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Neural Responses to Unattended Products Predict Later
Consumer Choices
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"Bernstein Center for Computational Neuroscience Berlin, Charité-Universititsmedizin Berlin, 10115 Berlin, Germany, 2Max-Planck-Institute for Human
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Imagine you are standing at a street with heavy traffic watching someone on the other side of the road. Do you think your brain is
implicitly registering your willingness to buy any of the cars passing by outside your focus of attention? To address this question, we
measured brain responses to consumer products (cars) in two experimental groups using functional magnetic resonance imaging.
Participants in the first group (high attention) were instructed to closely attend to the products and to rate their attractiveness. Partici-
pants in the second group (low attention) were distracted from products and their attention was directed elsewhere. After scanning,
participants were asked to state their willingness to buy each product. During the acquisition of neural data, participants were not aware
that consumer choices regarding these cars would subsequently be required. Multivariate decoding was then applied to assess the
choice-related predictive information encoded in the brain during product exposure in both conditions. Distributed activation patterns
in the insula and the medial prefrontal cortex were found to reliably encode subsequent choices in both the high and the low attention
group. Importantly, consumer choices could be predicted equally well in the low attention as in the high attention group. This suggests
that neural evaluation of products and associated choice-related processing does not necessarily depend on attentional processing of
available items. Overall, the present findings emphasize the potential of implicit, automatic processes in guiding even important and

complex decisions.

Introduction

Brain responses obtained during active evaluation of products
and explicit deliberation about purchases have been found to
predict consumer choices (Knutson et al., 2007). Interestingly,
some evidence suggests that automatic brain processes might
guide human judgments and choices, even in the absence of ex-
plicit deliberation and attention to the choice task. Brain re-
sponses were shown to engage automatically in assessing facial
attractiveness and preferences even when such judgments were
not part of the designated task (O’Doherty et al., 2003; Kim et al.,
2007). Likewise, brain activation was reported to reflect prefer-
ences when participants evaluate stimuli with respect to other,
non-preference-related aspects (Lebreton et al., 2009). However,
the precise role of stimulus-related attention in mediating such
automatic valuation processes remains unclear. On the one hand,
sensory responses to unattended stimuli have been shown be
strongly reduced (Rees et al., 1997; Martinez et al., 1999; Kastner
and Ungerleider, 2000). On the other hand, spatially unattended
stimuli have been reported to undergo substantial category-
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selective processing (Peelen et al., 2009). To date, no study has
directly compared neural responses to attended versus unat-
tended products, and the impact of spatial attention on the pre-
diction of economic decisions. Here, we investigated whether
brain responses predict consumer choices even when products
are entirely task-irrelevant and presented outside the focus of
attention.

To examine the role of attention in the prediction of product
choices from brain activity, we performed an experiment with
two different groups of male participants. In each trial, partici-
pants were presented with an image of a car while their brain
responses were measured using functional magnetic resonance
imaging (fMRI). Participants in group 1 (high attention) were
instructed to actively evaluate and rate the attractiveness of each
particular car after its presentation (Fig. 1A). Hence, functional
brain responses were acquired while products were task-relevant
and in the focus of attention. In contrast, participants in group 2
(low attention), were engaged in a demanding visual fixation task
while task-irrelevant images of cars were passively presented out-
side the focus of attention in the background of the screen (Fig.
1B). After the scanning session, participants from both groups
were instructed to realistically picture themselves in a consumer
setting where they had to decide on a new car. For each of the
previously presented products, participants were then asked to
state whether they would like to purchase this car or not (Fig. 1C).
During scanning, participants from both groups were unaware
that they would later be asked about their potential purchases. Mul-
tivariate pattern classification (Haxby et al., 2001; Kriegeskorte et al.,
2006; Norman et al., 2006; Haynes et al., 2007) was then applied
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Scanning session

A Group 1 (high attention)

Active evaluation of products ("How much do you like this car?”)

B Group 2 (low attention)

Passive exposure to products ("Perform the fixation task!”)

Figure1.
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After scanning session

C Questionnaire
“Would you buy this car?”

7.2,9.60r12s

Experimental paradigms. 4, In each trial, participantsingroup 1 (high attention) were presented with images of single cars for 2.4 s followed by a randomized response-button mapping

screen (displayed for a variable duration of 7.2-12 s). Participants were instructed to closely attend to products and to actively evaluate the attractiveness of the particular car on a four-point scale
by pressing the corresponding response button. B, Participants in group 2 (low attention) were asked to perform a demanding fixation task. They responded to the opening of a centrally presented
fixation square (every 800 ms) with a corresponding left- or right-hand button press. The timing parameters applied in group 1 were retained. Every 7.6 —12's, a car was passively presented on the
background of the screen for 2.4 s while the fixation task continued. €, After the scanning session, participants from both groups were instructed to realistically picture themselves in a consumer
setting where they had to decide upon a new car. Participants were then asked to state their willingness to buy each product. During scanning, participants of both groups were not informed that

such a consumer choice would subsequently be required.

to the brain responses obtained during product exposure to pre-
dict their stated product choices.

The present study examined the impact of attention on neural
predictors of economic decision making. More precisely, we in-
vestigated the predictability of consumer choices from brain re-
sponses for unattended products. A successful prediction would
indicate that product valuation and associated choice-related
processing can take place automatically—even with attention
diverted from products.

Materials and Methods

Participants and stimuli. Group 1 consisted of 17 participants (aged be-
tween 24 and 32 years) and group 2 of 15 participants (aged between 22
and 27 years). Participants were healthy male volunteers, had normal or
corrected-to-normal vision, were right-handed and stated that they were
interested in cars before the experiment. The sample was limited to males
interested in cars to ensure that participants were familiar with and pos-
sess stable mental representations about a wide range of items from the
product group. Both paradigms were approved by the local ethics com-
mittee. All participants were paid €12 to take part and all gave written
informed consent.

In both fMRI paradigms, monochrome images of 10 real life cars were
used as stimuli. The selection of cars was based on a behavioral pretest
with an independent sample of participants in a way that maximized
variability in ratings between participants. All pictures were obtained
from the Internet and were normalized with regard to size and contrast.
During both fMRI paradigms, images were centrally presented against a
white background using MATLAB 7.0 (The MathWorks) and the Cogent
toolbox (http://www.vislab.ucl.ac.uk/Cogent). Data from four partici-
pants (in group 1 and 2) as well as data for one car (group 1) and two cars
(group 2) was excluded because of missing variance in consumer choices.

Experimental paradigms. During each trial of both event-related f{MRI
paradigms, participants were presented with a single image of a car for
2.4 s. Participantsin group 1 (high attention) were instructed to judge the
subjective attractiveness of the specific car on a four-point-scale via a
button-press (1 = “dislike it a lot,” 2 = “dislike it a little,” 3 = “like it a
little,” 4 = “like it alot”). The mapping of buttons to attractiveness values
was randomized on a trial-by-trial basis to avoid motor preparation
during product exposure. Thus, each presentation of a car was followed
by a randomized response-mapping screen, which was presented for
7.2-12 s. Responses were given using the index and middle fingers of
both hands operating separate button boxes. Participants in group 2 (low
attention) were instructed to attend to a black square presented centrally
on a white screen. Every 800 ms, the square opened to either the left or the
right side. Participants had to respond to each opening with a matching
left or right button press using the index fingers of both hands. After a
pseudo-randomized duration of 7.2-12 s, a single image of a car was
presented for 2.4 s in the background of the screen while the fixation
task continued. Thus, the visual presentation of cars in group 2 mir-
rored that of group 1 but differed in the direction of attention that was
diverted from products. Participants in group 2 were explicitly in-
structed to maximize performance on the fixation task throughout
the entire experiment.

For both paradigms, scanning was performed in a single measurement
session during which seven independent runs were acquired. The runs
were separated by breaks of ~1 min during which no scanning data were
obtained. Within a run, each of the 10 cars (see stimuli section above) was
presented three times, resulting in a total number of 30 trials per run. For
each run, the presentation order of cars was pseudo-randomized such
that the same product was never shown in two consecutive trials. Pseudo-
randomized durations between presentations of cars varied between 7.2
to 12 s, meaning that each car was combined with different interstimulus
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intervals equally often. This procedure ensured that the onset time of the
next stimulus was unpredictable and event-related brain responses were
clearly separable between trials.

Subsequent to the scanning sessions in both groups, participants were
given a questionnaire with the question “Would you buy this car?” and
the response options “No/Not sure/Yes.” Importantly, during the acqui-
sition of brain responses participants were unaware that it would be
necessary to make such a choice later on. In addition to consumer
choices, participants in group 2 had to explicitly judge the attractiveness
of each particular car on a four-point scale. Moreover, for both groups
familiarity ratings were obtained for all of the products presented. A
between-subject design was chosen to ensure that participants in the
“low attention” condition were completely unaware of the task-relevance
of the products presented.

Image acquisition. For both groups, functional imaging was performed
on a 3-Tesla Siemens TRIO scanner with a standard head coil. T2*-
weighted functional images were obtained using an echoplanar imaging
(EPI) sequence [repetition time (TR) = 2.4 s, echo time = 30 ms]. For
each run, 152 EPI volumes were collected (36 ascending axial slices per
volume, slice thickness 2 mm, in-plane resolution 3 mm X 3 mm, 1 mm
interslice gap, matrix size 64 X 64). The whole session consisted of seven
runs. Due to technical problems, only five runs were acquired for two
participants in group 2.

Data analysis. Data from both groups were analyzed in a similar man-
ner. In a first step, the acquired volumes were slice timed and realigned.
Preprocessed data were then analyzed using a general linear model
(GLM) (Friston et al., 1994) as implemented in SPM2 (http://www.fil.
ion.ucl.ac.uk/spm). For every run, parameter estimates for “purchase”
and “no purchase” choices were estimated, based on stated consumer
choices obtained after the scanning session. Additionally, biometric
pulse data acquired during the scanning were included as coregressors of
no interest to account for pulse artifacts. Four regressors were created by
using the integral of the pulse curve of four successive time bins (TR/4 =
0.6 s) during the product presentation phase.

In the second step, multivariate pattern classification using a support
vector machine (SVM) was applied to the parameter estimates of the
consumer choices (Cox and Savoy, 2003; Mitchell et al., 2004; Kamitani
and Tong, 2005; Haynes and Rees, 2006). To realize the classification a
standard radial basis function kernel as implemented in LIBSVM (http://
www.csie.ntu.edu.tw/~¢jlin/libsvim) was used. In contrast to a classifier
restricted to linear effects, this approach allowed interactions between
features and nonlinear functions to drive the prediction of subsequent
choices. A comparative figure illustrating prediction accuracies obtained
with a linear classification compared with our nonlinear approach is
provided in supplemental Figure 1 (available at www.jneurosci.org as
supplemental material).

Multivariate pattern classification techniques take advantage of infor-
mation contained in multiple voxels distributed across space. They allow
investigating whether spatial patterns of brain activation contain stable
information about different experimental conditions (e.g., purchase vs
no purchase). To achieve best predictive accuracy, the classifier weights
the contributions of the different voxels optimally. In our case, some
voxels within a searchlight cluster were weighted positively and others
negatively by the classification algorithm. Moreover, the nonlinear clas-
sifier also takes their interactions into account.

To ensure an unbiased analysis of the neural activation patterns through-
out the whole brain, a “searchlight” approach was used (Kriegeskorte et al.,
2006; Haynes et al., 2007). Given that this approach does not depend on
a priori assumptions about informative brain regions or prior voxel se-
lection, the problem of circular analysis (or “double dipping”) can be
avoided (Kriegeskorte et al., 2009). For each participant, a sphere with a
radius of 4 voxels was created around every voxel v; of the measured
volume. For each sphere, we investigated whether the local pattern of
activation during product exposure predicted the willingness to buy that
was stated after scanning (purchase vs no purchase). It should be noted
that this analysis is predictive because it uses brain activity during expo-
sure to predict purchase ratings obtained after scanning.

For every run, parameter estimates from the GLM were extracted for
each of the N voxels in the sphere around voxel v; and transformed in an
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N-dimensional pattern vector. For each run, two pattern vectors were
separately created for the purchase and no purchase conditions (see sup-
plemental Fig. 2A, available at www.jneurosci.org as supplemental ma-
terial). Initially, the pattern vectors of six of the seven runs were used for
the training (“training dataset”) of the nonlinear support vector machine
classifier with a fixed regularization parameter C = 1. This provided the
basis of the subsequent classification of the pattern vectors of the remain-
ing seventh run (“test dataset”) as belonging to either the purchase or no
purchase condition (see supplemental Fig. 2B, available at www.
jneurosci.org as supplemental material). The procedure was indepen-
dently repeated seven times with a different run used as the test dataset to
achieve a sevenfold cross-validation. (A fivefold cross-validation was
realized for two participants in group 2 because complete data were
acquired only for 5 of the 7 runs). The amount of purchase-related in-
formation of the spatial activation pattern of each spherical cluster was
represented by the average decoding accuracy across all cross-validation
steps and was assigned to the central voxel v; of the cluster. Given that the
number of considered dimensions (equivalent to number of voxels in a
searchlight) exceeded the number of acquired data points, we have to
consider that noise was fitted to the training of the classifier. The use of
independent data for training and testing, however, controlled for the
impact of potential overfitting, and consequently for the overestimation
in the prediction accuracy (Vul et al., 2009). Moreover, to control for
“peaking” problems, decoding accuracies were calculated by estimating
the mean across seven cross-validation steps.

The described classification was successively performed for all clusters
created around every measured voxel, resulting in a three-dimensional
map of average classification accuracies for each participant. These accu-
racy maps were then spatially normalized to a standard brain [Montreal
Neurological Institute (MNI) EPI template as implemented in SPM2]
and resampled to an isotropic spatial resolution of 3 X 3 X 3 mm°.
Finally, a standard second-level statistical analysis as implemented in
SPM2 was performed to identify brain regions that allowed classification
of consumer choices across participants in each group. For both groups,
analyses were based on the normalized three-dimensional accuracy maps
of each subject. Each single point of an individual accuracy map repre-
sented the average decoding accuracy of a searchlight surrounding this
position across all cross-validation steps. Thus, each value represented
the amount of choice-related information of the spatial activation pat-
tern of a surrounding spherical cluster. To assess the statistical signifi-
cance of these accuracy values across subjects, individual accuracy maps
of one group were submitted to a voxelwise one sample ¢ test and con-
trasted against chance level. Since the classification was based on two
alternatives (purchase vs no purchase), chance level was 50%. Familywise
error (FWE) correction for multiple comparisons was implemented to
control for false positives. Only regions passing this stringent statistical
threshold ( p < 0.05, FWE-corrected, whole brain) and showing signifi-
cant decoding accuracies above chance were considered relevant for in-
formation encoding (Haynes et al., 2007; Soon et al., 2008).

Supplemental data analysis. After each product presentation, partici-
pants in group 1 (high attention) had to rate the attractiveness of the
particular car on a four-point scale via a button-press. To ensure that
brain regions predictive for subsequent consumer choices do not mainly
reflect attractiveness, we conducted an additional multivariate decoding
analysis. Except for the GLM parameter estimates representing attrac-
tiveness ratings instead of consumer choices, the multivariate searchlight
decoding was identical to the one described for the main analysis. An-
other separate decoding analysis was performed on the button-presses to
confirm that regions predicting product choices did not simply encode
subsequent motor responses. Here, parameter estimates of the GLM
were created based on motor responses indicating subjective attractive-
ness judgments. Apart from that, the analysis was similar to the one
described above to predict consumer choices. In both additional decod-
ing analyses chance level was 25%, because the classification was always
based on four alternatives of either attractiveness or button-presses. We
considered only regions showing significant decoding accuracies above
chance as relevant for encoding of attractiveness and motor responses.

Furthermore, classic univariate analyses were conducted for data from
both groups. This enabled us to investigate whether there are single vox-
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els whose mean activation is significantly more strongly activated in one
experimental condition of consumer choices compared with another
(purchase vs no purchase). The functional imaging data were prepro-
cessed using slice time correction, motion correction, were spatially nor-
malized to a standard stereotaxic space (MNI EPI template), resampled
to an isotropic spatial resolution of 3 X 3 X 3 mm? and smoothed with a
Gaussian kernel of 6 mm full-width half-maximum. Except for these
differences in the preprocessing, parameter estimates were created as
described in the first step of the multivariate decoding approach. Param-
eter estimates of purchase and no purchase choices were then contrasted
against each other on a single-subject level. Subsequently, a second-level
statistical analysis was performed to identify regions that were signifi-
cantly more strongly activated in one of the two conditions across
participants.

To test whether engagement of attention in one region of the visual
field (corresponding to the square of the fixation task in group 2) can
strongly decrease the processing of task-irrelevant background stimuli,
we compared the blood oxygenation level-dependent (BOLD) signal
change during product exposure of group 2 (low attention) and group 1
(high attention). In the first step, GLM parameter estimates for visual
responses during product exposure were created for each participant and
contrasted against baseline. Based on these contrasts, the individual
BOLD signal change was estimated for each participant. In the second
step, these estimates were used to calculate the average BOLD signal
change across participants by implementing a second-level analysis for
Groups 1 and 2 individually. Subsequently to contrasting the resulting
parameter estimates against baseline, we identified the peak activation
area of both hemispheres across these two contrast images (located in the
left [MNI —30, —81, —21] and right visual cortex [MNI 27, —84, —18]).
Assuming that the visual information was encoded in both hemispheres,
we pooled the signal change from both peak activation areas. This was
performed for group 1 and group 2 individually. Finally, a ¢ test for
independent samples was applied to compare the average signal change
in group 1 and group 2.

Results

Behavioral results

Consumer choices

In group 1 (high attention), we obtained functional brain responses
while participants closely attended to and actively evaluated prod-
ucts. In group 2 (low attention), participants performed a dis-
traction task at fixation while task-irrelevant products were
presented outside the focus of attention on the back of the screen.
Subsequent to scanning, participants in both groups had to state
their willingness to purchase each particular car. The number of
trials assigned to either the purchase or no purchase condition
was found to be well balanced within both groups and compara-
ble across them. In group 1, the mean distribution of the declared
consumer choices for all products was 54% no purchase, 5%
“maybe,” and 41% purchase. In group 2, 46% of the products
were chosen to be no purchase trials, 4% maybe, and 50% purchase
trials across participants. For both groups, profiles of product selec-
tion were found to vary across participants (see supplemental Table
1, available at www.jneurosci.org as supplemental material). Addi-
tionally, the results of a t test for independent samples confirmed that
product-specific means (group 1: mean 1.87 = SD 0.83; group 2:
mean 1.86 = SD 0.93) of consumer choices were comparable across
both groups (t = —0.43, p = 0.67).

Familiarity

After scanning, participants from both groups were asked
whether they had been familiar with the presented products be-
fore the experiment. In group 1 (high attention), participants
reported the products were familiar in 85% of all cases and as
being unknown in 12%. In group 2 (low attention), participants
were acquainted with 87% of the products before the experiment
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while 10% of products were unknown. For the remaining 3% in
both groups the participants stated they were unsure whether
they were acquainted with the product before the experiment.
For both groups, these findings confirmed that most of the prod-
ucts presented were well known before the experiment.

Task performance and recognition rates

To examine whether attention was effectively removed from
products in the low attention condition as implemented in group
2, we analyzed the behavioral performance in the visual fixation
task during scanning. The high mean percentage of 89% correct
responses indicates that participants attended to the assigned de-
manding fixation task as instructed. Moreover, we compared the
recognition performance in a memory test for both groups (high
and low attention) conducted upon completion of the experi-
ment (independent sample of 41 healthy male volunteers: high
attention group: N = 20, 26.5 = 2.8 years; low attention group:
N = 21, 25.8 £ 1.9 years, mean * SD). Subsequent to the com-
pletion of either the high attention or the low attention condi-
tion, participants were presented with single images of 20 cars in
randomized order. Ten of these cars were stimuli used in the
experiment while the remaining 10 images displayed previously
unseen cars. For each product, participants had to state whether
this car had been presented during the experiment or not. Size
and position of the products on the computer screen were kept
constant to facilitate recognition performance. Individual hit-
rates [HR(high attention) = mean 0.97 = SD 0.07, HR(low at-
tention) = mean 0.63 = SD 0.26] as well as false-alarm-rates
[FAR(high attention) = mean 0.02 = SD 0.04, FAR(low atten-
tion) = mean 0.22 £ SD 0.18] were found to differ significantly
between high and low attention conditions (HR: t = —5.41,p <
0.001; FAR: t = 4.74, p < 0.001). Participants in the low attention
condition showed lower correct recognition of previously seen
cars than participants in the high attention condition. Moreover,
they were more likely to incorrectly rate a previously unseen car
as having been presented during the experiment. These findings
strongly suggest that attention was effectively removed from
products in the low attention condition of our experiment.

fMRI results

Multivariate decoding of subsequent consumer choices

In group 1 (high attention), spatial activation patterns in the
prefrontal cortex (PFC), namely in the left medial frontal gyrus
(82% decoding accuracy), the right dorsomedial PFC (75% de-
coding accuracy) and the bilateral ventromedial PFC (73% decod-
ing accuracy) predicted subsequent consumer choices. Moreover,
the left insula (73% decoding accuracy) and the right parahip-
pocampal gyrus (72% decoding accuracy) were found to contain
stable information about later product choices (see Table 1 for a
complete list of results).

In group 2 (low attention), activation patterns in the left me-
dial PFC (76% decoding accuracy) and the bilateral insula (right:
82% decoding accuracy, left: 72% decoding accuracy) predicted
subsequent consumer choices. Neural responses in the left infe-
rior parietal lobe (82% decoding accuracy) and the bilateral su-
perior temporal gyrus (left: 74% decoding accuracy, right: 70%
decoding accuracy) also encoded choices between cars (see Table
2 for a complete list of results). It should be noted that decoding
accuracies in brain regions predicting subsequent consumer
choices under high and low attention conditions were found to be
comparable (Fig. 2).

To provide further evidence for the statistical validity of the
results obtained by this approach, an additional decoding analy-
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Table 1. Brain regions encoding the subsequent consumer choices among actively evaluated products in group 1 (high attention)

Accuracy MNI coordinates

Brain region Side BA M SE tvalue X y z
Frontal lobe

Medial frontal gyrus L 9 82 33 9.49 =21 27 30

mPFC (dorsal) R 10 75 2.6 9.53 9 57 21

mPFC (ventral) L 10 73 23 9.96 -9 63 12
Limbic lobe

Insula L 73 23 9.80 —36 —6 0

Parahippocampal gyrus R 30 72 1.9 10.98 30 —57 3
Occipital lobe

Inferior occipital lobe L 18 73 22 10.44 =15 —105 —6

L 18 70 2.0 9.96 =27 —93 —15

Cerebellum R 77 2.7 9.69 9 —66 —36

Results are reported on a statistical level of p << 0.05, FWE-corrected; only peak activations of clusters are listed. L, Left hemisphere; R, right hemisphere; M, mean; BA, Brodmann area.

Table 2. Brain regions encoding the subsequent consumer choices among passively presented, task-irrelevant products in group 2 (low attention)

Accuracy MNI coordinates
Brain region Side BA M SE tvalue X y z
Frontal lobe
Middle frontal gyrus L 8 79 2.8 10.45 —24 36 4
L 8 76 1.8 10.70 =21 36 51
L 8 72 1.9 11.35 -39 33 42
mPFC L 10 77 2.2 1238 =15 57 24
L 10 76 2.0 12.83 —6 51 18
mOFC L n 74 20 12.20 —12 42 —18
Inferior frontal gyrus L 45 73 21 10.90 =51 24 15
Limbic lobe
Insula R 82 2.6 5.19 39 -3 15
L 72 1.8 12.46 —42 15 —6
Parietal lobe
Inferior parietal lobe L 40 82 2.7 11.81 —57 —36 27
R 40 73 21 10.66 60 -39 30
Temporal lobe
Superior temporal gyrus L 38 74 1.8 1331 =51 12 —18
R L) 75 1.8 13.40 54 -33 15
R 42 70 1.5 13.62 63 —36 18

Results are reported on a statistical level of p < 0.05, FWE-corrected; only peak activations of clusters are listed. L, Left hemisphere; R, right h

sis was conducted for data of both groups. When test datasets
were randomly assigned to either the purchase or no purchase
condition during the testing phase of the classifier, no statistical
significant prediction of consumer choices could be achieved
(FDR and FWE-corrected). This was true for data from both
groups independently. Moreover, decoding accuracies in brain
regions that were informative in the original analysis were at
chance level (50%) when the test data were randomly allocated to
the conditions (see supplemental Fig. 3, available at www.
jneurosci.org as supplemental material). This finding speaks
against potential methodological concerns such as possible biases
inherent in the testing procedure and insufficient corrections for
multiple comparisons. Finally, we investigated whether a combi-
nation of two informative classifiers [i.e., medial prefrontal cor-
tex (mPFC) and insula] could improve the overall prediction
accuracy. Compared with decoding results of single searchlights
in these areas, the weighted classification using decision values of
the first-level decoding enhanced the prediction by 7% and by 5%
respectively.

Neural activation in the ventral striatum has frequently been
implicated in financial decision-making, preference-related pro-
cessing of products as well as purchases (Erk et al., 2002; Kuhnen
and Knutson, 2005; Knutson and Bossaerts, 2007; Knutson et al.,
2007; Schaefer and Rotte, 2007a). To investigate whether spatial
activation patterns in these regions would be found to contain

3

| cortex.

isphere; M, mean; BA, Brod area; OFC, orbi

stable information about product choices when smaller searchlights
(radius of 2 voxels) were used, an additional decoding analysis was
performed. At a more liberal statistical threshold of p < 0.00001
(uncorrected), this analysis revealed predictive information in the
striatum (see supplemental Fig. 4, available at www.jneurosci.org as
supplemental material).

Univariate comparisons of subsequent consumer choices

In both groups, classic univariate comparisons did not reveal any
activation differences between products that participants were
willing to purchase and those they were not. This strongly sug-
gests that multivariate pattern classification is capable of extract-
ing information which conventional analyses fail to detect.

Multivariate decoding of attractiveness judgments

Participants in group 1 were instructed to judge the subjective
attractiveness of a particular car after each product presentation.
Spatial activation patterns in the right middle frontal gyrus (47%
decoding accuracy, [MNI 30, 12, 33]), medial frontal gyrus (43%
decoding accuracy, [MNI 15, 33, 45]) and left orbitofrontal cor-
tex (40% decoding accuracy, [MNI —27, 33, 18]) were found to
encode attractiveness judgments during product presentation.
Activity in the left (51% decoding accuracy, [MNI —15, 24, 30])
and right dorsal anterior cingulate cortex (49% decoding accu-
racy, [MNI 15, 24, 30]), left (41% decoding accuracy, [MNI —18,
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Figure 2.

cluster threshold of 10 voxels (L indicates left hemisphere).

—45, 12]) and right posterior cingulate cortex (42% decoding
accuracy, [MNI9, —42, 12]) and left insula (40% decoding accu-
racy, [MNI —42, 9, —3]) were also found to be predictive of
evaluation scores (p < 0.05, FWE-corrected, chance level 25%
for attractiveness ratings 1-4). For a complete list of results, see
supplemental Table 3, available at www.jneurosci.org as supple-
mental material. Importantly, no direct overlap of regions pre-
dicting consumer choices and those predicting attractiveness
scores could be observed (see supplemental Fig. 5, available at
www.jneurosci.org as supplemental material). This finding
strongly supports the notion that the information encoding con-
sumer choices is not merely based on evaluative judgments of
attractiveness.

Multivariate decoding of button presses

To ensure that the neural activity during the product viewing
phase was not confounded by the preparation of the motor
response, we applied a randomized response-button mapping.
This mapping scheme was only presented after the removal of the
product to isolate the motor response from the processing of
product information. As expected, we found no brain region that
was informative about the subsequent motor response during the
product-viewing phase. This finding strongly suggests that the
prediction of subsequent consumer choices was not based on
motor preparation during product exposure. During the presen-
tation of the response-mapping scheme (subsequent to the prod-
uct presentation), the bilateral motor cortex ([MNI 48, —21, 57]
and [MNI —42, —21, 54]) predicted the current button-press
(p < 0.05, FWE-corrected, chance level 25% for buttons 1-4).
Importantly, no neural structure predictive of subsequent con-
sumer choices contained information about the associated motor
responses (see supplemental Fig. 6, available at www.jneurosci.
org as supplemental material). This finding indicates that the
prediction of consumer choices was not related to neural pro-
cesses involved in the execution of motor responses.

Attention modulation in the visual cortex
Engagement of attention in one region of the visual field (corre-
sponding to the square of the fixation task) has been suggested to

Brain regions encoding subsequent consumer choices in both groups. Multivariate searchlight decoding (radius of 4
voxels) was applied to functional brain responses obtained during product exposure to predict subsequent consumer choices
(chance level 50%). Spatial activation patterns in the mPFCand the insula were found to encode these choices when participants
did not explicitly deliberate on purchases ( p << 0.05, FWE-corrected). Importantly, this applied to situations when participants
closely attended to and actively evaluated products (“high attention” group 1, blue) as well as when products were passively
presented outside the focus of attention (“low attention” group 2, red). The amount of predictive information in the brain
responses was found to be comparably high in both groups. The graph displays mean decoding accuracies and SEs across partici-
pants for both regions and both groups. For illustrative purposes, the contrasts are shown at p << 0.0001 (uncorrected) with a
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decrease the visual processing of task-
irrelevant background stimuli (cars). To
test this assumption, we compared the
BOLD signal change in the visual cortex
during product exposure in the high and
low attention conditions. Consistent with
our hypothesis, we found a significant dif-
ference in the BOLD signal change evoked
by the presentation of cars in the high at-
tention and low attention group (¢ test for
independent samples, t = 5.15, p <
0.001). More precisely, the results demon-
strated that the responses in the visual
cortex evoked by the task-irrelevant im-
ages of cars which were presented outside
the focus of attention were reduced com-
pared with when the images are actively
evaluated and attended to. This finding
indicates that the engagement of attention
in one region of the visual field (corre-
sponding to the square of the fixation
task) decreased the processing of task-
irrelevant products in the background.

Discussion

The present study investigated the impact
of product-related attention on neural predictors of consumer
choices. Activation patterns in the insula and the mPFC were
found to predict these choices under high and low attention pro-
cessing (Fig. 2). Thus, a close match of predictive brain regions
was revealed independent of spatial attention to products. This
demonstrates that processing of unattended stimuli can proceed
beyond object processing (Peelen et al., 2009) to a stage that even
allows the prediction of consumer choices. Importantly, the
amount of predictive information in these areas was comparably
as high when task-irrelevant products were presented outside the
focus of attention as when they were actively evaluated and at-
tended to. Congruent with the notion of unconscious environ-
mental triggers for automatic processes in consumer settings
(Chartrand, 2005), this indicates that a prediction of economic
choices from brain responses does not necessarily depend on
attentive processing of products.

Notably, these findings were achieved with participants who
were naive about the necessity of a subsequent choice. This is in
line with behavioral findings reporting that consumer-related
goals can automatically be activated, guiding subsequent con-
sumer behavior and choices even outside of conscious awareness
(Bargh, 2002; Chartrand, 2005; Dijksterhuis et al., 2005). More-
over, it is consistent with previous data showing that brain re-
sponses reflect preference choices when participants evaluate
stimuli with respect to other, non-preference-related aspects
(Kim et al., 2007; Lebreton et al., 2009). The current study goes
beyond these results by demonstrating that brain responses pre-
dict subsequent choices even in the absence of spatial attention to
choice options.

Neural activation in the insula and the mPFC has been shown
to predict consumer choices when participants closely attend to
products and explicitly deliberate about purchases (Knutson et
al., 2007). Given that the prediction of consumer choices in the
present study was achieved in the absence of explicit deliberation
and without a priori assumptions about informative regions, this
further supports the role of both areas in economic decision-
making. Spatial activation patterns in the insula and the mPFC
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were also reported to predict behavioral choices in the following
trial of a reward-based decision-making task (Hampton and
O’Dobherty, 2007). In line with this finding, both structures have
been suggested to underlie the neural representation of the ex-
pected reward value (Knutson et al., 2005; Preuschoff et al., 2006;
Hampton et al., 2007; Hare et al., 2008; Rolls et al., 2008), a
concept central to microeconomic and psychological models of
decision-making (Knutson and Bossaerts, 2007; Loewenstein et
al., 2008; Rangel et al., 2008). Cultural stimuli such as cars and
logos of car manufacturers can signal potential social dominance
or wealth and have been shown to modulate activity in the reward
circuit (Erk et al., 2002; Schaefer and Rotte, 2007a). It can be
assumed that products in the present experiment differed in their
expected reward value depending on whether they were subse-
quently chosen to be purchased or not (Sharot et al., 2009). We
suggest that distinguishable activation patterns in the insula and
the mPFC reflected these different reward values and—even
without full attention— contributed to subsequent hypothetical
consumer choices.

Activation in the mPFC—particularly the ventral part—has
also been reported to reflect product-related preference and at-
tractiveness judgments (Paulus et al., 2003; McClure et al., 2004;
Deppe et al., 2005; Plassmann et al., 2008; Lebreton et al., 2009;
Luu and Chau, 2009). The dorsal mPFC, on the other hand, has
been proposed to be involved in the processing of brand knowl-
edge (Schaefer et al., 2006; Schaefer and Rotte, 2007b), the impact
of which on consumer preferences and choices is well known
(McClure et al., 2004; Lee et al., 2006). Considering this evidence,
it is likely that the predictive information encoded in the mPFC
might have been influenced by subjective valuation and the brand
and price information.

It can be assumed that global product valuation was a major
source for subsequent choices. This is particularly likely, given
that no further product-related information was provided during
the experiment to avoid drawing participants’ attention to the
potential choice options. Therefore, it could be speculated that
the predictive information merely reflects global attractiveness or
desirability of products. However, many cognitive factors as well
as their interactions with automatic valuation processes might
contribute to a complex choice such as those for a new car. This is
particularly likely for participants who stated an interest in cars
and are assumed to possess relevant knowledge on the items.
Consistent with this notion product choices were not entirely
determined by attractiveness judgments. Thus, only partial cor-
relations between product-specific attractiveness ratings and
consumer choices were found for both groups in the present
experiment (see supplemental Table 2, available at www.
jneurosci.org as supplemental material). Additionally, no direct
overlap of brain regions predicting attractiveness judgments and
those being informative about consumer choices could be iden-
tified (see supplemental Table 3 and supplemental Fig. 5, avail-
able at www.jneurosci.org as supplemental material). Together,
these findings indicate that the prediction of product choices was
not mainly due to global evaluations of attractiveness but might
reflect automatic choice-related processing itself. This is in line
with previous results showing that brain activation reflecting
subsequent preference decisions were not merely responding to
attractiveness of stimuli (Lebreton et al., 2009). However, more
research is needed to specifically examine choice-relevant dimen-
sions with the current paradigms, possibly testing explicit models of
multiattribute decision-making (Dijksterhuis et al., 2006; Lassiter et
al., 2009). Given that consumer choices for each product were found
to vary from participant to participant, it is also unlikely that the
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predictive information was based on physical properties of single
cars (see supplemental Table 1, available at www.jneurosci.org as
supplemental material). Results of an additional decoding anal-
ysis also demonstrate that the prediction of consumer choices was
not related to neural processes involved in the preparation of
motor responses (see supplemental Fig. 6, available at www.
jneurosci.org as supplemental material).

Another point that needs to be addressed concerns the ques-
tion of whether attention was effectively attenuated by engaging
in the distraction task in group 2. Evidence of successful distrac-
tion comes from differences in memory performance, obtained
for both groups after the experiment. Recognition rates of cars
were strongly decreased in participants who performed the dis-
traction task compared with participants who actively evaluated
products. Moreover, neural responses in the visual cortex evoked
by task-irrelevant, unattended images of cars were found to be
reduced compared with images that were actively evaluated and
fully attended to. This is consistent with previous research dem-
onstrating that the engagement of attention in one region of the
visual field strongly decreases the processing of irrelevant back-
ground stimuli (Rees et al., 1997). It can therefore be considered
that the attention to products in group 2 was strongly diminished
compared with group 1. As in most attention studies, there is a
possibility of weak but residual attention to unattended target
stimuli. However, our key finding is that a strong reduction in
attention does not affect the choice-predictive information.
Purchase-related information encoded in the brain was not re-
duced, but was comparably high in low and high attention con-
ditions. Furthermore, we found a close match of predictive brain
regions during high and low attentional processing of products.
Together, this indicates that choice-related processing does not
necessarily require close attention to products and can even occur
in cases where sensory signal processing is attenuated due to a
removal of attention. Although it remains possible that the choice
was not explicitly calculated during product presentation, the
high predictive accuracy reveals that choice-related processes
have already reached a high level of completion.

The present study implemented hypothetical choices, which
are commonly applied in marketing research. Nevertheless, it
needs to be explored whether the same activation patterns are
predictive for actual purchases— beyond the stated willingness to
buy. This would allow checking for potential biases such as the
tendency to overstate the willingness to pay or vote in case of
hypothetical choices (List and Gallet, 2001; Murphy et al., 2005).
Requiring expenses would likely involve losses and more relative
comparisons between available products, including changes in
the reference point for product valuation (FitzGerald et al., 2009;
Sharotetal., 2009). Real purchases might also engage processes of
perceived justification, anticipated regret, time pressure or self
esteem (Plassmann et al., 2007). Finally, it might be that making
actual purchases differs from our experimental setting in terms of
the strategies used for information acquisition and information
integration across multiple relevant dimensions. However, it
should be noted that informative brain regions as identified with
the present approach are strikingly consistent with previous find-
ings that implemented actual purchases (Knutson et al., 2007).
Further research might also address the generalizability of our find-
ings to other product categories, including different goods (e.g., cars
vs coffee) and different types of purchases (e.g., routine vs new), as
well as to people who are not interested in the product group.

In summary, we found a close match of brain regions predicting
consumer choices for both high and low attentional processing of
products. Importantly, the amount of predictive information was



Tusche et al. » Attention-Independent Prediction of Consumer Choices

found to remain persistently high when task-irrelevant products
were presented outside the focus of attention. Altogether, these find-
ings support the notion that even complex and important economic
choices can be prepared automatically, in the absence of explicit
deliberation and without attention to products.
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