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Abstract

We study the efficiency of oligopoly equilibria in a model where firms compete over
capacities and prices. Our model economy corresponds to a two-stage game. First,
firms choose their capacity levels. Second, after the capacity levels are observed,
they set prices. Given the capacities and prices, consumers allocate their demands
across the firms. We establish the existence of pure strategy oligopoly equilibria
and characterize the set of equilibria. We then investigate the efficiency properties
of these equilibria, where “efficiency” is defined as the ratio of surplus in equilibrium
relative to the first best. We show that efficiency in the worst oligopoly equilibria
can be arbitrarily low. However, if the best oligopoly equilibrium is selected (among
multiple equilibria), the worst-case efficiency loss is 2(

√
N − 1)/(N − 1) with N

firms, and this bound is tight. We also suggest a simple way of implementing the
best oligopoly equilibrium.
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1 Introduction

This paper studies oligopoly competition in the presence of capacity investments. Our moti-
vation comes from large-scale communication networks, particularly the Internet, which has
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undergone major decentralization since the mid 1990s. These changes have spurred interest
in new decentralized network protocols and architectures that take into account the nonco-
operative interactions between users and service providers. A key question in the analysis
of these new network structures is the extent of efficiency losses in the decentralized equi-
librium relative to the efficient allocation of resources. Most of the work in this literature
investigates the efficiency losses resulting from the allocation of users and information flows
across different paths or administrative domains in an already established network (see,
for example, Roughgarden and Tardos (2002), Correa et al. (2002), Correa et al. (2005),
Acemoglu and Ozdaglar (2007a), Hayrapetyan et al. (2005), Bimpikis and Ozdaglar (2007),
Ozdaglar (2008)). Arguably, the more important economic decisions in large-scale communi-
cation networks concern the investments in the structure of the network and in bandwidth
capacity. In fact, the last 20 years have witnessed significant investments in broadband,
high-speed and optical networks. Our objective in this paper is to model price and capac-
ity competition between service providers and investigate the efficiency properties of the
resulting equilibria. Following previous research in this area, we provide explicit bounds on
the efficiency losses by providing various worst-case performance results for equilibria.

Our model consists of N firms (service providers) and a mass of consumers wishing to send
a fixed amount of flow from a fixed source origin to a given destination using subnetworks
operated by these firms. Each user has an inelastic demand with a reservation utility R.
Firms face a linear and potentially different cost of investing to expand the capacity of their
subnetwork. For simplicity, we assume that once capacity is installed, there is no additional
cost of allowing consumers to use the subnetwork. In our baseline model, firms play a two-
stage game. They first choose the level of capacity in their subnetwork, and then set prices
for consumers to use their subnetwork. This game has an obvious similarity to Kreps and
Scheinkman’s well-known model of quantity precommitment and price competition for two
firms (Kreps and Scheinkman (1983)), but it is simpler because demand is inelastic.

For expositional purposes, we start with the special case with two firms. For this case, we
fully characterize the set of pure strategy subgame perfect equilibria and prove that a pure
strategy equilibrium always exists. As in Kreps and Scheinkman (1983), subgame perfect
equilibria in which firms use pure strategies along the equilibrium path are nonetheless
supported by mixed strategies off the equilibrium path. As part of our equilibrium analysis,
we also provide a complete characterization of the set of mixed strategy equilibria following
any choices of capacities by firms.

We then investigate the efficiency properties of equilibria in the worst-case scenarios. We
quantify efficiency as the ratio of social surplus in equilibrium relative to the maximum value
of social surplus (in the hypothetical first best). Since the game typically has multiple pure
strategy equilibria, there are two possible approaches to quantifying worst-case scenarios.
The first, referred to as the “Price of Anarchy” in the computer science and previous network
economics literature, looks at the worst-case scenario in terms of the possible values of the
parameters and selects the worst equilibrium if there are multiple equilibria. The second,
referred to as the “Price of Stability,” selects the best equilibrium for any given set of
parameters and then looks for the worst-case values of the parameters (see Koutsoupias
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and Papadimitriou (1999), Correa et al. (2002)).

Our first result is that even in the simplest structure with linear costs, the Price of Anarchy
is equal to zero, meaning that the equilibrium can be arbitrarily inefficient. Our second
major result is that once we focus on the Price of Stability there is a tight bound of
2
√

2 − 2 ' 5/6, meaning that if the (socially) best equilibrium is selected, the maximum
inefficiency that may result from capacity competition is no more than approximately 1/6
of the maximal social surplus. These results suggest that even in the simplest capacity
games if the “incorrect” equilibria arise, there could be very large inefficiencies, but if the
“appropriate” equilibrium is selected, capacity and price competition between two firms is
sufficient to ensure a high degree of efficiency.

We also suggest a simple way of implementing the best equilibrium, by considering a game
form in which firms make their capacity choices sequentially, in reverse order according to
their costs of investing in capacity. In the special case with two firms, this corresponds to
a situation in which the firm with the lower cost of capacity investment acts as the Stack-
elberg leader. This “Stackelberg” game may be implemented by some type of regulation,
for example by giving a first-mover advantage to lower-cost firms, or it may arise as the
focal point in the game. We show that this Stackelberg game has a unique (pure strategy)
equilibrium and inefficiency in this equilibrium is bounded by 2

√
2− 2 ' 5/6.

We also show that our main results generalize to the game with N firms. For this case,
we characterize the pure strategy equilibria using a slightly different argument, and then
show that the Price of Anarchy (the combination of worst-case parameters and worst equi-
librium) is again equal to zero. Moreover, there is again a bound on the Price of Stability
(the combination of worst-case parameters with the selection of best equilibrium), equal to
2(
√
N − 1)/(N − 1), and we show that this bound is also tight.

The differences in the structure of equilibria and the extent of inefficiency between our
baseline game and the Stackelberg game suggest that the timing of moves is an important
determinant of the extent of inefficiency in this class of games. This raises the natural
question of how the set of equilibria will be affected when pricing and capacity decisions
are made simultaneously. We show that in this case there never exists a pure strategy
equilibrium, which starkly contrasts with the result that a pure strategy equilibrium always
exists in the sequential game. This nonexistence of equilibrium results from the ability of the
firms to deviate simultaneously on their capacities and prices. In contrast, in the sequential
game, a firm could only deviate by changing its capacity first, and then its rivals could also
respond by adjusting their prices to this deviation. Since the sequence of events in which
capacities are chosen first and then prices are set later is more reasonable (in the sense that
it constitutes a better approximation to a situation in which prices can change at much
higher frequencies than capacities), we do not view this result as negative. Nonetheless,
it suggests that it is important for industries with major capacity investments to choose
structures of regulation that do not allow simultaneous deviations on capacities and prices.

Two modeling assumptions that are important in our analysis deserve a brief discussion
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here. First, in the context of communication network applications, our model corresponds
to a network where service providers operate parallel links (or subnetworks). This is a
natural starting point for analysis of equilibria in such markets since many service providers
offer end-to-end service. Moreover, as shown in Acemoglu and Ozdaglar (2007b), when the
network involves serial providers, the potential double marginalization problem can lead
to much greater inefficiencies even without capacity investments. Second, the equilibria we
construct are supported by mixed strategy play off the equilibrium path (though along
the equilibrium path actions are pure). Mixed strategy equilibria in this context can be
interpreted as resulting from explicit randomization by the firms or they can be justified by
Harsanyi type purification arguments (Harsanyi (1973)).

In addition to the newly-burgeoning literature on competition and cooperation between
users and firms in communication networks, this paper is closely related to the industrial
organization literature on capacity competition. Classic contributions here include Levitan
and Shubik (1980), Kreps and Scheinkman (1983) and Davidson and Deneckere (1986). A
key issue in these papers, especially in Davidson and Deneckere (1986), is the rationing rule
when total demand exceeds capacity. Our simpler framework with inelastic demand avoids
this issue and enables us to provide a complete characterization of the full set of subgame
perfect Nash equilibria. In another related work, Fabra et al. (2006) study a similar model
with two firms and inelastic demand, where the focus is on understanding the implications of
demand uncertainty on equilibrium characterization. Unlike our work, efficiency properties
of equilibria have not been considered in this work.

Most closely related to our paper is the recent work, Weintraub et al. (2006), who add
investment decisions to the model of price competition with congestion externalities in
Acemoglu and Ozdaglar (2007a) and study the efficiency properties of oligopoly equilibria.
Weintraub, Johari, and Van Roy put very little restriction on how investments may affect
congestion costs, but only focus on the case in which all firms are symmetric and there
are no capacity constraints. In this case, an equilibrium, when it exists, is always efficient.
The distinguishing feature of our work is to consider and fully characterize the equilibria in
the general non-symmetric case (where inefficiencies are indeed important as shown by our
unbounded Price of Anarchy result) and also to introduce capacity constraints, which are
a realistic feature of most communication networks.

The rest of the paper is organized as follows. Section 2 describes the model. Section 3 defines
the price-capacity competition game and the oligopoly equilibria in this game. Section 4
characterizes the continuation price equilibria and the profits in the capacity subgames. Sec-
tion 5 focuses on the special case with two firms and characterizes pure strategy oligopoly
equilibria of the game (as well as the mixed strategy off-the-equilibrium play). Section 6
contains our main results and provides various efficiency bounds for the set of pure strat-
egy oligopoly equilibria for the case of two firms. Section 7 generalizes the existence and
efficiency results to an arbitrary number of firms. Section 8 shows how the best oligopoly
equilibria can be implemented by a multi-stage game, where the low-cost firm acts as the
Stackelberg leader. Section 9 analyzes a related game with simultaneous capacity-price deci-
sions and shows that this game never has a pure strategy equilibrium. Section 10 concludes.
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2 Model

We start with the general model with N firms. Each firm can be thought of as a service
provider operating its own communication subnetwork. For this reason, we refer to the
demands for the firms’ services as “flows”. We denote total flow for firm i ∈ {1, ..., N} by
xi ≥ 0, and use x = (x1, ..., xN) to denote the vector of flows. We assume that firm i has
a capacity ci ≥ 0, and flow allocated to firm i cannot exceed its capacity, i.e., xi ≤ ci.
We denote the vector of capacities by c = (c1, ..., cN). Investing in capacity is costly. In
particular, the cost of capacity ci for firm i is γici, where γi > 0 for i ∈ {1, ..., N}. 1 For
simplicity (and without loss of generality), we ignore additional costs of servicing flows. We
denote the price charged by firm i (per unit flow) by pi and denote the vector of prices by
p = (p1, ..., pN).

We are interested in the problem of allocating d units of aggregate flow between these N
firms and without loss of generality, we set d = 1. We assume that this is the aggregate flow
of many “small” users. 2 We also assume that the users have a reservation utility R; they
choose the lowest price firm whenever there is unused capacity with this firm and do not
participate if the lowest available cost exceeds the reservation utility. Further, we assume
throughout the paper that γi ≤ R for all i ∈ {1, ..., N}. This is without loss of generality,
since any firm with γi > R will have no incentive to be active and can be excluded from
the set i ∈ {1, ..., N}.

We start with the definition of flow equilibrium given a vector of capacities c and a vector
of prices p.

Definition 1 [Flow Equilibrium] For a given capacity vector c ≥ 0 and price vector
p ≥ 0, a vector x∗ is a flow equilibrium if

x∗ ∈ arg max
0≤xi≤ci∑N

i=1
xi≤1

{
N∑
i=1

(R− pi)xi
}
. (1)

We denote the set of flow equilibria at a given p and c by W [p, c].

This definition captures the simple notion that users will allocate their demand to the lowest
price firm up to the point where the capacity constraint of this firm is reached. After this,

1 Alternatively, we could assume γi ≥ 0, with essentially the same results, but in this case Propo-
sitions 7 and 13 below need to be modified slightly, since there could be excess capacity in some
equilibria.
2 In the presence of additional congestion costs, this small users assumption would lead to
the Wardrop principle, commonly used in communication and transport networks (see Wardrop
(1952)), where flows are routed along paths with minimum effective cost (see, for example, Lars-
son and Patriksson (1994), Acemoglu and Ozdaglar (2007a)). In our context, there is no need
to introduce this concept and it suffices to observe that users will choose a lower cost provider
whenever this is possible.
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if there are any more users, they will allocate their capacity to the second lowest price firm
(as long as its price does not exceed their reservation utility, R), and so on.

Using the optimality conditions for problem (1), it follows that a vector x∗ ≥ 0 is a flow

equilibrium if and only if
∑N
i=1 x

∗
i ≤ 1 and there exists λ ≥ 0 such that λ

(∑N
i=1 x

∗
i − 1

)
= 0

and for all i ∈ {1, ..., N},

R− pi ≤ λ if x∗i = 0, (2)

= λ if 0 < x∗i < ci,

≥ λ if x∗i = ci.

This is a convenient representation of the flow equilibrium, which will be used in the analysis
below. The following result on the structure of flow equilibria is an immediate consequence
of this characterization (proof omitted):

Proposition 1 Let c = (c1, ..., cN) ≥ 0 be a capacity vector and p = (p1, ..., pN) ≥ 0 be
a price vector. Suppose that for some M ≤ N , we have p1 < p2 < ... < pM ≤ R < pM+1

(with the convention that pM+1 = +∞ if M = N). Then, at all flow equilibria x ∈ W [p, c],
we have

x1 = min{c1, 1},

xm = min

{
cm,max

{
0, 1−

m−1∑
i=1

xi

}}
, ∀ 2 ≤ m < M.

Moreover, if pM < R, then there exists a unique flow equilibrium x ∈ W [p, c] given by

x1 = min{c1, 1},

xm = min

{
cm,max

{
0, 1−

m−1∑
i=1

xi

}}
, ∀ 2 ≤ m ≤M.

Remark 1 If instead of p1 < p2 < ... < pM ≤ R, we have pi = pj for some i 6= j,
the flow equilibrium is not necessarily unique, since users would be indifferent between
allocating their flow across these two firms. Note also that in the special case with N = 2,
this proposition simply states that when p1 < p2 < R, the unique flow equilibrium will
involve x1 = min{c1, 1} and x2 = min{c2, 1− x1}.

We next define the social optimum, which is the capacity and flow allocation that would
be chosen by a planner that has full information and full control over the allocation of
resources. Since there is no cost of servicing flows beyond the capacity costs, the following
definition for a social optimum follows immediately.

Definition 2 A capacity-flow vector (cS, xS) is a social optimum if it is an optimal solution
of the social problem
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maximizex≥0, c≥0 R
N∑
i=1

xi −
N∑
i=1

γici (3)

subject to
N∑
i=1

xi ≤ 1,

xi ≤ ci, i ∈ {1, ..., N}.

The social problem has a continuous objective function and a compact constraint set, guar-
anteeing the existence of a social optimum (cS, xS). It is also clear from the preceding that
we have cSi = xSi , for i ∈ {1, ..., N}. We refer to cS as the social capacity. In view of the fact
that cSi = xSi , for i ∈ {1, ..., N}, the social capacity is given as the solution to the following
maximization problem:

cS ∈ arg max
c≥0,

∑N

i=1
ci≤1

{
N∑
i=1

(R− γi)ci
}
. (4)

For future reference, for a given capacity vector c ≥ 0, we define the social surplus as

S(c) =
N∑
i=1

(R− γi)ci, (5)

i.e., the difference between the users’ utility and the total capacity cost.

3 Price and Capacity Competition Game

We next consider the two-stage competition game in which capacities are chosen first and
then firms compete in prices as outlined in the previous section.

The price-capacity competition game is as follows. First, the N firms simultaneously choose
their capacities, i.e., firm i chooses ci at cost γici. At the second stage, firms, having observed
the capacities set at the first stage, simultaneously choose prices, i.e., firm i charges a price
pi. Given the price vector of other firms, denoted by p−i, the profit of firm i is

Πi[pi, p−i, x, ci, c−i] = pixi − γici,

where x ∈ W [p, c] is a flow equilibrium given the price vector p and the capacity vector c. The
objective of each firm is to maximize profits. We refer to the dynamic game between the two
firms as the price-capacity competition game, and look for the subgame perfect equilibria
(SPE) of this game. Since the capacities set in the first stage are observed by all firms,
every capacity vector c = (c1, ..., cN) defines a proper subgame, and subgame perfection
requires that in each subgame, the continuation equilibrium strategies constitute a Nash
equilibrium. 3 For each capacity subgame, we first define the price equilibrium between the

3 A subgame is identified with the public history (of previous moves). Hence, the SPE notion
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firms, which we will also refer to as the (continuation) Price Equilibrium. As we will see
below, pure strategy equilibria will fail to exist in some capacity subgames. For this reason,
we define both pure and mixed strategy price equilibria. Let B denote the space of all (Borel)
probability measures on the interval [0, R]. Let µi ∈ B be a probability measure, and denote
by µ ∈ BN the product measure µ1× ...×µN , and by µ−i the product measure µ excluding
µi (i.e., µ−i = µ1× ...× µi−1× µi+1× ...× µN). We use the notation [p(c), x(c)] to denote a
pure strategy Price Equilibrium of the capacity subgame c, where p(c) is a price vector and
x(c) is a flow vector. Similarly, we use the notation [µc, xc(p)] to denote a mixed strategy
Price Equilibrium of the capacity subgame c, where µc ∈ BN and xc(p) is a subgame perfect
selection from W [p, c].

Definition 3 [Price Equilibrium] Let c ≥ 0 be a capacity vector. A vector [p(c), x(c)]
is a pure strategy Price Equilibrium in the capacity subgame if x(c) ∈ W [p(c), c] and for all
i ∈ {1, ..., N},

Πi[pi(c), p−i(c), x(c), c] ≥ Πi[pi, p−i(c), x, c], ∀ pi ≥ 0, ∀ x ∈ W [pi, p−i(c), c]. (6)

We denote the set of pure strategy price equilibria at a given c by PE(c).

A vector [µc, xc(p)] is a mixed strategy Price Equilibrium in the capacity subgame if µc ∈ BN
and the function xc(p) ∈ W [p, c] for every p and

∫
[0,R]N

Πi[pi, p−i, x
c(pi, p−i), c] d

(
µci(pi)× µc−i(p−i)

)
≥
∫

[0,R]N
Πi[pi, p−i, x

c(pi, p−i), c]d
(
µi(pi)× µc−i(p−i)

)
,

for all i ∈ {1, ..., N} and µi ∈ B. We denote the set of mixed strategy price equilibria at a
given c by MPE(c).

In the following, with a slight abuse of notation, we will write [µ, x(·)] ∈MPE(c) for mixed
strategy equilibria. 4 Note that here x (·) is not a vector, but a function of p, i.e., x(p) is
a selection from the correspondence W (p, c). We denote the profits for firm i in the mixed

requires that the action prescribed by each player’s strategy is optimal given the other player’s
strategies, after every history; see, for example, Fudenberg and Tirole (1991), Osborne and Ru-
binstein (1994).
4 Note also that the pure strategy Price Equilibrium notion here may appear slightly stronger than
the standard subgame perfection, since it requires that a strategy profile yields higher profits for
each player for all x ∈W [pi, p−i (c) , c], rather than for some such x. Nevertheless, Acemoglu and
Ozdaglar (2007a) shows, for a more general game, that this definition of equilibrium coincides with
the standard pure strategy subgame perfect equilibrium (but is slightly more convenient to work
with). Given this relation, we have PE(c) ⊂ MPE(c), in the sense that for every [p, x] ∈ PE(c),
there exists [µ, x(·)] ∈ MPE(c) such that µ is the degenerate measure with µ({p}) = 1, and x(·)
is an arbitrary selection from W [p, c] with x(p) = x.
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strategy price equilibria in the capacity subgame by Πi[µ, x(·), c], i.e.,

Πi[µ, x(·), c] =
∫

[0,R]N
Πi[p, x(p), c]dµ(p). (7)

We will also use the notation Πi[pi, µ−i, x(·), c] for some pi ∈ [0, R] to denote the expected
profits when firm i uses the degenerate mixed strategy µi with µi(pi) = 1, while the remain-
ing firms use the mixed strategy µ−i.

Note that since the profit functions are discontinuous in prices, it is not obvious that each
capacity subgame has a mixed strategy price equilibrium. In the next section, we will show
that in each capacity subgame c, a pure or mixed strategy price equilibrium always exists.

We next define the subgame perfect equilibrium of the entire game. For notational conve-
nience, we focus on the actions along the equilibrium path to represent the subgame perfect
equilibrium.

Definition 4 [Oligopoly Equilibrium] A vector [cOE, p(cOE), x(cOE)] is a (pure strat-
egy) Oligopoly Equilibrium (OE) if [p(cOE), x(cOE)] ∈ PE(cOE) and for all i ∈ {1, ..., N},

Πi[p(c
OE), x(cOE), (cOEi , cOE−i )] ≥ Πi[µ, x(·), (ci, cOE−i )], (8)

for all ci ≥ 0, and for all [µ, x(·)] ∈MPE(ci, c
OE
−i ). We refer to cOE as the OE capacity.

Note that pure strategy OE may involve pure strategies along the equilibrium path, but
mixed strategy continuation price equilibria in some off-the-equilibrium subgames. Through-
out the paper, pure strategy OE refers to equilibria where pure strategies are used along
the equilibrium path.

4 Price Equilibria in the Capacity Subgame With Two Firms

Our first task is to characterize the entire set of subgame perfect equilibria in this game.
For expositional purposes, we start with the case where N = 2, which enables us to provide
an explicit characterization of the equilibria and the extent of the efficiency losses. We
generalize our main results to an arbitrary number of firms in Section 7 below.

We consider an arbitrary capacity subgame and prove the existence of pure or mixed strategy
price equilibria and provide a characterization of these equilibria. We will then use this
characterization to determine the form of oligopoly equilibria and analyze their efficiency
properties. Since in this and in the next section we consider only two firms, we sometimes
refer to these two firms using the indices i and −i.
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4.1 Existence of Pure and Mixed Strategy Price Equilibria With Two Firms

Proposition 2 Let c be a capacity vector such that c1 + c2 ≤ 1 and ci > 0 for i = 1, 2.
Then there exists a unique Price Equilibrium in the capacity subgame [p, x] such that pi = R
and xi = ci for i = 1, 2.

Proof. Since c1 + c2 ≤ 1, it follows by the equivalent characterization of a flow equilibrium
[cf. equation (2)] that for all p ∈ [0, R]2, the flow allocation (c1, c2) ∈ W (p, c). Therefore, by
charging a price pi, firm i can make a profit of

Πi[pi, p−i, x, c] = pici,

for all p−i ∈ [0, R]. This shows that pi = R strictly dominates all other price strategies of
firm i, so that pi = R and xi = ci, i = 1, 2, is the unique Price Equilibrium. Q.E.D.

Proposition 3 Let c be a capacity vector such that c1 + c2 > 1, ci > 0 for i = 1, 2 and
ci < 1 for some i. Then there exists no pure strategy Price Equilibrium in the capacity
subgame.

Proof. Suppose there exists a pure strategy Price Equilibrium (p, x). The following list
considers all candidates for a Price Equilibrium and profitable unilateral deviations from
each, thus establishing the nonexistence of a pure strategy Price Equilibrium:

• Suppose p1 < p2. Then the profit of firm 1 is Π1[p, x, c] = p1 min{c1, 1}. A small increase
in p1 will increase firm 1’s profits, thus firm 1 has an incentive to deviate.
• Suppose p1 = p2 > 0. If x1 < min{c1, 1}, then firm 1 has an incentive to decrease its

price. If x1 = min{c1, 1}, then, since c1 + c2 > 1, firm 2 has an incentive to decrease its
price.
• Suppose p1 = p2 = 0. Since by assumption ci < 1 for some i, firm −i has an incentive to

increase its price and make positive profits.

Q.E.D.

Proposition 4 Let c be a capacity vector such that c1 + c2 > 1, ci > 0 for i = 1, 2 and
ci < 1 for some i. Then there exists a mixed strategy Price Equilibrium in the capacity
subgame.

Proof. The subgame following any capacity choice c is a special case of the model in
Acemoglu and Ozdaglar (2007a). Building on Dasgupta and Maskin (1986), Proposition
4.3 in Acemoglu and Ozdaglar (2007a) establishes that there always exists a mixed strategy
equilibrium in any such subgame. We do not repeat this proof here to avoid repetition.
Q.E.D.

When c1, c2 ≥ 1, the capacity subgame is an uncapacitated Bertrand price competition
between two firms. Thus, we immediately have the following result (proof omitted).
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Proposition 5 Let c be a capacity vector such that c1, c2 ≥ 1. Then, for all Price Equilibria
[p, x], we have pi = 0 for i = 1, 2, i.e., both firms make zero profits.

4.2 Characterization of Mixed Strategy Price Equilibria

We next provide an explicit characterization of the mixed strategy price equilibria and the
profits in each capacity subgame.

Let c = (c1, c2) be a capacity vector. Throughout this section, we focus on the case where
c1 + c2 > 1, ci > 0 for i = 1, 2 and ci < 1 for some i. By Proposition 4, there exists a
mixed strategy Price Equilibrium [µ, x(·)] in the capacity subgame. Let ui denote the upper
support of µi, and li denote the lower support of µi, i.e.,

ui = inf
{
p̄ : µi({p ≤ p̄}) = 1

}
,

li = sup
{
p : µi({p ≥ p}) = 1

}
.

Let (F1, F2) denote the corresponding cumulative distribution functions for the measure
(µ1, µ2), i.e., Fi(p̄) = µi({p ≤ p̄}), for i = 1, 2.

Recall that [µ, x(·)] is a mixed strategy Price Equilibrium if and only if for some ΠE
i ≥ 0,

we have

Πi[p, µ−i, x(·), c] ≤ ΠE
i , (9)

for all p ∈ [0, R], and there exists a set P̄i ⊆ [li, ui] such that µi(P̄i) = 1 and

Πi [p, µ−i, x (·) , c] = ΠE
i for all p ∈ P̄i, (10)

(see, e.g., Osborne and Rubinstein (1994)). It can be seen that the flow equilibrium cor-
respondence W [p, c] is upper semicontinuous (see Acemoglu and Ozdaglar (2007a)). This
implies that the selection x(p) and therefore the profit function Πi is continuous in p, unless
F−i has an atom at p. Hence, it follows that relation (10) holds also for p = li (and p = ui)
for i = 1, 2, unless F−i has an atom at li (or ui). This follows by the definition of li (and ui)
since there exists some p ∈ P̄i which is arbitrarily close to li (and ui).

We will now use this property of mixed strategy equilibria to derive three lemmas that
will allow us to explicitly characterize the unique mixed strategy Price Equilibrium in the
capacity subgame. 5

Lemma 1 Assume that c1 + c2 > 1, ci > 0 for i = 1, 2 and ci < 1 for some i. Then, for any
i = 1, 2, the mixed strategy µi cannot have all its mass concentrated at a single point, i.e.,
µi cannot be degenerate.

5 Uniqueness here implicitly ignores variations on measure zero sets.
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Proof. By Proposition 3, both µi’s cannot be degenerate. To obtain a contradiction, assume
that µ1 is degenerate at some p1 ∈ [0, R] (i.e., µ1({p = p1}) = 1). We first show that
µ2({p < p1}) = 0. Consider p1 > 0. Charging the price p2 = p1 − ε for some ε > 0 yields a
profit of (p1 − ε) min{c2, 1} for firm 2, which is strictly decreasing in ε, showing that µ2({p <
p1}) = 0. We next show that µ2 cannot have an atom at p = p1. Suppose it does; then
there is a positive probability of both firms charging the price p1. If x2(p1, p1) < min{c2, 1},
then charging a price of p1 − δ for some small δ > 0 generates higher profits for firm 2. If
x2(p1, p1) = min{c2, 1}, then, since c1 +c2 > 1, the same applies to player 1, showing that µ2

cannot have an atom at p2. Finally, if firm 2 charges the price p2 = p1 +ε for 0 < ε ≤ R−p1,
it yields a profit of (p1 + ε) (1−min{c1, 1}), which is strictly increasing in ε, thus µ2 should
have all its mass concentrated at p2 = R. However both µi’s cannot be degenerate, thus we
arrive at a contradiction. Q.E.D.

Lemma 2 Assume that c1 + c2 > 1, ci > 0 for i = 1, 2 and ci < 1 for some i. Then:

(i) F1 and F2 have the same lower support, i.e., l1 = l2 = l.
(ii) F1 and F2 have the same upper support, i.e., u1 = u2 = u.
(iii) F1 and F2 are strictly increasing over [l, u].

Proof.

(i) Assume that l1 < l2. This implies the existence of two prices p1 ∈ P̄1 and p′1 ∈ (0, R) such
that p1 < p′1 < l2. Then, by Proposition 1, it follows that for all p2 ∈ P̄2 and p = p1 or
p = p′1, any flow equilibrium x ∈ W [(p, p2), c] satisfies x1 = min{c1, 1}. Thus the profits
of firm 1 at prices p1, p

′
1 are given by

Π1[p1, µ2, x, c] = p1x1 < Π1[p′1, µ2, x, c] = p′1x1,

contradicting the equilibrium characterization in (9)-(10).
(ii) Assume that u1 > u2. We consider the following three cases.
· (u2, u1] ∩ P̄1 = {u1} and F1 does not have an atom at u2. Then, for all flow equilibria
x(p) ∈ W [p, c], we have x2(p, u2) = x2(p, u2 + ε) for some sufficiently small ε > 0 and
all p ∈ P̄1, implying that firm 2 has a profitable deviation.
· (u2, u1] ∩ P̄1 = {u1} and F1 has an atom at u2. Then, if F2 does not have an atom at
u2, we have x1(u2, p) = x1(u2 + ε, p) for some sufficiently small ε > 0 and all p ∈ P̄2,
implying that firm 1 has a profitable deviation. On the other hand, both F1 and F2

cannot have an atom at u2, since one of them would then have a profitable deviation
by setting price p = u2 − ε with probability 1 for sufficiently small ε.
· (u2, u1] ∩ P̄1 6= {u1}. This implies the existence of two prices p1 ∈ P̄1 and p′1 ∈ [0, R)

such that u2 < p1 < p′1. By Proposition 1 and the assumption c1 + c2 > 1, it follows
that for all p2 ∈ P̄2 and p = p1 or p = p′1, any flow equilibrium x ∈ W [(p, p2), c]
satisfies x1 = 1−min{c2, 1}. Moreover, we have x1 > 0 since otherwise, we would have
Π1[p, µ2, x, c] = 0 for all p ∈ P̄1 and a deviation to p1 = u2 − ε would yield positive
profits and would be a profitable deviation. Thus the profits of firm 1 at prices p1, p

′
1

are given by
Π1[p1, µ2, x, c] = p1x1 < Π1[p′1, µ2, x, c] = p′1x1,
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contradicting the equilibrium characterization in (9)-(10).
(iii) Assume to arrive at a contradiction that F1 is constant over the interval [p1, p

′
1] for some

p1, p
′
1 ∈ [l, u] with p1 < p′1. We assume without loss of generality that F2 does not have

an atom at p′1 [otherwise, we can replace p′1 by p′1 − ε for some sufficiently small ε > 0].
We will first show that this implies F2 is constant over the same interval. Suppose to
obtain a contradiction that F2 is not constant over this interval. Then there exist p2 ∈ P̄2

and p′2 ∈ (0, R) such that p1 < p2 < p′2 < p′1 and F2(p2) < F2(p′2) (the assumption
that F2 does not have an atom at p′1 ensures that p2 < p′1 by the right continuity of
a distribution function). By Proposition 1 and the assumption c1 + c2 > 1, for all flow
equilibria x(p) ∈ W [p, c], we have

x2(p, p2) = x2(p, p′2) =

 1−min{c1, 1} if p < p1,

min{c2, 1} if p > p′1.

Since F1 is constant over [p1, p
′
1], this implies that the profits of firm 2 at p′2 are higher

than those at p2, yielding a contradiction.
Next we have to consider the following three cases.
· F2 has an atom at p1. Then, if F1 does not have an atom at p1, setting price p1 + ε with

probability 1 is a profitable deviation for firm 2, yielding a contradiction. On the other
hand, both F1, F2 cannot have an atom at p1, since then there would exist a profitable
deviation for both of them.
· p1 ∈ P̄1 and F2 does not have an atom at p1. Then, consider a deviation by firm 1 to
p1 + ε instead of p1 for some sufficiently small ε > 0. Since F2 does not have an atom at
p1 and is constant between p1 and p1 + ε, we have for all flow equilibria x(p) ∈ W [p, c],
x1(p1, p) = x1(p1 + ε, p) for all p ∈ P̄2, and therefore deviating to p1 + ε is profitable for
firm 1, yielding a contradiction.
· p1 /∈ P̄1 and F2 does not have an atom at p1. Note that for all sufficiently small ε > 0, it

holds that p1 − ε ∈ P̄1 [otherwise we would have considered a larger interval for which
F1 is constant] and for every ε1 > 0 we can find ε such that F2(p1 − ε) ≥ F2(p1) − ε1
[since F2 does not have an atom at p1]. Then, there exists a profitable deviation for firm
1 to p1 + ε2 for appropriately chosen ε2 > 0, yielding once again a contradiction.

Q.E.D.

Lemma 3 Assume that c1 + c2 > 1, ci > 0 for i = 1, 2 and ci < 1 for some i. Then:

(i) The distribution Fi, i = 1, 2, does not have any atoms except possibly at the upper
support u.

(ii) Both distributions Fi cannot have an atom at the upper support u.
(iii) The upper support u is equal to R.

Proof.

(i) Without loss of generality, we consider F1. We first show that F1 cannot have an atom
at any p ∈ (l, u). Assume to arrive at a contradiction that there exists an atom at some
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p ∈ (l, u), i.e., F1 (p+) > F1 (p−). By Lemma 2(iii), F2 is strictly increasing over the
interval [l, u] (which satisfies l < u in view of Lemma 1). Thus, there exists some ε > 0
sufficiently small such that the prices p− ε and p+ ε belong to P̄2, and p+ ε < R. Using
Proposition 1, the profits of firm 2 at these two prices can be written as

Π2[p−ε, µ1, x(·), c] = F1 (p− ε) (p− ε) (1−min{c1, 1})+(1− F1 (p− ε)) (p− ε) min{c2, 1},

and

Π2[p+ε, µ1, x(·), c] = F1 (p+ ε) (p+ ε) (1−min{c1, 1})+(1− F1 (p+ ε)) (p+ ε) min{c2, 1}.

Since F1 (p+) > F1 (p−) and min{c2, 1} > 1−min{c1, 1}, it follows that for small enough
ε, we have

Π2[p− ε, µ1, x(·), c] > Π2[p+ ε, µ1, x(·), c],
yielding a contradiction.

We next show that F1 cannot have an atom at p = l. We first prove that the common
lower support must satisfy l > 0. If l = 0, then by relations (9), (10) we get that the
profits of either firm at any price vector are equal to 0. Since by assumption ci < 1 for
some i, the profits of firm −i at p = u are strictly positive at any flow equilibrium. Hence,
it follows that l > 0. Consider the profits of firm 2 at price l − ε for some sufficiently
small ε,

Π2[l − ε, µ1, x(·), c] = (l − ε) min{c2, 1}.
Consider next the profits of firm 2 at the price l + ε, which belongs to P̄2:

Π2[l + ε, µ1, x(·), c] = (1− F1(l + ε))(l + ε) min{c2, 1}+ F1(l + ε)(l + ε)(1−min{c1, 1}).

If there is an atom at l, i.e., F1(l+) > 0, then since 1−min{c1, 1} < min{c2, 1}, it follows
from the preceding two relations that for sufficiently small ε,

Π2[l − ε, µ1, x(·), c] > Π2[l + ε, µ1, x(·), c],

contradicting equation (9).
(ii) Assume that both distributions have an atom at p = u. Then, it follows that with

probability [F1 (u+)− F1 (u−)] · [F2 (u+)− F2 (u−)] > 0, both firms will be charging
a price of p = u. Suppose x1 (u, u) < min{c1, 1}. Then charging a price of p1 = u − ε
generates higher profits for firm 1 than charging a price of p1 = u. If x1 (u, u) = min{c1, 1},
then, since c1 + c2 > 1, the same applies to player 2, establishing this part of the lemma.

(iii) Assume that u < R. By part (ii), it follows that there is no atom at u for one of the
players, say player 2. Then

Π1[u, µ2, x(·), c] = u (1−min{c2, 1}) < Π1[R, µ2, x(·), c] = R(1−min{c2, 1}),

showing that the upper support u cannot be strictly less than R.

Q.E.D.
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The next proposition characterizes the expected profits of the two firms in capacity sub-
games with continuation mixed strategy price equilibrium. This result follows from Lemma
5 in Kreps and Scheinkman (1983) by specializing it to the inelastic demand case. We
provide here an alternative proof for completeness.

Proposition 6 Let c = (c1, c2) be a capacity vector with c1 + c2 > 1, ci > 0 for i = 1, 2
and ci < 1 for some i. Let [µ, x(·)] be a mixed strategy Price Equilibrium in the capacity
subgame c. The expected profits Πi[µ, x(·), c], for i = 1, 2 are given by

Πi[µ, x(·), c] =


R(1−ci)ci
min{c−i,1} − γici, if ci ≤ c−i,

R(1− c−i)− γici, otherwise.

Proof. Assume that c1 ≤ c2. We denote the equilibrium profits of player i in the capacity
subgame c by ΠE

i . We will now use the characterization of mixed strategy equilibrium in
equation (10) to explicitly characterize the equilibrium distributions F1 and F2. Recall that
the relation (10) holds for p = li and p = ui, when F−i does not have an atom at p = li and
p = ui.

By Lemma 3(i), the distributions F1 and F2 do not contain an atom except possibly at the
upper support R. Using the Flow Equilibrium characterization given in Proposition 1, we
can write the expected profits of firm 1 for any p1 ∈ P̄1 ∪ {l1}, p1 6= R as

Π1[p1, µ2, x(·), c] = p1c1(1− F2(p1)) + p1(1−min{c2, 1})F2(p1)− γ1c1

= ΠE
1 .

Similarly, for all p2 ∈ P̄2 ∪ {l2}, and p2 6= R, we have

Π2[p2, µ1, x(·), c] = p2 min{c2, 1}(1− F1(p2)) + p2(1− c1)F1(p2)− γ2c2

= ΠE
2 .

Let Π̄E
1 = ΠE

1 + γ1c1 and Π̄E
2 = ΠE

2 + γ2c2. Solving for F1(p) and F2(p) in the preceding
relations, we obtain

F1(p) =
min{c2, 1} − Π̄E

2 /p

c1 + min{c2, 1} − 1
, ∀ p ∈ P̄2 ∪ {l2}, p 6= R, (11)

F2(p) =
c1 − Π̄E

1 /p

c1 + min{c2, 1} − 1
, ∀ p ∈ P̄1 ∪ {l1}, p 6= R.

Let l denote the common lower support of µ1 and µ2, i.e., l1 = l2 = l (cf. Lemma 2).
Using the preceding relations for p = l and the facts that F1(l) = F2(l) = 0, it follows that

15



l = Π̄E
2 /min{c2, 1}, and

Π̄E
1 = Π̄E

2

c1

min{c2, 1}
.

By Lemma 2 and Lemma 3(iii), we have u1 = u2 = R. We next show that F1 does not
have an atom at u = R, and therefore the characterization in (11) is also valid for p = R.
Assume to arrive at a contradiction that F1 has an atom at R, i.e., F1(R−) < 1. Then, using
c1 ≤ c2 and the preceding relation between Π̄E

1 and Π̄E
2 , it follows that F2(R−) < 1. But,

by Lemma 3(ii), both distributions cannot have an atom at the upper support, yielding a
contradiction. Hence, we can use the characterization in (11) for p = R to write

F1(R) = 1 =
min{c2, 1} − Π̄E

2 /R

c1 + min{c2, 1} − 1
,

which shows that
Π̄E

2 = R(1− c1),

Π̄E
1 =

R(1− c1)c1

min{c2, 1}
.

The argument for c1 ≥ c2 is similar and completes the proof. Q.E.D.

5 Oligopoly Equilibria With Two Firms

In this section, we prove the existence and characterize the properties of pure strategy
Oligopoly Equilibria. We first provide a characterization of pure strategy OE capacities.
Using this characterization, we show that the price-capacity competition game always has
a pure strategy Oligopoly Equilibrium. We then use this characterization to study the
efficiency properties of pure strategy Oligopoly Equilibria in the next section.

Proposition 7 Assume that γi < R for some i = 1, 2. A capacity vector c = (c1, c2) is an
OE capacity if and only if c1 + c2 = 1 and

R− γi
2R− γi

≤ ci ≤ c−i, (12)

for some i = 1, 2.

Proof. (Sufficiency) We first show that c1 + c2 = 1 together with (12) is an OE capacity.
First, since c1 + c2 ≤ 1, Proposition 2 implies that the profits of firm i = 1, 2 are

Πi[p (c) , x, c] = (R− γi)ci, (13)

where p (c) denotes the continuation equilibrium price vector, which in this case is (R,R).

Consider a deviation ĉi 6= ci by firm i. If ĉi < ci, Proposition 2 still applies and the resulting
profit for firm i is Π̂i[p (ĉi, c−i) , x, (ĉi, c−i)] = (R − γi)ĉi ≤ Πi[p (c) , x, c], establishing that
there are no profitable deviations with ĉi < ci.
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Next consider ĉi > ci. Clearly, if ĉi, c−i ≥ 1, Proposition 5 applies and Π̂i[p (ĉi, c−i) , x, (ĉi, c−i)] =
0 so that the deviation is not profitable. Suppose that ĉi + c−i > 1, ĉi, c−i > 0 and either
ĉi < 1 or c−i < 1. Proposition 4 applies and the deviation will induce a mixed strategy
continuation equilibrium µ. There are two cases to consider: ĉi > c−i and ĉi ≤ c−i.

• Suppose that ĉi > c−i, which by Proposition 6 implies that the deviation profits of firm
i are

Π̂i[µ, x(·), (ĉi, c−i)] =R(1− c−i)− γiĉi
= (R− γi) ci − γi (ĉi − ci)
≤Πi[p (c) , x, c],

where the second line exploits the fact that c1 + c2 = 1 and the third line uses the
definition of equilibrium profits from (13) together with ĉi ≥ c−i, establishing that there
are no profitable deviations with ĉi > c−i.
• Suppose that ĉi ≤ c−i. Then by Proposition 6, we have

Π̂i[µ, x(·), (ĉi, c−i)] =
R(1− ĉi)ĉi

c−i
− γiĉi. (14)

Let ĉmaxi denote the capacity that maximizes (14), given by

ĉmaxi ≡ 1

2
− c−iγi

2R
. (15)

Since ci < ĉi ≤ c−i, we obtain from equation (12) that ĉmaxi ≤ ci. Since Π̂i is a strictly
concave quadratic function of ĉi and we have ĉmaxi ≤ ci, it follows that Π̂i is a non-
increasing function of ĉi in the interval ci < ĉi ≤ c−i. Combined with the fact that

Π̂i[µ, x(·), (ci, c−i)] ≤ Πi[p (c) , x, c] = (R− γi)ci,

this implies that for all ci < ĉi ≤ c−i, we have

Π̂i[µ, x(·), (ĉi, c−i)] ≤ Πi[p (c) , x, c],

establishing that there are no profitable deviations with ĉi ≤ c−i.

This proves that any c1 + c2 = 1 together with (12) is an OE capacity.

(Necessity) Clearly, any c1 + c2 < 1 cannot be a pure strategy OE capacity, since the firm
with γi < R can increase profits by raising ci. Similarly, any c1, c2 ≥ 1 cannot be a pure
strategy OE capacity, since the profits of both firms are equal to 0. Suppose, to obtain a
contradiction, that there exists an OE capacity equilibrium with c1 + c2 > 1, ci > 0 for
i = 1, 2 and ci < 1 for some i. Without loss of generality, we assume that c1 ≥ c2. Then
Proposition 6 implies that

Π1[µ, x(·), c] = R(1− c2)− γ1c1. (16)
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Consider the deviation to ĉ1 = 1− c2 < c1 by firm 1, which by Proposition 2 yields profits

Π̂1[µ, x(·), (ĉ1, c2)] =R(1− c2)− γ1ĉ1

>R(1− c2)− γ1c1

= Π1[µ, x(·), c],

where the inequality exploits the fact that γ1 > 0 and establishes that such an equilibrium
cannot exist.

Next, to obtain a contradiction, suppose that there exists an equilibrium with c1 + c2 = 1,
but (12) is violated. Without loss of generality, assume that c1 ≤ c2, so that

c1 <
R− γ1

2R− γ1

. (17)

Now consider a deviation by firm 1 to ĉ1 = ĉmax1 as given by (15). In view of (17), ĉmax1 > c1

and from Proposition 6, the deviation profits are given by

Π̂1[µ, x(·), (ĉmax1 , c2)] =
(R− (1− c1)γ1)2

4R(1− c1)

>Rc1 − γ1c1

= Π1[µ, x(·), c].

To see that the inequality holds, we consider the function

f(c1) =
(R− (1− c1)γ1)2

4R(1− c1)(Rc1 − γ1c1)
,

for c1 6= 0 (for c1 = 0, the inequality holds trivially). Note that the function f(c1) is strictly
decreasing in c1 for c1 ≤ R−γ1

2R−γ1 . Therefore, for all c1 <
R−γ1
2R−γ1 ,

f(c1) > f

(
R− γ1

2R− γ1

)
= 1.

This implies that
(R− (1− c1)γ1)2

4R(1− c1)
> Rc1 − γ1c1.

The right hand side in the preceding relation is equal to Π1[µ, x(·), c] by (13). This establishes
that there cannot be any equilibrium OE capacity with c1 + c2 = 1 that does not satisfy
(12), completing the proof. Q.E.D.

Since we have c1 + c2 = 1 for all OE capacities, the relation in (12) can equivalently be
written as

R− γ1

2R− γ1

≤ c1 ≤
R

2R− γ2

, (18)
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and

c2 = 1− c1. (19)

Note that for all 0 < γi ≤ R, i = 1, 2, the capacity vector c = (1/2, 1/2) satisfies equations
(18) and (19). Thus, we immediately obtain the existence of a pure strategy Oligopoly
equilibrium as a corollary:

Theorem 1 The price-capacity competition game has a pure strategy Oligopoly Equilib-
rium.

6 Efficiency of Oligopoly Equilibria

In this section, we quantify the efficiency losses of Oligopoly Equilibria. We take the measure
of efficiency to be the ratio of the social surplus of the equilibrium capacity cOE to the social
surplus of the social capacity cS, S(cOE)/S(cS) [cf. equation (5)]. We investigate the worst-
case bound on this metric over all problem instances characterized by γ1 and γ2, either
for the worst equilibrium among the set of oligopoly equilibria or for the best equilibrium
among the set of equilibria.

Given capacity costs γ1 and γ2, let C({γi}) denote the set of OE capacities. We define the
efficiency metric at some cOE ∈ C({γi}) as

r({γi}, cOE) =

∑2
i=1(R− γi)cOEi∑2
i=1(R− γi)cSi

,

where cS is the social capacity given the capacity costs γi and reservation utility R [cf. (4)].

Following the literature on the efficiency losses of equilibria, we are interested in the perfor-
mance of both the worst and the best OE capacity equilibria of price-capacity competition
games. In particular, we first look for a lower bound on the worst performance in a capacity
equilibrium,

inf
{0<γi<R}

inf
cOE∈ C({γi})

r({γi}, cOE),

which is commonly referred to as the Price of Anarchy in the literature (see Koutsoupias
and Papadimitriou (1999)). We then study the best performance in a capacity equilibrium
given an arbitrary price-competition game, and thus provide a lower bound on

inf
{0<γi<R}

sup
cOE∈ C({γi})

r({γi}, cOE), (20)

which is commonly referred to as the Price of Stability in the literature (see Correa et al.
(2002)).

Example 1 Consider a price-capacity competition game with two firms, and γ1 = R − ε
for some 0 < ε < min{1, R}, γ2 = R − ε2. The unique social capacity is (cS1 , c

S
2 ) = (1, 0)
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with social surplus
S(cS) = ε.

Using Proposition 7, it follows that the capacity vector

cOE = (cOE1 , cOE2 ) =
(

ε

R + ε
,

R

R + ε

)
,

is an OE capacity with social surplus

S(cOE) =
ε2(1 +R)

R + ε
.

Therefore, as ε→ 0, the efficiency metric gives

lim
ε→0

r({γi}, cOE) = lim
ε→0

ε(1 +R)

R + ε
= 0.

Recall that when γ1 = γ2, S(cOE) = S(cS). Instead in the preceding example we have that
as γ1 → γ2 (as ε→ 0), the efficiency metric converges to 0.

The preceding example implies the following efficiency result:

Theorem 2 Consider the price-competition game with two firms. Then

inf
{0≤γi≤R}

inf
cOE∈ C({γi})

r({γi}, cOE) = 0,

i.e., the Price of Anarchy of the price-capacity competition game is 0.

We next provide a non-zero lower bound on the Price of Stability of a price-capacity com-
petition game.

Theorem 3 Consider the price-competition game with two firms. Then, for all 0 ≤ γi ≤ R,
i ∈ {1, ..., N}, we have

inf
{0≤γi≤R}

sup
cOE∈ C({γi})

r({γi}, cOE) ≥ 2
√

2− 2,

i.e., the Price of Stability of the price-capacity competition game is 2
√

2−2 and this bound
is tight.

Proof. We assume without loss of generality that γ1 ≤ γ2. Then, the capacity vector
(cS1 , c

S
2 ) = (1, 0) is a social capacity (unique social capacity if γ1 < γ2), with social surplus

S(cS) = R − γ1. Using the definition of the efficiency metric r({γi}, xOE), we consider the
following optimization problem:

sup
cOE∈ C({γi})

R− γ1c
OE
1 − γ2c

OE
2

R− γ1

. (21)
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Since for all cOE ∈ C({γi}), we have cOE1 + cOE2 = 1, the supremum in the above expression
is clearly attained at some cOE ∈ C({γi}) with the maximum value of cOE1 . By Proposition
7 and equations (18)-(19), the maximum value of cOE1 at an OE capacity is given by

cOE1 =
R

2R− γ2

. (22)

Substituting cOE1 = R
2R−γ2 and cOE2 = R−γ2

2R−γ2 in the objective function in (21), we see that
the optimal value is given by

R− Rγ1
2R−γ2 −

(R−γ2)γ2
2R−γ2

R− γ1

.

We are interested in finding a lower bound on the preceding over all 0 ≤ γi ≤ R with
γ1 ≤ γ2, i.e., we consider the following optimization problem:

inf
0≤γi≤R
γ1≤γ2

R− Rγ1
2R−γ2 −

(R−γ2)γ2
2R−γ2

R− γ1

.

This problem has a compact constraint set and a lower semicontinuous objective function
[note that for γ1 = R, the efficiency metric satisfies r({γi}, cOE) = 1]. Therefore it has an
optimal solution (γ̄1, γ̄2). For γ2 = R, the objective function value is 1, showing that γ̄2 < R.
For all γ2 6= R, the objective function is strictly increasing in γ1, showing that γ̄1 = 0.

It follows then that the unique stationary point given by γ̄2 =
(

2 −
√

2
)
R attains the

infimum, showing that the optimal solution of the preceding problem is given by (γ̄1, γ̄2) =(
0, (2−

√
2)R

)
with optimal value 2

√
2− 2.

Finally, to see that the bound of 2
√

2 − 2 is tight, consider the best OE capacity of the
game with γ1 = δ > 0 and γ2 =

(
2−
√

2
)
R. As δ → 0, the surplus in the best oligopoly

equilibrium relative to social optimum limits to 2
√

2− 2. Q.E.D.

7 Equilibria and Efficiency With N Firms

We now generalize the results on the characterization and existence of pure strategy Oligopoly
Equilibria (cf. Section 5) and the efficiency bounds (cf. Section 6) to N firms. While all the
results provided so far generalize, the argument is slightly different, and does not rely on
explicitly characterizing the expected profits of the firms for all mixed strategy Price Equi-
libria.

7.1 Preliminaries

The next set of results generalize Propositions 2-5 of Section 4. Note that in our analysis
of mixed strategy price equilibria, it is sufficient to focus on capacity subgames in which
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ci > 0 for all i ∈ {1, ..., N} (since if ci = 0, profits are equal to 0 for that firm).

Proposition 8 Let c be a capacity vector such that
∑N
i=1 ci ≤ 1 and ci > 0 for i ∈

{1, ..., N}. Then there exists a unique Price Equilibrium in the capacity subgame [p, x] such
that pi = R and xi = ci for i ∈ {1, ..., N}.

Proof. Since
∑N
i=1 ci ≤ 1, it follows by the equivalent characterization of a flow equilibrium

that for all p ∈ [0, R]N , the flow allocation (c1, c2, ..., cN) ∈ W (p, c). Therefore, by charging
a price pi, firm i can make a profit of

Πi[pi, p−i, x, c] = pici,

for all p−i ∈ [0, R]N−1. This shows that pi = R strictly dominates all other price strategies of
firm i, so that pi = R and xi = ci, i ∈ {1, ..., N}, is the unique Price Equilibrium. Q.E.D.

Proposition 9 Let c be a capacity vector such that
∑N
i=1 ci > 1, ci > 0 for all i ∈ {1, ..., N}

and assume that there exists some j with
∑N
i=1 ci−cj < 1. Then there exists no pure strategy

Price Equilibrium in the capacity subgame.

Proof. Suppose there exists a pure strategy Price Equilibrium (p, x). Without loss of gen-
erality suppose that p1 ≤ ph, for all h. Let P1 be the set of players whose price is equal to p1,
i.e., P1 = {h : ph = p1}. The following list considers all candidates for a Price Equilibrium
and provides profitable unilateral deviations from each, thus establishing the nonexistence
of a pure strategy Price Equilibrium:

• p1 < minh6=1 ph, i.e., P1 = {1}: Then the profit of firm 1 is Π1[p, x, c] = p1 min{c1, 1}. A
small increase in p1 will increase firm 1’s profits, thus firm 1 has an incentive to deviate.
• p1 = minh6=1 ph > 0: Let CP1 =

∑
i∈P1

ci be the sum of capacities of the firms that belong
to set P1. If CP1 ≤ 1, then we have to consider the following two cases:
· p1 = minh6=1 ph = R: Then, since by assumption

∑N
i=1 ci > 1, there exists firm s, s /∈ P1,

such that ps > R and firm s is making zero profits, since its price is greater than
the reservation utility R. Firm s can change its price to ps = R − ε, for some ε with
0 < ε < R, and make positive profits.
· p1 = minh6=1 ph < R: Then firm 1 can increase slightly its price without affecting its

flow allocation and thus increase its profits.
If CP1 > 1, we consider the following two cases:
· x1 < min{c1, 1}: Firm 1 can decrease its price slightly, and increase its flow and its

profits.
· x1 = min{c1, 1}: Since CP1 > 1, there exists firm s 6= 1, such that s ∈ P1 and xs <

min{cs, 1}, which can decrease its price and increase its profits.
• p1 = minh6=1 ph = 0. If CP1 ≤ 1, then firm 1 can increase its price and make positive

profits. Let’s consider next the case when CP1 > 1. By assumption there exists some j
with

∑N
i=1 ci − cj < 1. Note that j ∈ P1, since otherwise CP1 ≤

∑N
i=1 ci − cj < 1. Firm j

can increase its price and make positive profits.

Q.E.D.
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Similar to Proposition 4, the next proposition establishes the existence of a mixed strategy
Price Equilibrium in capacity subgames with no pure strategy price Equilibrium (proof
follows from Proposition 4.3 in Acemoglu and Ozdaglar (2007a), and therefore is omitted).

Proposition 10 Let c be a capacity vector such that
∑N
i=1 ci > 1, ci > 0 for i ∈ {1, ..., N}

and suppose that there exists some j with
∑N
i=1 ci − cj < 1. Then there exists a mixed

strategy Price Equilibrium in the capacity subgame.

Proposition 11 Let c be a capacity vector such that for each j ∈ {1, ..., N},∑N
i=1 ci−cj ≥ 1

and ci > 0 for i ∈ {1, ..., N}. Then, for all Price Equilibria [p, x], we have pi = 0 for
i ∈ {1, ..., N}, i.e., all firms make zero profits.

Proof. The proof follows from a Bertrand price competition argument among the N firms.
Q.E.D.

In the remainder of this section, we consider a subgame defined by a capacity vector c, where
c is such that

∑N
i=1 ci > 1, ci > 0 for i ∈ {1, ..., N}, and there exists j with

∑N
i=1 ci− cj < 1.

Proposition 9 implies that there does not exist a pure strategy Price Equilibrium in this
subgame. However, Proposition 10 implies that a mixed strategy Price Equilibrium exists.
Let µi denote the probability measure of prices used by firm i in this equilibrium. We denote
the (essential) support of µi by [li, ui] and the corresponding cumulative distributions by
Fi. Next, we will provide a series of lemmas regarding the structure of the mixed strategy
Price Equilibrium.

Lemma 4 Let c be a capacity vector such that
∑N
i=1 ci > 1, ci > 0 for i ∈ {1, ..., N} and

assume that there exists some j with
∑N
i=1 ci − cj < 1. Let l denote the minimum of the

lower supports of the mixed strategies, i.e., l = mini∈{1,2,...,N} li. Let Pl denote the set of
firms whose lower support is l, i.e., Pl = {i ∈ {1, . . . , N} : li = l}. Then:

(i)
∑
i∈Pl ci > 1.

(ii) Let Pl,atom denote all firms, such that i ∈ Pl and distribution Fi has an atom at l. Then,

∑
i∈Pl,atom

ci + cj ≤ 1, for all j ∈ Pl but j /∈ Pl,atom

Note that if there is no firm j such that j ∈ Pl but j /∈ Pl,atom we have

∑
i∈Pl,atom

ci ≤ 1

Proof.

(i) Suppose to obtain a contradiction that
∑
i∈Pl ci ≤ 1. Let l′ = mini/∈Pl li. Then consider
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firm j ∈ Pl deviating to µ̂j such that the new cumulative distribution F̂j is given by:

F̂j(p) =


0 p < l′ − ε,

Fj(l
′ − ε) p = l′ − ε,

Fj(p) p > l′ − ε,

where F is the original cumulative distribution and ε > 0 is sufficiently small, so that
l < l′ − ε. Essentially all the mass between l and l′ − ε is shifted to l′ − ε. In such
a deviation profile, the flow equilibrium remains unchanged since,

∑
i∈Pl ci ≤ 1, but the

prices charged for positive flows by firm j have increased, thus its profits increase, leading
to a contradiction.

(ii) We first show that j ∈ Pl. Assume to arrive at a contradiction that j /∈ Pl. Then, we have∑
i∈Pl

ci ≤
∑
i 6=j

ci < 1,

where the second inequality holds by the assumption that
∑N
i=1 ci − cj < 1. But this

contradicts part (i), showing that j ∈ Pl.
We next show that l > 0. Assume to arrive at a contradiction that l = 0. This implies

that the profits of firm j at any price vector are equal to 0 [see the characterization
of mixed strategy equilibria; cf. equations (9)-(10)]. However, by the assumption that∑N
i=1 ci− cj < 1, there exists a price vector and a flow equilibrium at which the profits of

firm j are nonzero, thus showing that l > 0.
Note that the set Pl cannot consist of only one firm, since then this firm has an incentive

to increase its price. Suppose next that Pl consists of two firms m 6= n. Assume to arrive
at a contradiction that distribution Fm has an atom at l. Consider the profits of firm n
at price l − ε for some sufficiently small ε > 0,

Πn[l − ε, µm, x(·), c] = (l − ε) min{cn, 1}.

Consider next the profits of firm n at the price l + ε (we can assume without loss of
generality that l + ε belongs to P̄n):

Πn[l+ ε, µm, x(·), c] = (1−Fm(l+ ε))(l+ ε) min{cn, 1}+Fm(l+ ε)(l+ ε)(1−min{cm, 1}).

Since Fm has an atom at l, i.e., Fm(l+) > 0 and 1−min{cm, 1} < min{cn, 1}, it follows
from the preceding two relations that for sufficiently small ε,

Πn[l − ε, µm, x(·), c] > Πn[l + ε, µm, x(·), c],

yielding a contradiction and showing that Fm cannot have an atom at l. This shows the
claim for two firms.

The proof for the case when Pl contains more than two firms is now straightforward.
In particular, note that if ∑

i∈Pl,atom
ci + cj > 1
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for some j ∈ Pl (but j /∈ Pl,atom) we can show that firm j has a profitable deviation
to l − ε. When there is no j ∈ Pl but j /∈ Pl,atom we have to show that

∑
i∈Pl,atom ≤ 1.

If this is not the case, i.e.
∑
i∈Pl,atom > 1, then we can consider j ∈ Pl,atom such that∑

i∈Pl,atom,i 6=j ci + cj > 1, use the above arguments and obtain a contradiction.

Q.E.D.

Lemma 5 Let c be a capacity vector such that
∑N
i=1 ci > 1, ci > 0 for i ∈ {1, ..., N}

and assume that there exists j with
∑N
i=1 ci − cj < 1. Let u denote the maximum of the

upper supports of the mixed strategies, i.e., u = maxi∈{1,2,...,N} ui. Let k be a firm with the
maximum capacity, i.e., ck ≥ ci, for all i ∈ {1, . . . , N}. Then:

(i) At most one distribution Fi can have an atom at the maximum upper support u.
(ii) The maximum upper support u is equal to R.

(iii) If the distribution Fi has an atom at u, then ci = ck.

Proof.

(i) We first show that at most one distribution can have an atom at u. We define the set

Patom = {i ∈ {1, . . . , N} : Fi has an atom at u}.

Suppose to arrive at a contradiction that Patom has more than one element. It follows
that with probability Πi∈Patom(Fi(u+)− Fi(u−)) > 0, all firms that belong to Patom will
charge a price of p = u.

Let Catom =
∑
i∈Patom ci and Dres = max{0, 1−∑i/∈Patom ci}. We have

Catom =
N∑
i=1

ci −
∑

i/∈Patom

ci > max

0, 1−
∑

i/∈Patom

ci

 = Dres,

where the strict inequality follows by the assumption that
∑N
i=1 ci > 1. This implies that

there exists some h ∈ Patom, such that xh(p
u) < min{ch, 1}, where pu is the price vector

for which all firms in Patom charge the price u. Then, firm h can increase its profits by
reducing its price to u − ε for some ε > 0 (since firm h is undercutting the rest of the
firms in Patom). This shows that there exists at most one distribution, which has an atom
at p = u.

(ii) Suppose to arrive at a contradiction that u < R. Let u1 = u, i.e., the upper support
of the mixed strategy of firm 1 is equal to u. By part (i) at most one distribution can
have an atom at u. If a firm has an atom at u, we assume without loss of generality
that it is firm 1. Then, consider the following deviation by player 1 to p1 = u + ε for
some sufficiently small ε > 0. Since no other distribution has an atom at u, for all flow
equilibria x(p) ∈ W [p, c], we can find an ε1 > 0 such that for every ε2 > 0, u − ε1 ∈ P̄1

and x1(u + ε, p−1) ≥ x1(u − ε1, p−1) − ε2 for all p−1. Moreover, x1(u − ε1, p−1) > 0 for
some p−1 and all ε1. We can conclude that firm 1 has a profitable deviation yielding a
contradiction. Note that we did not consider the profits of firm 1 at u, since u may not
necessarily belong to the support of 1’s equilibrium profile.
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(iii) Assume that the distribution Fi has an atom at u. We will show that ci = ck.
Let Pl denote the set of firms whose lower support is l, i.e., Pl = {i ∈ {1, . . . , N} :

li = l}. We first show that i ∈ Pl. Suppose that i /∈ Pl. Then since
∑
h∈Pl ch > 1 [cf.

Lemma 4(i)], firm i’s profits when he charges the price p = u are equal to 0. Using the
assumption that

∑N
i=1 ci−ck < 1, and an argument similar to that in the proof of Lemma

4(ii), it can also be seen that k ∈ Pl.
Suppose to obtain a contradiction that for the only firm with atom at u, firm i, we

have ci < ck. Let Π̄i and Π̄k denote the expected profits (plus the capacity costs) of firms
i and k respectively at the mixed strategy Price Equilibrium (i.e., Π̄i = Πi + γici and
Π̄k = Πk + γkck, where Πj denotes the equilibrium profits of firm j in the mixed strategy
Price Equilibirum). Using i, k ∈ Pl, and the fact that Fi, Fk do not have an atom at the
lower support l [cf. Lemma 4(ii)], it can be seen that Π̄i = cil and Π̄k = ckl, which implies

Π̄i = Π̄k
ci
ck
. (23)

Next note that since the upper support of Fi is u [which is equal to R by part (ii)] and
no other firm has an atom at u [by part (i)], it is also the case that

Π̄i = R

1−
∑
j 6=i

cj

 .
using equation (23), this implies

Π̄k = R

1−
∑
j 6=i

cj

 ck
ci
.

Now consider a deviation for firm k to charging a price p = R with probability 1. The
expected profits for firm k following this deviation satisfy

Π̄k ≥ R

1−
∑
j 6=k

cj


Since ck > ci and

∑N
j=1 cj > 1, we have that

1−
∑
j 6=k

cj

 =

1−
N∑
j=1

cj + ck

 >

1−
N∑
j=1

cj + ci

 ck
ci

=

1−
∑
j 6=i

cj

 ck
ci
.

Therefore, the deviation for firm k is profitable, yielding a contradiction and proving that
ci = ck.

Q.E.D.

Proposition 12 Let c be a capacity vector such that
∑N
i=1 ci > 1, ci > 0 for i ∈ {1, ..., N}

and suppose that there exists j with
∑N
i=1 ci − cj < 1. Let c̄ = maxi=1,...,N ci. Let u denote
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the maximum of the upper supports of the mixed strategies, i.e., u = maxi∈{1,2,...,N} ui. For
firm j, the expected profits Πj[µ, x(·), c] are given by

Πj[µ, x(·), c] =

R
(
1 + c̄−∑N

i=1 ci
)
cj
c̄
− γjcj, if Fj has no atom at u,

R
(
1 + c̄−∑N

i=1 ci
)
− γjcj, if Fj has an atom at u.

Proof. Let Π̄j = Πj + γjcj as in the proof of Lemma 5. If the distribution of firm j, Fj,
has an atom at the maximum upper support, then Lemma 5 implies that Fj is the only
distribution having an atom at the maximum upper support u = R and, moreover, cj = c̄.
Firm j is charging price p = R with positive probability and

Πj[R, µ−j, x(·), c] =R

1−
∑
i 6=j

ci


=R

(
1 + c̄−

N∑
i=1

ci

)
.

Thus, Π̄j = R
(
1 + c̄−∑N

i=1 ci
)

and the expected profits of firm j are given by

Πj[µ, x(·), c] = R

(
1 + c̄−

N∑
i=1

ci

)
− γjcj,

as claimed in the proposition.

Suppose next that Fj does not have an atom at the maximum upper support. We consider
the following two cases:

• None of the distributions has an atom at u. Then, let k denote a firm with ck = c̄. We
claim that uk = u = R, i.e. the upper support of the equilibrium distribution for firm k
is the maximum upper support, u = R. If this is not the case, using an argument similar
to that of Lemma 5[iii], we can show that firm k has a profitable deviation to p = R.
Using the Flow Equilibrium characterization given in Proposition 1, we have that the
equilibrium profits for firm k at price pk = R are given by

Π̄k = R

1−
∑
i 6=k

ci

 .
Then, as argued in Lemma 4, both firm j, which is such that

∑N
i=1 ci − cj < 1, and firm

k belong to set Pl (recall that Pl = {i : li = l}, where l is the minimum lower support).
Therefore,

Π̄j = Π̄k
cj
ck

= R

(
1 + c̄−

N∑
i=1

ci

)
cj
ck
.
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and

Πj[µ, x(·), c] = R

(
1 + c̄−

N∑
i=1

ci

)
cj
c̄
− γjcj.

• The distribution Fk has an atom at the maximum upper support, for some k 6= j. Then
by the first part of the proof ck = c̄ and Π̄k = R(1 + c̄ −∑N

i=1 ci). Moreover, j, k ∈ Pl,
which implies that

Π̄j = Π̄k
cj
ck

= R

(
1 + c̄−

N∑
i=1

ci

)
cj
ck
.

We conclude that

Πj[µ, x(·), c] = R

(
1 + c̄−

N∑
i=1

ci

)
cj
c̄
− γjcj.

Q.E.D.

7.2 Oligopoly Equilibria With N Firms

In this section, we provide a characterization of Oligopoly Equilibria capacities with N ≥ 2
firms. Similar to the analysis for two firms, we will use this characterization to establish the
efficiency properties of Oligopoly Equilibria.

Proposition 13 Assume that γi < R for some i. Let k be a firm with the maximum
capacity, i.e., ck ≥ ci for all k ∈ {1, . . . , N}. A capacity vector c is an OE capacity if and
only if

∑N
i=1 ci = 1 and

R− γi
2R− γi

· (ci + ck) ≤ ci ≤ ck, (24)

for all i 6= k.

Proof. (Sufficiency) We first show that
∑N
i=1 ci = 1 together with (24) define an OE

capacity. Note that since
∑N
i=1 ci ≤ 1, Proposition 8 implies that the profits of firm i, i ∈

{1, ...N}, are

Πi[p (c) , x, c] = (R− γi)ci, (25)

where p (c) denotes the continuation equilibrium price vector, which in this case is (R, ..., R).

Consider a deviation ĉi 6= ci by firm i. If ĉi < ci, Proposition 8 still applies and the resulting
profit for firm i is Π̂i[p (ĉi, c−i) , x, (ĉi, c−i)] = (R − γi)ĉi ≤ Πi[p (c) , x, c], establishing that
there are no profitable deviations with ĉi < ci.

Next consider ĉi > ci. Clearly, if ci = 0,
∑N
i=1 ci = 1 and ĉi = 1 (i.e., firm i changed

its capacity from 0 in the original vector to 1 in the new), Proposition 11 applies and
Π̂i[p (ĉi, c−i) , x, (ĉi, c−i)] = 0 so that the deviation is not profitable. Therefore, we must
have

∑
j 6=i cj + ĉi > 1, cj > 0 for j ∈ {1, ..., N} and

∑
j 6=i cj < 1. In this case, Proposition

10 applies and the deviation will induce a mixed strategy continuation equilibrium µ. We
consider the following two cases:
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• Firm i has the maximum capacity in the new subgame, i.e., ĉi ≥ cj, for all j. Then,
Proposition 12 implies that the deviation profits of firm i are

Π̂i[µ, x(·), (ĉi, c−i)] =R

1−
∑
j 6=i

cj

− γiĉi
= (R− γi) ci − γi (ĉi − ci)
≤Πi[p (c) , x, c].

Thus, in this case, there is no profitable deviation.
• Firm i does not have the maximum capacity in the new subgame, i.e., there exists some
k such that ck is the maximum capacity and ck > ĉi. Then by Proposition 12,

Π̂i[µ, x(·), (ĉi, c−i)] =
R
(
1−∑j 6=k cj

)
ĉi

ck
− γiĉi. (26)

Let ĉmaxi denote the capacity that maximizes (26), given by

ĉmaxi ≡ 1

2
− ckγi

2R
−
∑
j 6=k,i cj

2
. (27)

From equation (24) we have that R−γi
2R−γi · (ci + ck) ≤ ci , which implies that ĉmaxi ≤ ci.

Therefore, for all ci < ĉi ≤ ck, we have

Π̂i[µ, x(·), (ĉi, c−i)] ≤ Πi[p (c) , x, c],

establishing that there are no profitable deviations with ĉi ≤ ck.

This proves that any
∑N
i=1 ci = 1 together with (24) is an OE capacity.

(Necessity) Any capacity vector c such that
∑N
i=1 ci < 1 cannot be a pure strategy OE

capacity, since the firm with γi < R can increase profits by raising ci. Similarly, any capacity
vector c such that for all j,

∑N
i=1 ci − cj ≥ 1 cannot be a pure strategy OE capacity, since

the profits of all firms are equal to 0. Suppose, to obtain a contradiction, that there exists
an OE capacity equilibrium with

∑N
i=1 ci > 1, ci > 0 for i ∈ {1, ..., N} and suppose that

there exists j with
∑N
i=1 ci − cj < 1. Consider the profits of firm k for which ck ≥ cj for all

j. Then, we have

Πk[µ, x(·), c] = R

1−
∑
i 6=k

ci

− γkck. (28)

Consider the deviation to ĉk = 1−∑i 6=k ci < ck by firm k, which yields profits
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Π̂k[µ, x(·), (ĉk, c−k)] =R

1−
∑
i 6=k

ci

− γkĉk
>R

1−
∑
i 6=k

ci

− γkck
= Π1[µ, x(·), c],

establishing that such an equilibrium cannot exist.

Next, to obtain a contradiction, suppose that there exists an equilibrium with
∑N
i=1 ci = 1,

but (24) is violated. Without loss of generality, assume that firm 1 violates (24), i.e.,

c1 <
R− γ1

2R− γ1

(c1 + ck). (29)

Now consider a deviation by firm 1 to ĉ1 = ĉmax1 as given by (27). In view of (29), ĉmax1 > c1

and from Proposition 12, the deviation profits are given by

Π̂1[µ, x(·), (ĉmax1 , c−1)] =

(
R
(
1−∑j 6=1,k cj

)
−
(
1−∑j 6=1,k cj − c1

)
γ1

)2

4R(1−∑j 6=1,k cj − c1)

>Rc1 − γ1c1

= Π1[µ, x(·), c].

This establishes that there cannot be any equilibrium OE capacity with
∑N
i=1 ci = 1 that

does not satisfy (24), completing the proof. Q.E.D.

7.3 Efficiency of Oligopoly Equilibria With N Firms

We next investigate the Price of Anarchy and Price of Stability for oligopoly equilibria
with N firms. The following example shows that the efficiency loss in the worst oligopoly
equilibrium (Price of Anarchy) can again be arbitrarily high.

Example 2 Consider a price-capacity competition game with N firms, and γ1 = R − ε
for some 0 < ε < min{1, R}, γ2 = ... = γN = R − ε2. The unique social capacity is
(cS1 , . . . , c

S
N) = (1, 0, . . . , 0) with social surplus

S(cS) = ε.

Using Proposition 13, it follows that the capacity vector

cOE = (cOE1 , cOE2 , ..., cOEN ) =

(
ε

R + ε
,

R

(R + ε)(N − 1)
, ...,

R

(R + ε)(N − 1)

)
,
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is an OE capacity with social surplus

S(cOE) =
ε2(1 +R)

R + ε
.

Therefore, as ε→ 0, the efficiency metric satisfies

lim
ε→0

r({γi}, cOE) = lim
ε→0

ε(1 +R)

R + ε
= 0.

The preceding example implies the following efficiency result:

Theorem 4 Consider the price-competition game with N firms, N ≥ 2. Then

inf
{0≤γi≤R}

inf
cOE∈ C({γi})

r({γi}, cOE) = 0,

i.e., the Price of Anarchy of the price-capacity competition game is 0.

Next we provide a non-zero lower bound on the Price of Stability of a price-capacity com-
petition game.

Theorem 5 Consider the price-competition game with N firms, N ≥ 2. Then, for all
0 ≤ γi ≤ R, i ∈ {1, ..., N}, we have

sup
cOE∈ C({γi})

r({γi}, cOE) ≥ 2

√
N − 1

N − 1
,

i.e., the Price of Stability of the price-capacity competition game is 2(
√
N −1)/(N −1) and

this bound is tight.

Proof. We assume without loss of generality that γ1 ≤ mini∈{2,...,N} γi and that γ1 < R [if
γ1 = R, then by definition γj = R for all j, so that the equilibrium and social surpluses
coincide]. Then, the capacity vector (cS1 , c

S
2 , ..., c

S
N) = (1, 0, ..., 0) is a social capacity, with

social surplus S(cS) = R− γ1. Using the definition of the efficiency metric r({γi}, xOE), we
consider the following optimization problem:

sup
cOE∈ C({γi})

R−∑N
i=1 γic

OE
i

R− γ1

. (30)

Since for all cOE ∈ C({γi}), we have
∑N
i=1 c

OE
i = 1, the supremum in the above expression

is clearly attained at some cOE ∈ C({γi}) with the maximum value of cOE1 . By Proposition
13, the maximum value of cOE1 at an OE capacity is given by

cOE1 =
R

R +
∑N
i=2(R− γi)

. (31)
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Substituting cOE1 = R/(R +
∑N
i=2(R− γi)) and cOEi = (R − γi)/(R +

∑N
i=2(R− γi)) for

i ∈ {2, ..., N} in the objective function in (30), we see that the optimal value is given by

R− Rγ1(
R+
∑N

j=2
(R−γj)

) − ∑N

i=2
(R−γi)γi(

R+
∑N

j=2
(R−γj)

)
R− γ1

.

We are interested in finding a lower bound on the preceding over all 0 ≤ γi ≤ R with
γ1 ≤ mini∈{2,...,N} γi, i.e., we consider the following optimization problem:

inf
0≤γi≤R
γ1≤γi

R− Rγ1(
R+
∑N

j=2
(R−γj)

) − ∑N

i=2
(R−γi)γi(

R+
∑N

j=2
(R−γj)

)
R− γ1

. (32)

This problem has a compact constraint set and a lower semicontinuous objective function
[note that for γ1 = R, the efficiency metric satisfies r({γi}, cOE) = 1]. Therefore it has an
optimal solution (γ̄1, γ̄2, ..., γ̄N). For γ2 = ... = γN = R, the objective function value is 1,
showing that there should exist at least an i such that γ̄i < R. For all (γ2, ..., γN) 6= (R, ..., R),
the objective function is strictly increasing in γ1, showing that γ̄1 = 0. Moreover it is not
hard to see that the optimal solution to (32) will satisfy (γ̄1, γ̄2, ..., γ̄N)=(0, γ̄, ..., γ̄), i.e.,
γ̄2 = ... = γ̄N = γ̄. It follows then that the optimal solution is given by (γ̄1, γ̄2, ..., γ̄N) =

(0, N−
√
N

N−1
R, ..., N−

√
N

N−1
R) with optimal value 2

√
N−1
N−1

.

Finally, to see that this bound is tight, consider the best OE capacity of the game with
γ1 = δ > 0 and

γ2 = · · · = γN =
N −

√
N

N − 1
R.

In this case, as δ → 0 the ratio of the surplus in the equilibrium and the surplus in the

social optimum is 2
√
N−1
N−1

. Q.E.D.

An interesting implication of this result is that as the number of players increases not only
is the Price of Anarchy equal to zero, but the Price of Stability also goes to zero. Therefore,
while coordination with a limited number of players can ensure that inefficiencies remain
bounded when there are many competing firms even the best equilibrium has unbounded
inefficiency. This result is interesting in part because it goes against a naive conjecture that
increasing the number of oligopolistic competitors should increase efficiency (or even ensure
that the equilibrium limits to a competitive allocation). The reason why this naive intuition
does not apply in this case is that as the number of firms increases, investment incentives
become potentially more distorted.
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8 Stackelberg Leader Game

We have so far characterized the set of pure strategy equilibria in the baseline price-capacity
competition game, where a set of competing firms choose capacity simultaneously first and
then compete in prices (and users allocate their demands in the third stage). The analysis
has shown that different equilibria within this set have widely differing efficiency features. In
particular, the worst equilibrium from the set of pure strategy equilibria can have arbitrarily
low efficiency, while if we select the best equilibrium from the set of equilibria, the worst
efficiency performance will be 2(

√
N − 1)/(N − 1) (in particular, 2

√
2− 2 with two firms).

This raises the question of how the equilibrium will be selected from the set of pure strategy
equilibria and whether some type of regulation may be used to affect equilibrium selection.

While an analysis on equilibrium selection is beyond the scope of the current paper, there
is a natural and simple multi-stage game that implements the best equilibrium. In this
section, we discuss this multi-stage game, which involves the firms choosing their capacities
sequentially, acting in reverse order of their capacity costs. In the special case with two
firms, this is equivalent to the lower-cost firm acting as the Stackelberg leader and choosing
its capacity first.

To simplify the exposition, in this section we suppose that N =2 and again use i and −i
to denote the two firms. In this case, the Stackelberg game works as follows: if γi < γ−i,
firm i moves first and chooses ci. Then firm −i, after observing ci, chooses c−i. After the
capacity choices, the two firms simultaneously choose prices, and after capacities and prices
are revealed, users allocate their demand. If γi = γ−i, the two firms choose their capacities
at the same time.

This game form may result as a focal point, giving the first-mover advantage to the low
cost firm. Alternatively, if the low cost firm is an incumbent in the industry, we may think
that this equilibrium will arise naturally, since the incumbent may have chosen its capacity
before the new entrant. However, it is possible to imagine situations in which the lower cost
firm is the entrant not the incumbent, in which case such a Stackelberg game will not arise
naturally.

For the rest of this section, let us suppose that γ1 < γ2, and by a Stackelberg game, we refer
to the multi-stage game where firm 1 chooses its capacity first, followed by firm 2, and then
the two firms choose their prices simultaneously. A pure strategy Stackelberg equilibrium
is defined as follows.

Definition 5 [Stackelberg Equilibrium] For a given c1 ≥ 0, let BR2(c1) denote the
set of best response capacities for firm 2, i.e.,

BR2(c1) = arg max
c2≥0

[µ,x(·)]∈MPE(c1,c2)

Π2[µ, x(·), c1, c2].

A vector [cSE, p(cSE), x(cSE)] is a (pure strategy) Stackelberg Equilibrium (SE) if [p(cSE), x(cSE)] ∈
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PE(cSE), cSE2 ∈ BR2

(
cSE1

)
, and

Π1[p(cSE), x(cSE), (cSE1 , cSE2 )] ≥ Π1[µ, x(·), c1, c2], (33)

for all c1 ≥ 0, [µ, x(·)] ∈MPE(c1, c2), and c2 ∈ BR2 (c1) .

Proposition 14 Suppose that γ1 < γ2 < R. Then there exists a unique Stackelberg equi-
librium in which

cSE1 = 1− R− γ2

2R− γ2

cSE2 =
R− γ2

2R− γ2

,

pSE1 = pSE2 = R and xSE1 = cSE1 , xSE2 = cSE2 .

Proof. (Existence) It follows from the sufficiency part of proof of Proposition 7 that

given cSE1 , cSE2 is a best response for firm 2, i.e., cSE2 ∈ BR2

(
cSE1

)
. To see that there is no

deviation for firm 1, first note that any c1 < cSE1 gives lower profits. Next consider c1 > cSE1 .
An argument identical to that in the proof of Proposition 7 shows that the best response
of firm 2 to such c1 will satisfy c1 + c2 > 1. Since

c1 > 1− R− γ2

2R− γ2

,

the analysis in the proof of Proposition 7 establishes that firm 1 will make lower profits.

(Uniqueness) From Proposition 7, this is the equilibrium with the highest level of c1. Any
other choice of c1 can be improved upon by firm 1 deviating to cSE1 . Q.E.D.

Denote the set of Stackelberg equilibria by SE ({γi}). Combining this result with Theorem
2, we have the following result.

Theorem 6 Consider the Stackelberg game described above with two firms. Then, for all
0 ≤ γi ≤ R, i = 1, 2, we have

inf
cSE∈ SE({γi})

r({γi}, cSE) = sup
cSE∈ SE({γi})

r({γi}, cSE) = 2
√

2− 2,

i.e., both the Price of Anarchy and the Price of Stability of the Stackelberg game are 2
√

2−2
and this bound is tight.
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9 Simultaneous Capacity-Price Selection Game

In this section, we consider the alternative one-stage competition between the two firms:
firms simultaneously choose the capacity levels ci on their links and the price pi they will
charge per unit bandwidth. Given the price and the capacity set by the other firm, p−i, c−i,
the profit of firm i is

Πi[(pi, p−i), x, (ci, c−i)] = pixi − γici,

where x ∈ W [p, c], i.e., x is a flow equilibrium given the price vector p and the capacity
vector c. The objective of each firm is to maximize profits. We next define the one-stage
Oligopoly Equilibrium for this competition model.

Definition 6 A vector [c∗, p∗, x∗] is a (pure strategy) one-stage Oligopoly Equilibrium (OE)
if x∗ ∈ W [p∗, c∗] and for all i ∈ {1, ..., N},

Πi[(p
∗
i , p
∗
−i), x

∗, (c∗i , c
∗
−i)] ≥ Πi[(pi, p

∗
−i), x, (ci, c

∗
−i)], (34)

for all pi ≥ 0, ci ≥ 0, and for all x ∈ W [(pi, p
∗
−i), (ci, c

∗
−i)].

Proposition 15 ConsiderN firms playing the one-stage game described above withN ≥ 2.
Given any γi, with 0 < γi < R, i ∈ {1, ..., N}, there does not exist a one-stage Oligopoly
Equilibrium.

Proof. Suppose, to obtain a contradiction, that there exists a one-stage Oligopoly Equi-
librium [c∗, p∗, x∗]. We first show that in this equilibrium, we must have

∑N
i=1 c

∗
i = 1 and

p∗i = R. If
∑N
i=1 c

∗
i < 1, then since the flow allocation vector x ∈ W [p, c] for all p ∈ [0, R]N

and
∑N
i=1 c

∗
i < 1, the profit of firm 1 is given by

Π1[p∗, x∗, c∗] = (p1 − γ1)c∗1. (35)

Since γ1 < R, by increasing c∗1 slightly, firm 1 increases its profits, contradicting the claim
that [c∗, p∗, x∗] is a one-stage OE.

Consider next
∑N
i=1 c

∗
i > 1. Then there exists j ∈ {2, 3, ..., N} for which x∗j < c∗j . Clearly

it is profitable for firm j to deviate to (cj, pj) = (x∗j , pj), since it reduces its capacity costs
without affecting its price and flow allocation.

Hence, we must have
∑N
i=1 c

∗
i = 1 and also p∗i = R by equation (35). If c∗1 = 0, then since

x∗1 = 0, firm 1 can increase its capacity level and make positive profits. Assume next that
c∗1 = ε for some ε > 0. Then the profit of any firm j ∈ {2, ..., N} is at most (R− γj)(1− ε).
But if firm j changes its capacity and price to (cj, pj) = (1, R − δ) for some δ > 0 and
δ < (R− γj)ε, it will make a profit of R− δ− γj > (R− γj)(1− ε), showing that there does
not exist a one-stage Oligopoly Equilibrium. Q.E.D.
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10 Conclusions

In this paper, we studied the efficiency of oligopoly equilibria in a model where firms compete
over capacities and prices. This problem is not only of theoretical interest, but it is relevant
for understanding the extent of potential inefficiencies that may arise in the process of
capacity extension in modern communication networks.

To isolate the main economic interactions, we considered the following simple game form.
First, firms independently choose their capacity levels. Second, after the capacity levels
are observed, they set prices. Finally, consumers allocate their demands across the firms.
This game has an obvious similarity to Kreps and Scheinkman’s model of quantity precom-
mitment and price competition, Kreps and Scheinkman (1983), but it is simpler because
demand is inelastic and because results do not have to rely on specific rationing rules.

Using similar ideas to the analysis in Kreps and Scheinkman (1983) and in Acemoglu and
Ozdaglar (2007a), we characterized the entire set of pure strategy equilibria. A pure strategy
oligopoly equilibrium always exists in this game but is supported by mixed strategies off-
the-equilibrium path. The complete characterization of the equilibrium set enables us to
investigate the worst-case efficiency properties of oligopoly equilibria.

Our first result here is that efficiency in the worst oligopoly equilibria (also referred to as
the Price of Anarchy) of this game can be arbitrarily low. However, we also show that if
the best oligopoly equilibrium is selected, the worst-case efficiency loss (also referred to
as the Price of Stability) can be bounded. With two firms, this bound is tight and equal
to 2
√

2 − 2. With an arbitrary number of firms, N , the bound is again tight and equal
to 2(

√
N − 1)/(N − 1). Interestingly, this bound goes to zero as the number of firms,

N , increases. This result contrasts with a naive intuition that the efficiency of oligopoly
equilibrium should improve as the number of firms increases. The reason why this intuition
does not apply in the current context is that with the greater number of competitors, ex
ante investment incentives become potentially more distorted.

We also suggested a simple way of implementing the best oligopoly equilibrium, which
involves the lower cost firms acting before higher cost firms as the “Stackelberg leaders” and
choosing their capacities. With two firms, the Stackelberg game gives a unique equilibrium,
with the efficiency loss bounded by 2

√
2− 2.

Finally, we studied an alternative game form where capacities and prices are chosen si-
multaneously and showed that it always fails to have a pure strategy equilibrium. These
results suggest that the timing of capacity and price choices in oligopolistic environments
is important both for the existence of equilibrium and the extent of efficiency losses.

Many features of the model analyzed here were chosen to simplify the exposition. The
analysis here can be easily generalized to arbitrary (convex) costs functions for investment
in capacities, without changing the essence of the analysis or the results.
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Another more important generalization is to include potential congestion costs, which are an
important feature of many communication networks. Existence and efficiency of oligopoly
equilibria with congestion costs (but without capacity investments) are analyzed in Ace-
moglu and Ozdaglar (2007a), and existence and efficiency of oligopoly equilibria with con-
gestion costs and with capacity investments in the case with symmetric firms are studied
in Weintraub et al. (2006). The problem is much more challenging when there are asymme-
tries, either in the costs of investing in capacity or in the extent of congestion costs within
a subnetwork. We leave the analysis of this general model to future work.
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