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1 Convergence Concepts

1.1 Converge in probability

1.1.1 Convergence of real numbers

• Recall that we say a sequence of real numbers {an : n ≥ 1} converges to
a if ∀ε > 0, there exists N ≥ 1 such that

|an − a| ≤ ε

for every n ≥ N .

• Similarly, we might want to define convergence for a sequence of random
variables {Xn, n ∈ N} by looking at |Xn −X|, for some random variable
X.

• Notice that |Xn −X| ≥ ε is an random inequality.

• To define its convergence, we need to consider P (|Xn −X| ≥ ε)

1.1.2 Convergence in probability

• Let {Xn, n ∈ N} be a sequence of random variables, and let X be some
random variable. We say that {Xn, n ∈ N} converges in probability to X
if ∀ε > 0

P (|Xn −X| ≥ ε)→ 0

• We denote it as Xn
P→ X.

• Xn
P→ X does not imply E(Xn)→E(X)!

1.2 Converge almost surely

• There is another type of convergence, which is also defined via the actual
value of the random variables. and is called almost sure convergence.
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• We say that {Xn} converges almost surely to X if

P ( lim
n→∞

Xn = X) = 1

Note that convergence in probability is defined by convergence of probabili-
ties of a sequence of events. Is this the only choice?

1.3 Converge in distribution

• Let {Xn, n ∈ N} be a sequence of random variables, and let X be some
random variable. Let F (Xn) and F (X) denote their cdfs. We say that
{Xn} converges in distribution to X if F (Xn)(x) → F (X)(x), for every x
at which F (X) is continuous.

• We denote it as Xn
D→ X.

• Note that convergence in distribution is defined by convergence of cdfs,
instead of the actual values taken by the random variables.

1.4 Relationships

• If Xn
a.e.→ X, then Xn

P→ X.

• If Xn
P→ X, then Xn

D→ X.

• Let a ∈ R be a constant. Then Xn
P→ a, if and only if Xn

D→ a.

1.5 Convergence of continuous functions of random vari-
ables

One important property of convergence of random variables it that it is pre-
served in under continuous transformation

• If Xn
P→ a for some constant a and g : R → R is continuous at a, then

g(Xn)
P→ g(a).

• If Xn
P→ X and g : R→ R is continuous, then g(Xn)

P→ g(X).

• If Xn
D→ X and g : R→ R is continuous, then g(Xn)

D→ g(X).

1.6 Slutsky’s Theorem

If Xn
D→ X and Yn

P→ a, where a ∈ R is a constant, then Xn +Yn
D→ X + a and

XnYn
D→ aX.

Note that to apply Slutsky’s Theorem, the sequence of random variables Yn
must be converging to a constant.
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2 Weak Law of Large Numbers and Central Limit
Theorem

2.1 Weak Law of Large Numbers

2.1.1 Weak Law of Large Numbers

• Let {Xn, n ∈ N} be a sequence of iid random variables with E(|Xi|) <∞.
Let X̄n = 1

n

∑n
i=1Xi, then

X̄n
P→ E(Xi)

• WLLN formalizes the intuition that the expectation of a random variable
may be interpreted as its long-run average.

• The theorem assumes nothing about the variance of Xi. In fact, it holds
for the case where V ar(Xi) =∞.

• In fact, there also exits a strong law of large number which says that
X̄n

a.e.→ E(Xi).

• In more sophisticated versions of these theorems, the iid assumption can
be relax much more for the for the weak law than for the strong law.

• However, we do need the assumption that E(|Xi|) <∞.

2.2 Central Limit Theorem

2.2.1 Central Limit Theorem

• Let {Xn, n ∈ N} be a sequence of iid random variables with V ar(Xi) <
∞. Let X̄n = 1

n

∑n
i=1Xi. Then

√
n(X̄n − µ)

D→ N(0, σ2)

.

where µ = E(Xi) and σ2 = V ar(Xi)

• Informally, CLT states that for large n, X̄n is approximated normal with
mean µ and variance σ2/n.

• The WLLN stated above is implied by the CLT. However, In more sophis-
ticated versions of these theorems, the iid assumption can be relax much
more for the for the WLLN than for the CLT.
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3 Delta Method

3.1 Asymptotic of continuous functions of random vari-
ables

• Let {Yn, n ≥ 1} be a sequence of random variables such that
√
n(Yn−a)

D→
Z for some random variable Z and some constant a ∈ R. Let g : R → R
be a function. What can we say about the asymptotic behavior of g(Yn)?

• We already know that g(Yn)
D→ g(a). Can we do better?

• If we assume g is differentiable at a, then

√
n(g(Yn)− g(a)) ≈ g′(a)

√
n(Yn − a)

D→ g′(a)Z

• This is basic idea behind delta method.

3.2 Delta Method

• Let {Yn, n ≥ 1} be a sequence of random variables such that
√
n(Yn−a)

D→
Z for some random variable Z and some constant a ∈ R. Let g : R → R
be a continuously differentiable at a. Then

√
n(g(Yn)− g(a))

D→ g′(a)Z
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