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Probability Space

A probability space consists of three parts:

A sample space, Ω,

A set of events F ,

A probability P.
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Sample Space

A sample space is the set of all possible outcomes.

Single coin flip:
Ω = {H,T}.

Double coin flip:

Ω = {(H,H), (H,T ), (T ,H), (T ,T )}.

Single dice roll:
Ω = {1, 2, 3, 4, 5, 6}.

Double dice roll:
Ω =?
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Set of Events

A event is a subset of the sample space.

Single coin flip: (Event that a coin lands head)

A = {H}.

Double coin flip: (Event that first coin lands head)

A = {(H,H), (H,T )}.

Single dice roll: (Event that the dice roll is less than 4)

A = {1, 2, 3}.

Double dice roll: (Event that the dice roll add up to less than 4)

A = {(1, 1), (1, 2), (2, 1)}
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The collection of all such events we would like to consider are called
the set of events, F .

F is a σ-algebra.

Ω ∈ F .
F is closed under complementation.
F is closed under countable unions.
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Probability

A set function on the set of events such that

0 ≤ P(A) ≤ 1 for all events A.

P(Ω) = 1.

For each sequence of mutually disjoint events A1,A2,A3, ...,

P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai ).

(countable additivity).
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Probability

Fair coin

P(∅) = 0

P({H}) = 1/2

P({T}) = 1/2

P({H,T}) = 1

Fair die

P(∅) = 0

P({1}) = 1/6

P({2}) = 1/6

P({1, 2, 3}) = 1/2
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Some Properties (Good Exercise Problems)

P(∅) = 0.

P(Ac) = 1− P(A).

If A ⊆ B, then P(A) ≤ P(B).

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

For each sequence of events A1,A2,A3, ... (not necessarily disjoint),

P

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

P(Ai ).
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Continuous Probability Space

Similar idea as discrete probability space.

Example

Arrival time of trains passing with approxmiately equal intervals.
Chord length of a circle of radius R with chord randomly selected.
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Probability Space

A probability space consists of three parts:

A sample space, Ω,

A set of events F ,

A probability P.
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Sample Space

A sample space is the set of all possible outcomes.

Random number between 0 and 1:

Ω = [0, 1).

Height of 10-year-olds (in cm):

Ω = [0,∞).
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Set of Events

A event is a subset of the sample space.

Random number between 0 and 1: (Event that it is less than 0.5)

A = [0, 0.5)

Height of 10-year-olds (in cm): (Event that a 10-year-old is taller
than 150cm)

A = [150,∞)
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Permutations

Permutation relates to the act of rearranging members of a set into a
particular sequence or order.

Ex) Six permutations of the set {1,2,3}
Ex) Ways to sit around a table

k-permutation of n are the different ordered arrangements of a k-element
subset of an n-set, usually denoted by

nPk =
n!

(n − k)!
.

Jane Bae (Stanford) Probability and Statistics September 16, 2014 16 / 35



Combinations

Combination is a way of selecting members from a grouping, such that
the order of selection does not matter.

Ex) Drawing marbles out of a box

k-combination of n are the different groupings of a k-element subset of
an n-set, usually denoted by

nCk =
n!

k!(n − k)!
.
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Random Variables

A random variable is a function from a sample space to a real number.

X : Ω→ R

Example:

Single coin flip

X (H) = 1,

X (T ) = −1.

Double dice roll

X (i , j) = i

Y (i , j) = j

Z (i , j) = i + j .
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Distributions of Discrete Random Variables

A discrete random variable X assumes values in discrete subset S of R.
The distribution of a discrete random variable is completely described by a
probability mass function pX : R→ [0, 1] such that

P(X = x) = pX (x).

Example:

Bernoulli: X ∼ Ber(p) if X ∈ {0, 1} and

pX (1) = 1− pX (0) = p.

Binomial: X ∼ Bin(n, p) if X ∈ {0, 1, ..., n} and

pX (k) =

(
n

k

)
pk(1− p)n−k .

Poisson: X ∼ Pois(λ) if X ∈ {0, 1, ...} and

pX (k) =
λke−λ

k!
.
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Distributions of Continuous Random Variables

A continuous random variable X assumes values in R.
The distribution of continuous random variables is completely described by
a probability density function fX : R→ R+ such that

P(a ≤ X ≤ b) =

∫ b

a
fX (x)dx .

Example:

Uniform: X ∼ U(a, b), a ≤ b if

fX (x) =

{
1

b−a , a ≤ x ≤ b

0, otherwise.

Chi-Square: Q ∼ χ2(k), k ∈ Z if

fX (x) =

{
xk/2−1e−x/2

2k/2Γ(k/2)
, x ≥ 0

0, otherwise.
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Gaussian/Normal: X ∼ N (µ, σ2), µ ∈ R, σ2 > 0 if

fX (x) =
1√

2πσ2
e−

(x−µ)2

2σ2
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Probability Distribution

Includes the probability mass function and probability density function
mentioned above.
Also includes:

Cumulative distribution function

FX (x) = P(X ≤ x), x ∈ R.

Characteristic function

Any rule that defines a distribution

NOTATION: The right-hand sides of the previous displays are shorthand
notation for the following:

P(X ≤ x) = P({ω ∈ Ω : X (ω) ≤ x})
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Note 1: Distribution can be identical even if the supporting probability
space is different. Example:

X (H) = 1

X (T ) = −1

Y (i) =

{
1, i is odd

−1, i is even

Note 2: Distribution can be different even if the supporting probability
space is identical.
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Joint Distribution

Two random variables X and Y induce a probabillity PX ,Y on R2:

PX ,Y ((−∞, x ]× (−∞, y ]) = P(X ≤ x ,Y ≤ y).

A collection of random variables X1,X2, ...,Xn induce a probabillity
PX1,...,Xn on Rn:

PX1,...,Xn((∞, x1]× · · · × (∞, xn]) = P(X1 ≤ x1, · · · ,Xn ≤ xn).
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Joint distribution of two discrete random variables X and Y assuming
values in SX and SY can be completely described by joint probability mass
function pX ,Y : R× R→ [0, 1] such that

P(X = x ,Y = y) = pX ,Y (x , y).

Joint distribution of two continuous random variables X and Y can be
completely described by joint probability density function
fX ,Y : R× R→ R+ such that

P(X ≤ x ,Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX ,Y (x , y)dydx .
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Independence

Two events A and B are independent if and only if their joint probability
equals the product of their probabilities:

P(A ∩ B) = P(A)P(B).

A finite set of events {Ai} is pairwise independent iff every pair of events
is independent. That is, if and only if for all distinct pairs of indices m, n

P(Am ∩ An) = P(Am)P(An).

A finite set of events is mutually independent if and only if every event is
independent of any intersection of the other events.That is, iff for every
subset An

P

(
n⋂

i=1

Ai

)
=

n∏
i=1

P(Ai ).
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A set of random variables is pairwise independent iff every pair of random
variables is independent.
That is either joint cumulative distribution function

FX ,Y (x , y) = FX (x)FY (y),

or equivalently, joint density

fX ,Y (x , y) = fX (x)fY (y).

A set of random variables is mutually independent iff for any finite subset
X1, . . . ,Xn and any finite sequence of numbers a1, . . . , an, the events
{X1 ≤ a1}, . . . , {Xn ≤ an} are mutually independent events.
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Conditional Probability

The conditional probability of A given B is defined as

P(A|B) =
P(A ∩ B)

P(B)
.
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Conditional Probability Mass and Density

If X and Y are both discrete random variables with joint probability mass
function pX ,Y (x , y),

P(X = x |Y = y) = pX |Y (x |y) :=
pX ,Y (x , y)

pY (y)
.

If X and Y are both continuous random variables with joint density
function fX ,Y (x , y),

P(a ≤ X ≤ b|Y = y) =

∫ a

b
fX |Y (x |y)dx ,

where

fX |Y (x |y) =
fX ,Y (x , y)

fY (y)
.
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Bayes’ theorem

The relationship between P(A|B) and P(B|A) is given by

P(B|A) =
P(A|B)P(B)

P(A)
.

That is, P(A|B) = P(B|A) only if P(B)/P(A) = 1, or equivalently,
P(A) = P(B).
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Exercise

Consider a family with two children. Given that one of the children is
a boy, what is the probability that both children are boys?

Mr. Smith is the father of two. We meet him walking along the street
with a young boy whom he proudly introduces as his son. What is the
probability that Mr. Smiths other child is also a boy?
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From 5 August 2011 New York Times article by John Allen Paulos:
”Assume that you are presented with three coins, two of them fair and the
other a counterfeit that always lands heads. If you randomly pick one of
the three coins, the probability that it’s the counterfeit is 1 in 3. This is
the prior probability of the hypothesis that the coin is counterfeit. Now
after picking the coin, you flip it three times and observe that it lands
heads each time. Seeing this new evidence that your chosen coin has
landed heads three times in a row, you want to know the revised posterior
probability that it is the counterfeit. The answer to this question, found
using Bayes’s theorem (calculation mercifully omitted), is 4 in 5. You thus
revise your probability estimate of the coin’s being counterfeit upward from
1 in 3 to 4 in 5.”
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Suppose a drug test is 99% sensitive. That is, the test will produce 99%
true positive results for drug users. Suppose that 0.5% of people are users
of the drug. If a randomly selected individual tests positive, what is the
probability he or she is a user?
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Expectation

For discrete random variable X , the expectation of X is

E [X ] =
∑
x∈S

xpX (x).

For continuous random variable Y , the expectation of Y is

E [Y ] =

∫ ∞
−∞

yfY (y)dy .
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We can also compute expecation of g(X ) and g(Y ) as

E [g(X )] =
∑
x∈S

g(x)pX (x),

and

E [g(Y )] =

∫ ∞
−∞

g(y)fY (y)dy .
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Basic Properties of Expectation

Monotonicity
If X and Y are random variables such that X ≤ Y ”almost surely”,
then E [X ] ≤ E [Y ].

Linearity
E [aX + bY + c] = aE [X ] + bE [Y ] + c .
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Moments

The expected values of the powers of X are called the moments of X .

Mean: E [X ]

Variance: E [(X − E [X ])2] = E [X 2]− E [X ]2

(Standard Deviation =
√

Variance)

There are higher order moments of both X and X − E [X ].
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Exercises

A number is chosen at random from the set S = {−1, 0, 1}. Let X be
the number chosen. Find the expected value, variance, and standard
deviation of X .

Let X and Y be independent random variables with uniform density
functions on [0, 1]. Find
(a) E (|X − Y |).
(b) E (max(X ,Y )).
(c) E (min(X ,Y )).
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Covariance

The covariance between two jointly distributed real-valued random
variables X and Y with finite second moments is defined as

σ(X ,Y ) = E [(X − E [X ])(Y − E [Y ])].

By using the linearity property of expectations

σ(X ,Y ) = E [XY ]− E [X ]E [Y ].

If σ(X ,Y ) = 0, the two random variables are uncorrelated.

Exercise: Show that independent random variables are uncorrelated.

Jane Bae (Stanford) Probability and Statistics September 15, 2014 9 / 39



Outline

1 Probability Concetps
Expectation and Moments
Conditional Expectation
Moment Generating Function, Characteristic Function

2 Limit Theorems

3 Statistics

Jane Bae (Stanford) Probability and Statistics September 15, 2014 10 / 39



Conditional Expectation

For discrete random variables X and Y, the conditional expectation of X
given Y = y is

E [X |Y = y ] =
∑
x∈S

xpX |Y (x |y)dx =
∑
x∈S

x
P(X = x ,Y = y)

P(Y = y)
.
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For continuous random variables X and Y, the conditional expectation of
X given Y = y is

E [X |Y = y ] =

∫ ∞
−∞

xfX |Y (x |y)dx =

∫ ∞
−∞

x
fX ,Y (x , y)

fY (y)
.

Linearity and monotonicity also holds for conditional expectation.
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Expectation Inequalities

Chebyshev’s Inequality:
Let X be a random variable with finite expected value µ and finite
non-zero variance σ2. Then for any real number k > 0,

P(|X − µ| ≥ kσ) ≤ 1

k2
.

Markov’s Inequality:
If X is any nonnegative integrable random variable and a > 0, then

P(X ≥ a) ≤ E(X )

a
.
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Jensens Inequality:
If X is a random variable and ϕ is a convex function, then

ϕ (E[X ]) ≤ E [ϕ(X )] .

Holder’s Inequality:
If X and Y are random variables on Ω, and p, q > 1 with
1/p + 1/q = 1,

E
[
|XY |

]
≤
(
E
[
|X |p

])1/p (E[|Y |q])1/q.
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Conditional Expectation Inequalities

Markov’s Inequality:
If X and Y are any nonnegative integrable random variables and
a > 0, then

P(X ≥ a|Y ) ≤ E[X |Y ]

a
.

Jensens Inequality:
If X and Y are random variables and ϕ is a convex function, then

ϕ (E[X |Y ]) ≤ E [ϕ(X )|Y ] .
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Holder’s Inequality:
If X Y and Z are random variables on Ω, and p, q > 1 with
1/p + 1/q = 1,

E
[
|XY ||Z

]
≤
(
E
[
|X |p|Z

])1/p (E[|Y |q|Z])1/q.
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Tower Property

Tower Property (Law of Iterated Expectation, Law of Total Expectation)

E [X ] = E [E [X |Y ]]

i.e.,
E [X ] =

∑
x∈S

E [X |Y = y ]P(Y = y)

If Y ∼ Unif (0, 1) and X ∼ Unif (Y , 1), what is E [X ]?
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Additional Properties of Conditional Expectation

E [Xg(Y )|Y ] = g(Y )E [X |Y ]

E [E [X |Y ,Z ]|Y ] = E [X |Y ]

E [X |Y ] = X , if X = g(Y ) for some g

E [h(X ,Y )|Y = y ] = E [h(X , y)]

E [X |Y ] = E [X ], if X and Y are independent
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Moment Generating Function and Characteristic Function

Moment generating function and characteristic function chracterizes the
distribution of the random variable.

Moment Generating Function

MX (θ) = E [exp(θX )]

Characteristic Function

ΦX (θ) = E [exp(iθX )]
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Almost Sure Convergence

Let X1,X2, ... be a sequence of random variables. We say that Xn

converges almost surely to X∞ as n→∞ if

P(Xn → X∞ as n→∞) = 1

We use the notation Xn
a.s.→ X∞ to denote almost sure convergence, or

convergence with probability 1.
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Convergence in Probability

Let X1,X2, ... be a sequence of random variables. We say that Xn

converges in probability to X∞ if for each ε > 0,

P(|Xn − X∞| > ε)→ 0

as n→∞. We use the notation Xn
p→ X∞ to denote convergence in

probability.
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Weak Convergence

Let X1,X2, ... be a sequence of random variables. We say that Xn

converges weakly to X∞ if

P(Xn ≤ x)→ P(X∞ ≤ x)

as n→∞ for each x at which P(X∞ ≤ x) is continuous. We use the

notation Xn ⇒ X∞ or Xn
D→ X∞ to denote weak convergence or

convergence in distribution.
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Implecations

Almost Sure Convergence
↓

Convergence in Probability
↓

Weak Convergence
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Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)
Suppose that X1,X2, ...is a sequence of i.i.d. r.v.s such that E [X1] <∞.
Then,

1

n

n∑
i=1

Xi
p→ E [X1]

as n→∞
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Strong Law of Large Numbers

Theorem (Strong Law of Large Numbers)
Suppose that X1,X2, ... is a sequence of i.i.d. r.v.s such that E [X1] exists.
Then,

1

n

n∑
i=1

Xi
a.s.→ E [X1]

as n→∞
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Central Limit Theorem

Theorem (Central Limit Theorem)
Suppose that X1,X2, ...,Xn are i.i.d. r.v.s with common finite variance σ2.
Then, if Sn = X1 + · · ·+ Xn,

Sn − nE [X1]√
n

⇒ σN (0, 1)

as n→∞. From here, we can deduce the following approximation:

1

n
Sn − E [X1]

D∼ 1√
n
N (0, 1)
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What is statistics?

Statistics is a mathematical body of science that pertains to the
collection, analysis, interpretation or explanation, and presentation of
data, or as a branch of mathematics.

A statistic is random variable which is a function of the random
sample, but not a function of unknown parameters.
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Estimation

Estimation is making a best guess of an unknown parameter out of
sample data.
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Estimators

An estimator is a statistic that is used to infer the value of an unknown
parameter in a statistical model. (rule of estimation)

Examples:

Mean

Standard deviation
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Properties of Estimators

For a given sample x , the error of the estimator θ̂ is defined as

e(x) = θ̂(x)− θ,

the mean squared error of θ̂ is defined as

MSE(θ̂) = E[(θ̂(x)− θ)2].

The variance of θ̂ is defined as

var(θ̂) = E[(θ̂ − E(θ̂))2],

the bias of θ̂ is defined as

B(θ̂) = E(θ̂)− θ.
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Properties of Estimators

An estimator is unbiased if and only if B(θ̂) = 0.

The MSE, variance and bias are related

MSE(θ̂) = var(θ̂) +
(
B(θ̂)

)2
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Confidence Interval

Consider the sample mean estimator θ̂ = 1
nSn. From CLT,

Sn − nE [X1]√
n

⇒ σN (0, 1).

Rearranging terms, (this is not a rigorous argument)

1

n
Sn
D∼ E [X1] +

1√
n
N (0, 1)
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Maximum Likelihood Estimation

Finding most likely explanation:

θ̂n = arg max
θ

f (x1, x2, ..., xn|θ) = f (x1|θ) · f (x2|θ) · · · f (xn|θ)

Gold Standard: Gueranteed to be consistent ( θ̂mle
p−→ θ0. )

Often computationally challenging
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Sample Size

Note that as the degree of confidence increases, the interval must become
larger.
There is a way to improve both the degree of confidence and the precision
of the interval: by increasing the sample size. However, in the real world,
increasing the sample size costs time and money.
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Hypothesis Testing

Oftentimes we want to determine whether a claim is true or false. Such a
claim is called a hypothesis.

Null Hypothesis: A specific hypothesis to be tested in an experiment.

Alternative Hypoethesis: A specific hypothesis to be tested in an
experiment.
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1. Formulate the null hypothesis H0 (commonly, that the observations are
the result of pure chance) and the alternative hypothesis Ha (commonly,
that the observations show a real effect combined with a component of
chance variation).
2. Identify a test statistic that can be used to assess the truth of the null
hypothesis.
3. Compute the p-value, which is the probability that a test statistic at
least as significant as the one observed would be obtained assuming that
the null hypothesis were true. The smaller the p-value, the stronger the
evidence against the null hypothesis.
4. Compare the p-value to an acceptable significance value α (sometimes
called an α value). If p ≤ α, that the observed effect is statistically
significant, the null hypothesis is ruled out, and the alternative hypothesis
is valid.

Jane Bae (Stanford) Probability and Statistics September 16, 2014 6 / 32



Error in Hypothesis Testing

Type 1 Error: Reject the null hypothesis when it is true

Type 2 Error: Accept the null hypothesis when it is false
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Example

Suppose that ordinary aspirin has been found effective against headaches
60 percent of the time, and that a drug company claims that its new
aspirin with a special headache additive is more effective.

Null hypothesis: p = 0.6

Alternate hypothesis: p > 0.6,
where p is the probability that the new aspirin is effective.

We give the aspirin to n people to take when they have a headache. We
want to find a number m, called the critical value for our experiment, such
that we reject the null hypothesis if at least m people are cured, and
otherwise we accept it. How should we determine this critical value?
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Markov Chains

A Markov chain is a sequence of random variables X1,X2,X3, ... with the
Markov property, namely that, given the present state, the future and past
states are independent.

P(Xn+1 = x | X1 = x1,X2 = x2, . . . ,Xn = xn) = P(Xn+1 = x | Xn = xn)

The possible values of Xi form a countable set S called the state space of
the chain.
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Markov chains are often described by a sequence of directed graphs, where
the edges of graph n are labeled by the probabilities of going from one
state at time n to the other states at time n + 1, P(Xn+1 = x | Xn = xn).
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Specifying a Markov Chain

State Space: S = {s1, s2, ...sr}, the set of possible states.

Transition Probability: pij = P(Xn+1 = sj |Xn = si ).
(Transition Matrix)
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Absorbing Markov Chains

A state si of a Markov chain is called absorbing if it is impossible to leave
it (i.e., pii = 1). A Markov chain is absorbing if it has at least one
absorbing state, and if from every state it is possible to go to an absorbing
state (not necessarily in one step).

probability of absorption

time to absorption
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Ergodic Markov Chains

A Markov chain is ergodic if it is possible to go from every state to
every state (Also known as irreducible).

A Markov chain is regular if some power of the transition matrix has
only positive elements.

Regular⇒ Ergodic
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The converse does not hold: Ergodic ; Regular
Ex) Let the transition matrix of a Markov chain be defined by

P =

(
0 1
1 0

)
.
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Random Walks

Let {Xk}∞k=1 be a sequence of independent, identically distributed discrete
random variables. For each positive integer n, we let Sn denote the sum
X1 + X2 + ...+ Xn. The sequence {Sn}∞n=1 is called a random walk.

Ex) If

Xi =

{
1, with probability 0.5

−1, with probability 0.5,

this is a symmetric random walk on a real line (R) with equal probability
of moving left or right.
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Probability of First Return

In the symmetric random walk process in R, what is the probability that
the particle first returns to the origin after time 2m?
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Probability of Eventual Return

In the symmetric random walk process in Rm, what is the probability that
the particle eventually returns to the origin?

For m = 1, 2 the probability of eventual return is 1. For other cases, it
is strictly less than 1. (for m = 3, it is about 0.34)
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Gambler’s Ruin

Consider a nonsymmetric random walk on R.

Xi =

{
1, with probability p

−1, with probability q,

with p + q = 1.

A gambler starts with a stake of size s. He plays until his capital reaches
the value M or the value 0.
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Monte Carlo

Computational algorithms that rely on repeated random sampling to
compute their results.

Theoretical Bases

Law of Large Numbers guarantees the convergence

1

n

∑
I(Xi∈A) → P(X1 ∈ A)

Central Limit Theorem

1

n

∑
I(Xi∈A) − P(X1 ∈ A) ∼ σ√

n
N (0, 1)
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Importance Sampling

We can express the expectation of a random variable as an expectation of
another random variable.

eg.
Two continuous random variable X and Y have density fX and fY such
that fY (s) = 0 implies fX (s) = 0. Then,

E [g(X )] =

∫
g(s)fX (s)ds =

∫
g(s)

fX (s)

fY (s)
fX (s)ds = E [g(Y )L(Y )]

where L(s) = fX (s)
fY (s) is called a likelihood ratio.
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Rare Events

Probability that a coin lands on its edge. How many flips do we need to
see at least one occurrence?

Jane Bae (Stanford) Probability and Statistics September 16, 2014 28 / 32



Outline

1 Statistics

2 Markov Chains

3 Random Walks

4 Simulation

5 Further Information
Classes at Stanford

Jane Bae (Stanford) Probability and Statistics September 16, 2014 29 / 32



Probability

Basic Probability: STATS 116

Stochastic Processes: STATS 215, 217, 218, 219

Theory of Probability: STATS 310 ABC
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Statistics

Intro to Statistics: STATS 200

Theory of Statistics: STATS 300 ABC
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Applications

Applied Statistics: STATS 191, 203, 208, 305, 315AB

Stochastic Systems: MS&E 121, 321

Stochastic Control: MS&E 322

Stochastic Simulation: MS&E 223, 323, STATS 362

Little bit of Everything: CME 308
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