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Course Overview

Three sections:

I Monday 2:30pm-3:45pm Wednesday 1:00pm-2:15pm
Thursday 2:30pm-3:45pm

Goal:

I Review some basic (or not so basic) concepts in probability
and statistics

I Good preparation for CME 308

Syllabus:

I Basic probability, including random variables, conditional
distribution, moments, concentration inequality

I Convergence concepts, including three types of convergence,
WLLN, CLT, delta method

I Statistical inference, including fundamental concepts in
inference, point estimation, MLE
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Random variables: discrete and continuous

I For our purposes, random variables will be one of two types:
discrete or continuous.

I A random variable X is discrete if its set of possible values X
is finite or countably infinite.

I A random variable X is continuous if its possible values form
an uncountable set (e.g., some interval on R) and the
probability that X equals any such value exactly is zero.

I Examples:
I Discrete: binomial, geometric, Poisson, and discrete uniform

random variables
I Continuous: normal, exponential, beta, gamma, chi-squared,

Student’s t, and continuous uniform random variables



The probability density (mass) function

I pmf: The probability mass function (pmf) of a discrete
random variable X is a nonnegative function
f (x) = P(X = x), where x denotes each possible value that
X can take. It is always true that

∑
x∈X f (x) = 1.

I pdf: The probability density function (pdf) of a continuous
random variable X is a nonnegative function f (x) such that∫ b
a f (x)dx = P(a ≤X≤ b) for any a, b ∈ R. It is always true

that
∫∞
−∞ f (x)dx = 1.



The cumulative distribution function

The cumulative distribution function (cdf) of a random variable X
is F (x) = P(X ≤ x).

I If X is discrete, then F (x) =
∑

t∈X:t≤x f (t), and so the cdf
consists of constant sections separated by jump
discontinuities.

I If X is continuous, then F (x) = P(X ≤ x) =
∫ x
−∞ f (t)dt, and

so the cdf is a continuous function regardless of the continuity
of f .

Note
The cdf is a more general description of a random variable than
the pmf or pdf, since it has a single definition that applies for both
discrete and continuous random variables.



A common mistake in probability

A random variable is not the same thing as its distribution.

One might find the following helpful in distinguishing these two
concepts

I A distribution can be thought of as a blueprint for generating
r.v.s. Confusing a distribution with that r.v. is like confusing a
blueprint of a house with the house itself. The word is not
the thing, the map is not the territory.

I It is possible to have two r.v.s which have the same
distribution but never equal to each other.



Conditional probability

The conditional probability of event A given event B is defined as

P(A|B) =
P(A ∩ B)

P(B)

Quiz
Is it true that P(A|B) always larger than P(A)? or less?



Conditional distribution

If X and Y are both discrete random variables with joint
probability mass function pX ,Y (x , y), then the conditional
probability mass function of X given Y is given by:

P(X = x |Y = y) = pX |Y (x |y) :=
pX ,Y (x , y)

pY (y)

If X and Y are both continuous random variables with joint
density function fX ,Y (x , y), the conditional probability density
function of X given Y is given by:

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)



Another common mistake

A Conditional p.d.f. is not the result of conditioning on a set of
probability zero.

I The conditional p.d.f. fX |Y (x |y) of X given Y = y is the
p.d.f. we would use for X if we were to learn that Y = y . So
that

∫
A fX |Y (x |y) = P(X ∈ A|Y = y) for any set A ∈ R.

I This sounds as if we were conditioning on the event Y = y ,
which has zero probability if Y has a continuous distribution.

I However, this is not technically correct. P(X ∈ A|Y = y) can
not even be properly defined using our definition of
conditional probability.

I Actually, the value of fX |Y (x |y) is a limit:

fX |Y (x |y) = lim
ε→0

∂

∂x
P(X ≤ x |y − ε < Y < y + ε)
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Expectation

The expectation E [X ] of a continuous random variable X is
defined as:

E [X ] =

∫
R
xf (x)dx

Similarly, the expectation of a function g(·) of X can be computed
as (LOTUS):

E [g(X )] =

∫
R
g(x)f (x)dx

Quiz
Does E [X ] always exist?



Variance

The variance Var [X ] of a random variable X is defined as

Var [X ] = E
[
(X − E [X ])2

]
An equivalent (and typically easier) formula is

Var [X ] = E
[
X 2
]
− (E [X ])2

Similarly, the variance of a function g(X ) of a random variable X is

Var [g(X )] = E
[
g(X )2

]
− (E [g(X )])2

Quiz
If you want to implement Var [X ] on a computer, which formula
would you chose?



Covariance

The covariance Cov [X ,Y ] of a random variable X and a random
variable Y is defined as

Cov [X ,Y ] = E [(X − E [X ])(Y − E [Y ])] .

An equivalent (and typically easier) formula is

Cov [X ,Y ] = E [XY ]− E [X ]E [Y ]

Similarly, the covariance of g(X ) and h(Y ) is

Cov [g(X ), g(Y )] = E [g(X )h(Y )]− E [g(X )]E [h(Y )]
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Important properties of expectation

I Linearity :
E [a + bg(X ) + ch(Y )] = a + bE [g(X )] + cE [h(Y )]
In particular, for a sequence of random variables {Xi}ni=1,

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi ]

I The fundamental bridge:
Let I (·) be the indicator function for some random event A,
then

E [I (A)] = P(A)



Linearity of expectation: An example

A group of n people play “Secret Santa” as follows: each puts his
or her name on a slip of paper in a hat, picks a name randomly
from the hat (without replacement), and then buys a gift for that
person. Unfortunately, they overlook the possibility of drawing
one’s own name, so some may have to buy gifts for themselves.
Assume n ≥ 2.
Find the expected number of pairs of people, A and B, such that
A picks B ′s name and B picks A′s name (where A 6= B and order
doesn’t matter).



Important properties of variance and covariance

I Var [a + bg(X )] = b2Var [g(X )]

I Cov [a + bg(X ), h(Y )] = bCov [g(X ), h(Y )]

I If X and Y are independent, then

Cov [g(X ), h(Y )] = 0

I If X and Y are independent, then

Var [g(X ) + h(Y )] = Var [g(X )] + Var [h(Y )]
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Conditional expectation

The conditional expectation of a continuous random variable X
given another random variable Y is defined as:

E [X |Y = y ] =

∫
R
xfX |Y (x |y)dx

where fX |Y (·|·) =
fX ,Y (·,·)
fY (·) is the conditional probability density

function of X given Y.

Remarks

I Notice that computing E [X |Y = y ] yields (in general)
different results for different values of y . Thus, E [X |Y = y ] is
a function of y (and not a random variable).

I If we plug the random variable Y into this function, which
does yield a random variable. This random variable is what we
mean when we write E [X |Y ].



Conditional variance

The conditional variance of a continuous random variable X given
another random variable Y is defined as:

Var [X |Y = y ] = E
[
X 2|Y = y

]
− (E [X |Y = y ])2

Remarks

I Again, we might consider either Var [X |Y = y ], which is a
function of y , or Var [X |Y ] which is a random variable.
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Important properties of conditional expectation

I Linearity : E [X1 + X2|Y ] = E [X2|Y ] + E [X2|Y ]

I Independence: if X and Y are independent: E [X |Y ] = E [X ]

I Taking out what’s known:

E [h(Y )X |Y ] = h(Y )E [X |Y ]

I Law of Total Expectation:

E [X ] = E [E [X |Y ]]

I Law of Total Variance:

Var [X ] = E [Var [X |Y ]] + Var [E [X |Y ]]
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Concentration inequality

I Concentration inequalities provide probability bounds on how
a random variable deviates from some value (e.g., its
expectation).

I Most concentration inequalities are about the concentrating
behavior of the sum of a sequence of iid random variables.
But such behavior is shared by other functions of independent
random variables as well.

I As an example, the laws of large numbers(which we will see in
the next section) states that sums of independent random
variables are, under very mild conditions, close to their
expectation with a large probability.



Markov inequality

Let X be any nonnegative integrable random variable then for all
a > 0,

P(X ≥ a) ≤ E [X ]

a
.



Example: application of Markov inequality

Consider a biased coin, which lands heads with probability 1/10.
Suppose the coin is flipped 200 times consecutively. Give an upper
bound on the probability that it lands heads at least 120 times.

Solution:
The total number of heads is a binomial random variable X, with
parameters p = 1/10 and n = 200. Thus, the expected number of
heads is

E [X ] = np = 20

By Markov inequality, the probability of at least 120 heads is

P(X ≥ 120) ≤ E [X ]

120
=

20

120
= 1/6
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Chebyshev inequality

Let X be any integrable random variable then for all a > 0

P(|X − E [X ] | ≥ a) ≤ Var [X ]

a2
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Chernoff bound

Chernoff bound
Suppose we conduct a sequence of n iid Bernoulli trials, with
probability p of landing head. Let X be the total number of heads
in n trials. Then X ∼ Bin(n, p) (recall that E [X ] = np). Then

P(X ≥ (1 + δ)E [X ]) ≤
(

eδ

(1 + δ)1+δ

)E[X ]

If we let δ = 5, one can show that :

P(X ≥ 6E [X ]) ≤ 2−(6E[X ])



Example: application of Chernoff bound

If we apply the Chernoff bound on the previous example, we get:

P(X ≥ 120) = P(X ≥ 6E [X ]) ≥ 2−6E(X ) = 2−(6×20) = 2−120

which is vastly better than the one obtained from Markov
inequality.
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