, very little
analysis exists for the case when data arrival is more
sporadic yet still coupled. While our focus was on net-
work traffic anomaly detection throughout this paper,
there is a significant amount of sequential data that falls
into our framework. For example, intrusion detection
often requires monitoring a wide range of asynchronous

10

rates for imputation methods with Subspace Projection anomaly

states, patient-state assessment in the medical domain
includes a huge number of signals with varying frequen-
cies and interdepenence between signals. While our ap-
proaches clearly do not yet have the accuracy to be
applied to medicine, we hope this will serve as a step-
ping stone toward future work on anomaly detection in
asynchronous data settings.

References

[1] P. Barford, J. Kline, D. Plonka, and A. Ron. A sig-
nal analysis of network traffic anomalies. In ACM
Internet Measurement Workshop, 2002.

Garrett Birkhoff and Carl de Boor. Piecewise poly-
nomial interpolation and approximation. In Gen-
eral Motors Symposium of 1964, pages 164—190. El-
sevier, 1965.

George Box, Gwilym Jenkins, and Gregory Rein-
sel. Time Series Analysis: Forecasting and Control.
Wiley, fourth edition, 2008.

Peter Brockwell and Richard Davis. Introduction
to Time Series and Forecasting. Springer, second
edition, 2002.

[5] J. Brutag. Aberrant behavior detection and con-

[9]

[10]

[11]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

trol in time series for network monitoring. In 14th
Systems Administration Conference, 2000.

Carl de Boor. A Practical Guide to Splines.
Springer, revised edition, 2001.

Jeremy Elson and Jon Howell. Handling flash
crowds from your garage. In USENIX Annual
Technical Conference, 2008.

Michael Gleicher. A curve tutorial for introductory
computer graphics. Notes for CS559, Wisconsin
University, 2004.

Gene Golub and Charles Van Loan. Matriz Com-
putations. Johns Hopkins University Press, third
edition, 1996.

Trevor Hastie, Robert Tibshirani, and Jerome
Friedman. The Elements of Statistical Learning.
Springer, 2001.

C. Hood and C. Ji. Proactive network fault de-
tection. IEEE Transactions on Reliability, 46(3),
1997.

Ling Huang, XuanLong Nguyen, Minos Garo-
falakis, Michael I. Jordan, Anthony Joseph, and
Nina Taft. In-network pca and anomaly detection.
In B. Scholkopf, J. Platt, and T. Hoffman, edi-
tors, Advances in Neural Information Processing
Systems 19, pages 617-624, Cambridge, MA, 2007.
MIT Press.

J. E. Jackson and G. S. Mudholkar. Control proce-
dures for residuals associated with principal com-
ponent analysis. Technometrics, 21(3):341-349,
1979.

I. T. Jolliffe. Principal component analysis. In
Principal Component Analysis. Springer Verlag,
New York, 1986.

B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen.
Sketch-based change detection: Methods, evalua-
tion and applications. In ACM Internet Measure-
ment Conference, 2003.

Anukool Lakhina, Mark Crovella, and Christophe
Diot. Characterization of network-wide anomalies
in traffic flows. In ACM Internet Measurement
Conference, pages 201-206, 2004.

J. Ramsay and B. Silverman. Functional Data
Analsysis. Springer, 2005.

A. Ward, P. Glynn, and K. Richardson. Internet
service performance failure detection. ACM SIG-
METRICS Performance Evaluation Review, 26(3),
1998.

Yin Zhang, Zihui Ge, Albert Greenberg, and
Matthew Roughan. Network anomography. In
ACM Internet Measurement Conference, pages
317-330, 2005.

11

