Predicting ALS Progression with Bayesian Additive Regression Trees

Lilly Fang and Lester Mackey

November 13, 2012

The ALS Prediction Prize

- Challenge: Predict progression of ALS over time
 - Distinguish fast from slow progressors
- Measure: ALS Functional Rating Scale (ALSFRS)
 - Score ranges from 0-40
 - Based on 10 questions (Speech, Dressing, Handwriting, ...)
 - Rate of progression = slope of ALSFRS score

The Data

- 918 training + 279 test patients
 - 12 months of data (demographic, ALSFRS, vital statistics, lab tests)
 - Time series: roughly monthly measurements
- 625 validation patients
 - Given first 3 months of data
- Goal: Predict future ALSFRS slopes for validation patients
 - Error metric: Root mean squared deviation (RMSD)

Outline

Featurization

- Static Data
- Temporal Data

Modeling and Inference

Bayesian Additive Regression Trees

Evaluation

- BART Performance
- Feature Selection
- Model Comparison

- Goal: Compact numeric representation of each patient
 - Features will serve as covariates in a regression model
 - Most extracted features will be irrelevant
 - Rely on model selection / methods robust to irrelevant features

- Goal: Compact numeric representation of each patient
 - Features will serve as covariates in a regression model
 - Most extracted features will be irrelevant
 - Rely on model selection / methods robust to irrelevant features

Static Data

Categorical variables encoded as binary indicators

- Goal: Compact numeric representation of each patient
 - Features will serve as covariates in a regression model
 - Most extracted features will be irrelevant
 - Rely on model selection / methods robust to irrelevant features

Time Series Data

- Repeated measurements of variables over time
 - ALSFRS question scores
 - Alternative ALS measures (forced and slow vital capacity)
 - Vital signs (weight, height, blood pressure, respiratory rate)
 - Lab tests (blood chemistry, hematology, urinalysis)
- Number and frequency of measurements vary across patients

- Goal: Compact numeric representation of each patient
 - Features will serve as covariates in a regression model
 - Most extracted features will be irrelevant
 - Rely on model selection / methods robust to irrelevant features

Time Series Data

- Compute summary statistics from each time series
 - Mean value, standard deviation, slope, last recorded value, maximum value...
- Compute pairwise slopes (difference quotients between adjacent measurements)
 - Induces a derivative time series
 - Extract same summary statistics

11

Months

- 435 temporal features extracted
- Problem: Missing data
 - Average patient missing 10% of features
 - One patient missing 55% of features!
 - Missing values imputed using median heuristic
- Problem: Outliers
 - Nonsense values: Number of liters recorded as MDMD
 - Units incorrectly recorded ⇒ Wrong conversions
 - Extreme values
 - Treated as missing if > 4 standard deviations from mean

Modeling and Inference

Regression model

Goal: infer f from data

Unknown regression function

- Bayesian: Place a prior on f, infer its posterior
- Bonus: Uncertainty estimates for each prediction

What prior?

- Flexible and nonparametric
 - Avoid restrictive assumptions about functional form
- Favor simple, sparse models
 - Avoid overfitting to irrelevant features

Bayesian Additive Regression Trees*

f(features) = sum of "simple" decision trees

- Simplicity = tree depends on few features
 - Irrelevant features seldom selected
- Similar to frequentist ensemble methods
 - Boosted decision trees, random forests

^{*}Chipman, George, and McCulloch (2010)

BART Inference

- Estimating f: Markov Chain Monte Carlo
 - R package 'bart' available on CRAN
 - 10,000 posterior samples: \hat{f}_1 , \hat{f}_2 , \hat{f}_3 , \hat{f}_4 , ...

$$\hat{f}_i = \frac{100 \text{ trees}}{100 \text{ trees}}$$

- 10 minutes on MacBook Pro (2.5 GHz CPU, 4GB RAM)
- Prediction: Posterior mean
 - Average of \hat{f}_1 (features), \hat{f}_2 (features), \hat{f}_3 (features), ...
- Variance reduction
 - Average predictions of 10 BART models

Accuracy of BART Inference

BART Feature Selection

- Many pairwise slope features
- Lab data excluded

BART on Feature Subsets

Effect of Adding Each Feature in Order of BART Usage

Model Comparison

How do other models perform using our feature set?

Model	Our RMSD (Test)	Our RMSD (Validation)	Competitor RMSD
Lasso Regression	0.5006	0.5287	-
Random Forests	0.5052	0.5120	0.52-0.53
Boosted Trees	0.4940	0.5118	-
BART	0.4860	0.5109	-

- Additive decision tree models especially effective
- Featurization is a main differentiator of competitors

The End

Questions?

Onset Delta vs. Target

Onset.Delta versus ALSFRS Slope on Train and Test Data

Past ALSFRS Slope vs. Target

alsfrs.score.slope versus ALSFRS Slope on Train and Test Data

Last Systolic BP Slope vs. Target

last.slope.bp.systolic versus ALSFRS Slope on Train and Test Data

Max Dressing Score vs. Target

max.dressing versus ALSFRS Slope on Train and Test Data

Mean Weight Slope vs. Target

mean.slope.weight versus ALSFRS Slope on Train and Test Data

