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PageRank

Jacobi & Gauss-Seidel



How does Google google 

Page rank and searching 
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Linked by rather more, and  
more important, pages 

Linked by what-we'd-like-to-
think-are-important pages 
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Pages, outgoing links and incoming links 
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Link counting: a simple example 

The importance of a page is determined by  
the importance of the pages that link to it: 
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A very small internet "graph" 
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Rewrite relations in convenient mathematical way  



x = Px 

And a bit more convenient 
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Element k in column m   = "probability" of going from node m to node k 

Non zero column  adds up to 1 

Zero column m   node m hangs   (node 6) 

Zero row k   node k is not linked to   (node 1) 
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A simple example to introduce  
the idea of iterative solves 
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Feeling sorry for page 1 
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Let's give all pages a vote (albeit small) 

Importance to transmit 
α less than 1. 

Average rank given to all pages 
(n pages total) 

  

€ 

x = α Px+

1/n

1/n
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⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

= α Px+ v
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•  Initialize with, for example 

•  Repeat until convergence: 

This is a Jacobi iteration: oldie but goodie 

We can solve iteratively 

€ 

x k+1( ) = α Px k( ) + v

  

€ 
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Applied to our example with α=0.85 
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This was just a simple fix 

In reality it is done a little differently 



Convergence of PageRank

In the next HW you’ll prove that PageRank converges. Keep in
mind these properties of P.

I non-negative: Pij ≥ 0

I left (column) stochastic: ~1
T
P = ~1

T

or
∑n

i=1 Pij = 1 for all j

I zero diagonal: Pii = 0
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Jacobi & Gauss-Seidel



Iterative Methods

Recall for (stationary point) iterative methods we split A = M − N
And then solve Mx (k+1) = Nx (k) + b where

I Jacobi: M = D,N = −(L+ U)

I Gauss-Seidel: M = D + L,N = −U



Jacobi

For Jacobi iteration

~x (k+1) = D−1(~b − (L+ U)~x (k))

And we know the inverse of a diagonal matrix so ...

~x
(k+1)
i =

1

aii
(~bi −

n∑
j 6=i

aij~x
(k)
j )

The update for the i th coordinate of ~x (k+1) doesn’t depend on any
other coordnate and we can do these updates in parallel. But what
if we wanted to update each coordinate in order and use the
update as soon as we computed it?



Gauss-Seidel I

Jacobi updates as (same as last slide)

~x
(k+1)
i =

1

aii

~bi − n∑
j 6=i

aij~x
(k)
j


but as we update coordinate i , the updates for all previous
coordinates are available so we might change this to...

~x
(k+1)
i =

1

aii

~bi −∑
j<i

aij~x
(k+1)
j −

∑
j>i

aij~x
(k)
j





Gauss-Seidel II

If we write this new update equation (same as last slide)

~x
(k+1)
i =

1

aii

~bi −∑
j<i

aij~x
(k+1)
j −

∑
j>i

aij~x
(k)
j


in matrix form we get

~x (k+1) = D−1
(
~b − L~x (k+1) − U~x (k)

)
or

(D + L)~x (k+1) = ~b − U~x (k)

so we see this is a split where M = D + L and N = −U which is
the Gauss-Seidel update.
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