Course Overview

Three sections:

 Monday 2:30pm-3:45pm Wednesday 1:00pm-2:15pm Thursday 2:30pm-3:45pm

Goal:

- Review some basic (or not so basic) concepts in probability and statistics
- Good preparation for CME 308

Syllabus:

- Basic probability, including random variables, conditional distribution, moments, concentration inequality
- Convergence concepts, including three types of convergence, WLLN, CLT, delta method
- Statistical inference, including fundamental concepts in inference, point estimation, MLE

Section 1: Basic probability theory

Dangna Li

ICME

September 14, 2015

Random Variables and Distributions

Expectation, Variance and Covariance Definitions Key properties

Conditional Expectation and Conditional Variance

Definitions Key properties

Concentration Inequality

Random variables: discrete and continuous

- For our purposes, random variables will be one of two types: discrete or continuous.
- ► A random variable X is discrete if its set of possible values X is finite or countably infinite.
- A random variable X is continuous if its possible values form an uncountable set (e.g., some interval on ℝ) and the probability that X equals any such value exactly is zero.
- Examples:
 - Discrete: binomial, geometric, Poisson, and discrete uniform random variables
 - Continuous: normal, exponential, beta, gamma, chi-squared, Student's t, and continuous uniform random variables

The probability density (mass) function

- *pmf*: The probability mass function (pmf) of a discrete random variable X is a nonnegative function f(x) = P(X = x), where x denotes each possible value that X can take. It is always true that ∑_{x∈X} f(x) = 1.
- *pdf*: The probability density function (pdf) of a continuous random variable X is a nonnegative function f(x) such that ∫_a^b f(x)dx = P(a ≤X≤ b) for any a, b ∈ ℝ. It is always true that ∫_{-∞}[∞] f(x)dx = 1.

The cumulative distribution function

The cumulative distribution function (cdf) of a random variable X is $F(x) = P(X \le x)$.

- If X is discrete, then F(x) = ∑_{t∈X:t≤x} f(t), and so the cdf consists of constant sections separated by jump discontinuities.
- If X is continuous, then F(x) = P(X ≤ x) = ∫^x_{-∞} f(t)dt, and so the cdf is a continuous function regardless of the continuity of f.

Note

The cdf is a more general description of a random variable than the pmf or pdf, since it has a single definition that applies for both discrete and continuous random variables. A random variable is not the same thing as its distribution.

One might find the following helpful in distinguishing these two concepts

- A distribution can be thought of as a blueprint for generating r.v.s. Confusing a distribution with that r.v. is like confusing a blueprint of a house with the house itself. The word is not the thing, the map is not the territory.
- It is possible to have two r.v.s which have the same distribution but never equal to each other.

The conditional probability of event A given event B is defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Quiz

Is it true that P(A|B) always larger than P(A)? or less?

Conditional distribution

If X and Y are both discrete random variables with joint probability mass function $p_{X,Y}(x, y)$, then the conditional probability mass function of X given Y is given by:

$$P(X = x | Y = y) = p_{X|Y}(x|y) := \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

If X and Y are both continuous random variables with joint density function $f_{X,Y}(x, y)$, the conditional probability density function of X given Y is given by:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Another common mistake

A Conditional p.d.f. is not the result of conditioning on a set of probability zero.

- The conditional p.d.f. f_{X|Y}(x|y) of X given Y = y is the p.d.f. we would use for X if we were to learn that Y = y. So that ∫_A f_{X|Y}(x|y) = P(X ∈ A|Y = y) for any set A ∈ ℝ.
- This sounds as if we were conditioning on the event Y = y, which has zero probability if Y has a continuous distribution.
- ► However, this is not technically correct. P(X ∈ A|Y = y) can not even be properly defined using our definition of conditional probability.
- Actually, the value of $f_{X|Y}(x|y)$ is a limit:

$$f_{X|Y}(x|y) = \lim_{\epsilon \to 0} \frac{\partial}{\partial x} P(X \le x|y - \epsilon < Y < y + \epsilon)$$

Random Variables and Distributions

Expectation, Variance and Covariance Definitions

Key properties

Conditional Expectation and Conditional Variance

Definitions Key properties

Concentration Inequality

Expectation

The expectation $\mathbb{E}[X]$ of a continuous random variable X is defined as:

$$\mathbb{E}\left[X\right] = \int_{\mathbb{R}} x f(x) dx$$

Similarly, the expectation of a function $g(\cdot)$ of X can be computed as (LOTUS):

$$\mathbb{E}\left[g(X)\right] = \int_{R} g(x)f(x)dx$$

Quiz

Does $\mathbb{E}[X]$ always exist?

Variance

The variance Var[X] of a random variable X is defined as

$$\operatorname{Var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$$

An equivalent (and typically easier) formula is

$$\operatorname{Var}[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

Similarly, the variance of a function g(X) of a random variable X is

$$\operatorname{Var}\left[g(X)\right] = \mathbb{E}\left[g(X)^2\right] - (\mathbb{E}\left[g(X)\right])^2$$

Quiz

If you want to implement $\operatorname{Var}[X]$ on a computer, which formula would you chose?

Covariance

The covariance Cov [X, Y] of a random variable X and a random variable Y is defined as

$$\operatorname{Cov} [X, Y] = \mathbb{E} [(X - \mathbb{E} [X])(Y - \mathbb{E} [Y])].$$

An equivalent (and typically easier) formula is

$$\operatorname{Cov}[X, Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Similarly, the covariance of g(X) and h(Y) is

$$\operatorname{Cov} \left[g(X), g(Y)\right] = \mathbb{E}\left[g(X)h(Y)\right] - \mathbb{E}\left[g(X)\right]\mathbb{E}\left[h(Y)\right]$$

Random Variables and Distributions

Expectation, Variance and Covariance Definitions Key properties

Conditional Expectation and Conditional Variance

Definitions Key properties

Concentration Inequality

Important properties of expectation

Linearity:

 $\mathbb{E}\left[a + bg(X) + ch(Y)\right] = a + b\mathbb{E}\left[g(X)\right] + c\mathbb{E}\left[h(Y)\right]$ In particular, for a sequence of random variables $\{X_i\}_{i=1}^n$,

$$\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]$$

The fundamental bridge:
 Let I(·) be the indicator function for some random event A, then

$$\mathbb{E}\left[\mathbb{I}\left(A\right)\right]=P(A)$$

Linearity of expectation: An example

A group of *n* people play "Secret Santa" as follows: each puts his or her name on a slip of paper in a hat, picks a name randomly from the hat (without replacement), and then buys a gift for that person. Unfortunately, they overlook the possibility of drawing one's own name, so some may have to buy gifts for themselves. Assume $n \ge 2$.

Find the expected number of pairs of people, A and B, such that A picks B's name and B picks A's name (where $A \neq B$ and order doesn't matter).

Important properties of variance and covariance

•
$$\operatorname{Var}[a + bg(X)] = b^2 \operatorname{Var}[g(X)]$$

$$\blacktriangleright \operatorname{Cov} \left[a + bg(X), h(Y) \right] = b \operatorname{Cov} \left[g(X), h(Y) \right]$$

▶ If X and Y are independent, then

$$\operatorname{Cov}\left[g(X),h(Y)\right]=0$$

▶ If X and Y are independent, then

 $\operatorname{Var}\left[g(X)+h(Y)\right]=\operatorname{Var}\left[g(X)\right]+\operatorname{Var}\left[h(Y)\right]$

Random Variables and Distributions

Expectation, Variance and Covariance Definitions Key properties

Conditional Expectation and Conditional Variance Definitions

Key properties

Concentration Inequality

Conditional expectation

The conditional expectation of a continuous random variable X given another random variable Y is defined as:

$$\mathbb{E}\left[X|Y=y\right] = \int_{\mathbb{R}} x f_{X|Y}(x|y) dx$$

where $f_{X|Y}(\cdot|\cdot) = \frac{f_{X,Y}(\cdot,\cdot)}{f_Y(\cdot)}$ is the conditional probability density function of X given Y.

Remarks

- Notice that computing E [X|Y = y] yields (in general) different results for different values of y. Thus, E [X|Y = y] is a function of y (and not a random variable).
- If we plug the random variable Y into this function, which does yield a random variable. This random variable is what we mean when we write E [X|Y].

The conditional variance of a continuous random variable X given another random variable Y is defined as:

$$\operatorname{Var}\left[X|Y=y\right] = \mathbb{E}\left[X^2|Y=y\right] - \left(\mathbb{E}\left[X|Y=y\right]\right)^2$$

Remarks

► Again, we might consider either Var [X|Y = y], which is a function of y, or Var [X|Y] which is a random variable.

Random Variables and Distributions

Expectation, Variance and Covariance Definitions Key properties

Conditional Expectation and Conditional Variance Definitions Key properties

Concentration Inequality

Important properties of conditional expectation

- *Linearity*: $\mathbb{E}[X_1 + X_2 | Y] = \mathbb{E}[X_2 | Y] + \mathbb{E}[X_2 | Y]$
- ▶ Independence: if X and Y are independent: $\mathbb{E}[X|Y] = \mathbb{E}[X]$
- Taking out what's known:

$$\mathbb{E}\left[h(Y)X|Y\right] = h(Y)\mathbb{E}\left[X|Y\right]$$

Law of Total Expectation:

$$\mathbb{E}\left[X\right] = \mathbb{E}\left[\mathbb{E}\left[X|Y\right]\right]$$

Law of Total Variance:

 $\operatorname{Var}[X] = \mathbb{E}\left[\operatorname{Var}[X|Y]\right] + \operatorname{Var}\left[\mathbb{E}[X|Y]\right]$

Random Variables and Distributions

Expectation, Variance and Covariance Definitions Key properties

Conditional Expectation and Conditional Variance

Definitions Key properties

Concentration Inequality

Markov inequality

Chebyshev inequality Chernoff bound

Concentration inequality

- Concentration inequalities provide probability bounds on how a random variable deviates from some value (e.g., its expectation).
- Most concentration inequalities are about the concentrating behavior of the sum of a sequence of *iid* random variables.
 But such behavior is shared by other functions of independent random variables as well.
- As an example, the laws of large numbers(which we will see in the next section) states that sums of independent random variables are, under very mild conditions, close to their expectation with a large probability.

Let X be any *nonnegative* integrable random variable then for all a > 0, $\mathbb{R} [X]$

$$\mathbb{P}(X \ge a) \le rac{\mathbb{E}[X]}{a}.$$

Example: application of Markov inequality

Consider a biased coin, which lands heads with probability 1/10. Suppose the coin is flipped 200 times consecutively. Give an upper bound on the probability that it lands heads at least 120 times.

Solution:

The total number of heads is a binomial random variable X, with parameters p = 1/10 and n = 200. Thus, the expected number of heads is

$$\mathbb{E}[X] = np = 20$$

By Markov inequality, the probability of at least 120 heads is

$$P(X \ge 120) \le rac{\mathbb{E}[X]}{120} = rac{20}{120} = 1/6$$

Random Variables and Distributions

Expectation, Variance and Covariance Definitions Key properties

Conditional Expectation and Conditional Variance

Definitions Key properties

Concentration Inequality

Chebyshev inequality

Let X be any integrable random variable then for all a > 0

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge a) \le \frac{\operatorname{Var}[X]}{a^2}$$

Random Variables and Distributions

Expectation, Variance and Covariance Definitions Key properties

Conditional Expectation and Conditional Variance

Definitions Key properties

Concentration Inequality

Chernoff bound

Chernoff bound

Suppose we conduct a sequence of *n* iid Bernoulli trials, with probability *p* of landing head. Let *X* be the total number of heads in *n* trials. Then $X \sim Bin(n, p)$ (recall that $\mathbb{E}[X] = np$). Then

$$P(X \geq (1+\delta)\mathbb{E}\left[X
ight]) \leq \left(rac{e^{\delta}}{(1+\delta)^{1+\delta}}
ight)^{\mathbb{E}\left[X
ight]}$$

If we let $\delta =$ 5, one can show that :

$$P(X \ge 6\mathbb{E}[X]) \le 2^{-(6\mathbb{E}[X])}$$

Example: application of Chernoff bound

If we apply the Chernoff bound on the previous example, we get:

$$P(X \ge 120) = P(X \ge 6\mathbb{E}[X]) \ge 2^{-6E(X)} = 2^{-(6 \times 20)} = 2^{-120}$$

which is vastly better than the one obtained from Markov inequality.