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Can small groups of individuals efficiently predict population-
level behavior? People are notoriously limited in their ability 
to predict their own future behavior and accurately identify 
their internal mental states through verbal and written self-
reports (Nisbett & Wilson, 1977). Furthermore, explicitly ask-
ing participants to reflect on such internal mental states (e.g., 
“Why do you like this?”) has been shown to alter the outcome 
and quality of judgments (Wilson & Schooler, 1991). Thus, it 
is not surprising that public-health media messages selected 
using traditional focus groups—which rely on these forms of 
self-report—are also imperfect predictors of population-level 
responses (Noar, 2006).

Recent research has identified neural indicators of individ-
uals’ future behavior that may be inaccessible using self-
reports (Berns & Moore, 2012; Brewer, Worhunsky, Carroll, 
Rounsaville, & Potenza, 2008; Falk, Berkman, Mann, Harri-
son, & Lieberman, 2010; Knutson, Rick, Wimmer, Prelec, & 
Loewenstein, 2007; Kosten et al., 2006; Paulus, Tapert, & 
Schuckit, 2005; Tusche, Bode, & Haynes, 2010). However, it 
has not been previously demonstrated whether neural 
responses to persuasive messages in a small group of individu-
als also forecast behavioral responses at the population level 
(e.g., in a city or state).

To examine this question, we partnered with public health 
organizations that had produced television ads designed to 
help smokers quit. We used ads from three campaigns in a 
functional MRI (fMRI) investigation conducted in a separate 
location from where the ads were aired. Participants in our 
study (smokers who intended to quit) viewed ads from each 
campaign while their neural activity was measured. In a previ-
ous study, we used the same task and sample to demonstrate 
that overall neural activity across all the ads predicted indi-
vidual smoking reduction in the month following the scan, 
above and beyond the participants’ self-reports of intention to 
quit, quitting-related self-efficacy, and their ability to relate to 
the ads (Falk, Berkman, Whalen, & Lieberman, 2011). In the 
analyses reported here, we used those data together with new 
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Abstract

Can neural responses of a small group of individuals predict the behavior of large-scale populations? In this investigation, 
brain activations were recorded while smokers viewed three different television campaigns promoting the National Cancer 
Institute’s telephone hotline to help smokers quit (1-800-QUIT-NOW). The smokers also provided self-report predictions of 
the campaigns’ relative effectiveness. Population measures of the success of each campaign were computed by comparing call 
volume to 1-800-QUIT-NOW in the month before and the month after the launch of each campaign. This approach allowed 
us to directly compare the predictive value of self-reports with neural predictors of message effectiveness. Neural activity 
in a medial prefrontal region of interest, previously associated with individual behavior change, predicted the population 
response, whereas self-report judgments did not. This finding suggests a novel way of connecting neural signals to population 
responses that has not been previously demonstrated and provides information that may be difficult to obtain otherwise.
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data (about population-level outcomes) to answer an orthogo-
nal question:  Would neural activity in response to the different 
ad campaigns predict the effectiveness of the campaigns 
among a larger group of new individuals? To address this 
question, we used the fMRI data and self-report predictions of 
the ads’ effectiveness to rank the campaigns. We then com-
pared these rankings with the actual population-level success 
of the campaigns. Neither this analysis, the brain-activation-
based and self-report measures of the ads reported in this arti-
cle, nor the population data were reported in the previous 
study. The approach described here is novel because it directly 
links neural responses with behavioral responses to the ads at 
the population level.

Method
Participants

Thirty-one right-handed participants (15 female, 16 male) 
were recruited from a quit-smoking program in the greater Los 
Angeles area. One male participant was excluded for exces-
sive motion during the fMRI session. All participants were 
heavy smokers with a strong intention to quit (Biener & 
Abrams, 1991); thus baseline intentions to quit were held rela-
tively constant across this sample. Participants varied in  
age from 28 to 69 years (M = 44.4 years, SD = 10.1) and were 
ethnically and socioeconomically diverse. Participants were 
paid $80 for completion of the fMRI portion of the study.  
The study was approved by the University of California, Los 
Angeles institutional review board, and all participants pro-
vided written informed consent. (See Additional Participant 
Details in the Supplemental Material available online for fur-
ther information about the sample.)

Procedure
The ads task. The task during the fMRI session consisted of 
viewing professionally developed television ads designed to 
help smokers quit smoking. We focused on three ad campaigns 
(designated here as Campaigns A, B, and C). All of the ads 
were selected to target smokers who had decided to quit. All 
ads lasted 30 s, with the exception of two ads that were 15 s. 
All participants viewed a series of 16 ads, 10 of which ended 
by displaying the National Cancer Institute’s Smoking Quit-
line phone number (1-800-QUIT-NOW). These 10 advertise-
ments are the subject of the current study; three of these ads 
appeared in Campaign A, three appeared in Campaign B, and 
four appeared in Campaign C. All campaigns included a total 
of 90 s of ad time. (For additional information, see Organiza-
tion of the fMRI Task in the Supplemental Material.)

Population-level measures. To measure the population-level 
success of each advertising campaign, we compared Quitline 
call volume from the month before and the month after each ad 
aired. (Call volume after the ads aired was directly attributable 
to the launch of the media campaign.) We drew these data 

from the media market in which the ads were run, and we con-
trolled for factors such as media weight purchased (i.e., the 
size of the audience the ads were expected to reach).

Self-report measures of ads. After the fMRI procedure, par-
ticipants completed a survey, in which they ranked the projected 
effectiveness of all of the ads they viewed during the scanner 
session. Participants also ranked the ads from least favorite to 
most favorite and evaluated each ad’s effectiveness using a 
10-item scale. This scale was developed based on questions 
used to evaluate similar ads in other settings and based on theo-
retical constructs such as internal motivation and social norms 
(Table 1). The items on this scale showed high internal consis-
tency (Cronbach’s a = .95). Response options were 1, strongly 
disagree; 2, disagree somewhat; 3, agree somewhat; and 4, 
strongly agree. There was a high degree of consistency across 
all three types of self-report. (For additional information, see 
Self-Report Projections of Ad Effectiveness in the Supplemen-
tal Material.)

fMRI data acquisition and analysis
Imaging data were acquired on a 3-T Siemens Trio scanner 
using standard acquisition parameters and were preprocessed 
and quality-checked according to standardized procedures. 
One participant was excluded because of extreme head motion. 
The task was modeled separately for each subject using a 
block design in Statistical Parametric Mapping software 
(SPM5; Wellcome Trust Centre for Neuroimaging, London, 
England). Initial analyses modeled brain activation during 
exposure to each ad campaign compared with a fixation base-
line. Corresponding random-effects models calculated aver-
ages across results at the single-subject level. (See fMRI Data 
Acquisition and Analysis in the Supplemental Material for 
more information about acquisition, preprocessing, and analy-
sis of fMRI data.)

A priori region of interest (ROI). The primary ROI was con-
structed using MarsBaR (Brett, Anton, Valabregue, & Poline, 

Table 1.  Items on the Self-Report Scale of Ad Effectiveness

This ad motivates me to quit.
This ad is discouraging. (reverse-coded)
This ad is helpful.
This ad is persuasive.
This ad is believable.
This ad grabbed my attention.
This ad is powerful.
This ad is confusing. (reverse-coded)
This ad highlights for me that people who care about me want me 

to quit.
This ad made me stop and think.

Note: Response options were 1, strongly disagree; 2, disagree somewhat;  
3, agree somewhat; and 4, strongly agree. These items showed high internal 
consistency (Cronbach’s a = .95).
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2002); it encompassed a ventral subregion of medial prefron-
tal cortex (MPFC) in Brodmann’s area (BA) 10. This region 
was selected because it was the cluster most highly associated 
with individual behavior change in a previous independent 
study (Falk et al., 2010; Fig. 1a). It was also predictive of indi-
vidual behavior change within the same cohort of smokers 
(Falk et al., 2011) in analyses orthogonal to the current inves-
tigation. Average parameter estimates of activity were 
extracted at the group level using MarsBaR in order to com-
pute a ranked prediction of ad effectiveness (in which higher 
levels of neural activity in the a priori ROI were hypothesized 
to correspond with greater ad success).

Control ROIs. To confirm that results in our primary ROI were 
not due to uniformly increased neural activity during certain ad 
campaigns (i.e., to establish discriminant validity), we subse-
quently constructed control ROIs in regions not hypothesized  
to respond differentially to the ad campaigns, including primary 
visual cortex, primary motor cortex, and right and left frontal 
eye fields. We also included results from ventral striatum 
because of its prominence in the behavioral economics litera-
ture. (For more information about the construction of the control 
ROIs, see fMRI Data Acquisition and Analysis in the Supple-
mental Material; results pertaining to these control ROIs are 
shown in Fig. 2 and in Fig. S1 in the Supplemental Material).
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Fig. 1.  Illustration of the medial prefrontal cortex (MPFC) region of interest (ROI) and three measures of the effectiveness of the antismoking ad 
campaigns promoting the National Cancer Institute’s Smoking Quitline. The top panel (a) shows the MPFC ROI examined in the study; this region 
predicted individual behavior change in prior work (Falk, Berkman, Mann, Harrison, & Lieberman, 2010; Falk, Berkman, Whalen, & Lieberman, 
2011). The graphs show (b) mean effectiveness ranking, (c) mean activity in the MPFC ROI, and (d) scaled percentage increase in call volume to the 
National Cancer Institute’s Smoking Quitline for the three ad campaigns. Error bars in (b) and (c) represent pooled standard errors of the mean. 
Error bars are not shown in (d) because these values represent population change and not a sample from that population.

 at UNIV OF OREGON on June 8, 2012pss.sagepub.comDownloaded from 

http://pss.sagepub.com/


442		  Falk et al. 

Self-report and neural projections of  
ad-campaign success
Parameter estimates of neural activity in the MPFC ROI were 
extracted using MarsBaR. Individual self-report measures of 
ads within each campaign were averaged to compute self-
report rankings of campaign effectiveness for each participant. 
Each subject’s data were converted to rankings attributed to 
each data source using MATLAB 7.10.0 (The MathWorks, 
Natick, MA). We examined the data in three ways. We first 
examined the overall ordering of ad campaigns suggested by 
mean ratings. We next used a chi-square test to compare the 
proportion of individuals who produced each possible ranking 
with what would be expected by chance (1/6). Finally, we con-
firmed the reliability of the proportion-based predictions using 
weighted Kendall’s taus (tw; Critchlow, Fligner, & Verducci, 
1991; Lee & Yu, 2010; Shieh, 1998; see Kendall’s Tau Dis-
tance Based Metric for Ranking Data in the Supplemental 
Materials for details and formulas).

Results

All three measures of participants’ self-reported projections of 
ad effectiveness produced the same mean ranking of the ad 
campaigns (Table 2): Campaign B was ranked highest, fol-
lowed by Campaign A, and then Campaign C (Fig. 1b). Indus-
try experts who were familiar with the campaigns also ranked 
Campaigns B and A above C. In contrast with the self-report 
measures, the prediction based on the participants’ mean neu-
ral activity in the MPFC ROI during ad exposure suggested a 
different campaign order: C > B > A (Table 2; Fig. 1c).

Given that there are six possible ways to order the three 
campaigns, each ordering has a 1/6 probability of occurring by 
chance. Therefore, in addition to examining group means, we 
also examined the frequency with which each ordering 
occurred across subjects (Fig. 2). Consistent with the mean 
ratings, our results showed that 33% of the individual rankings 
based on MPFC activity suggested the order C > B > A. A chi-
square test confirmed that the proportion of C > B > A order-
ings suggested by MPFC activation was significantly above 
chance, χ2(1, N = 30) = 5.97, p = .015, whereas no other order-
ing of MPFC data appeared above chance level (16.67%). This 
result also indicates that C > B > A was selected more fre-
quently than any other order, providing an unambiguous pre-
diction from MPFC activity. The proportion of self-report 
rankings mirrored the ordering suggested by mean self-report 
ratings across self-report metrics (see Fig. S2 in the Supple-
mental Material for results of each self-report metric), which 
suggests a different, unambiguous prediction (B > A > C)  
from self-report data. In other words, MPFC and self-report 
metrics each produced clear but discrepant predictions of the 
population-level response.

At the population level, each of the ad campaigns led to 
increases in call volume to the National Cancer Institute’s 
Smoking Quitline, ranging from 2.8- to 32-fold increases 
(Table 2; Fig. 1d) compared with the month prior to the launch 
of each campaign. Increases in call volume to the Quitline in 
the month after the campaigns were launched were taken as a 
proxy for the population-level success of each campaign. The 
ordering of population-level success (based on call-volume 
increase) was C > B > A, which was consistent with the neural 
predictions (C > B > A) but different from the self-report pre-
dictions (B > A > C). This ordering remained the same both 
before and after adjusting for a variety of potential differences 
between media markets, including media weight purchased, 
time of year, unemployment rate, smoking rate, and tobacco-
control policies.

Thus, both the average and most frequently observed neu-
ral responses in our MPFC ROI correctly ordered the success 
of the ad groups at the population level, whereas self-reports 
of our participants and anecdotal evaluations of industry 
experts did not. To confirm the reliability of this result, we 
examined the distances between individual MPFC rankings 
and the modal (correct) ordering using a distance-based metric 
for ranked data, weighted Kendall’s tau. To the degree that 

.00

.05

.10

.15

.20

.25

.30

.35

Measure

MPFC

Fav
ori

te

Effe
cti

ve

10
-Ite

m S
ca

le

Visu
al 

Cort
ex

Moto
r C

ort
ex

Righ
t F

ron
tal

 E
ye

 Fiel
ds

Le
ft F

ron
tal

 E
ye

 Fiel
ds

Ven
tra

l S
tria

tum

C
or

re
ct

 O
rd

er
 (p

ro
po

rti
on

)

Fig. 2.  Proportion of cases in which responses produced the correct 
ordering of campaigns (C > B > A) as a function of measurement type. 
The measures used were activity in the primary region of interest 
(medial prefrontal cortex, or MPFC), self-reports (ranking of favorite ad 
campaigns, ranking of most effective ad campaign, and evaluation of each 
ad campaign on a 10-item scale), and activity in control regions of interest 
(visual cortex, motor cortex, right frontal eye fields, left frontal eye fields, 
and ventral striatum). The dashed line represents chance performance.
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individual MPFC rankings consistently favored one prediction 
(in this case, selecting the best ad campaigns), the average dis-
tance between observed individual rankings and the modal 
response should be smaller than the distance between rankings 
obtained by chance and any modal ranking. Results of this 
analysis supported the hypothesis that MPFC activations pro-
vided a more consistent ranking of the best ads than what 
would be expected by chance: tw = .3667, mean expected  
tw = .5, t(29) = −2.0708, p = .0474 (or, given the strong direc-
tional nature of our hypothesis, p = .0237, one-tailed).

Discussion
Activity in an a priori MPFC ROI clearly predicted the real-
world success of different advertising campaigns at the popu-
lation level, whereas self-reports and the control ROIs did not. 
Why did our MPFC ROI provide insight regarding the success 
of ads at the population level (when self-reports were mislead-
ing)? In our previous work using neural activity to predict 
individual behavior change (Falk et al., 2010), we chose to 
examine the MPFC because prominent theories of behavior 
change (Ajzen & Fishbein, 1980; Fishbein et al., 2001; 
Strecher & Rosenstock, 1997) touch on self-related processing 
of different varieties, and activity in MPFC (BA 10) is impli-
cated in nearly all studies of self-related processing (Lieber-
man, 2010). We now propose that MPFC activity in this 
context may index a less explicit process than we originally 
hypothesized. We report elsewhere (Falk et al., 2011) that in 
an effort to determine whether the relation between MPFC 
activity and individual behavior change is explained by par-
ticipants’ ability to relate to ads (an explicit, self-related 

process), we included a measure (i.e., “To what extent can you 
relate to this advertisement”) as a control variable in a model 
predicting individual change in smoking behavior using 
MPFC activity. We found that these explicit “self” variables 
did not mediate the relationship between neural activity and 
individual behavior change. Thus, it is likely that a different 
psychological mechanism was at play.

Similar regions of MPFC are implicated in implicit valua-
tion and affective judgments, independent of conscious aware-
ness (Damasio, 1996), in processing implicit preferences 
(McClure et al., 2004), implicit self-relevance (Moran, Heath-
erton, & Kelley, 2009; Rameson, Satpute, & Lieberman, 
2010), considerations of personally relevant future goals 
(D’Argembeau et al., 2010), and valuations of stimuli in terms 
of expected outcomes with respect to current situations (Cun-
ningham, Zelazo, Packer, & Van Bavel, 2007). Similar  
portions of MPFC have also been implicated in implicit inte-
gration of value signals associated with choices and prefer-
ences (Hare, Malmaud, & Rangel, 2011; Knutson et al., 2007). 
Thus, it is plausible that self-related processes, or a value sig-
nal, outside conscious awareness but tracked by neural signals 
may both predispose individuals to behavior change and pro-
vide an index of similar processes likely to occur when larger 
groups of people are shown the same messages. However, an 
important theoretical direction for future work is to disentan-
gle which of these processes, if any, are reflected by the pre-
dictive activation observed here.

The current study broadens the use of fMRI data from pre-
dicting individual behavior (Berkman, Falk, & Lieberman, 
2011; Berns & Moore, 2012; Brewer et al., 2008; Falk et al., 
2010; Falk et al., 2011; Knutson et al., 2007; Kosten et al., 

Table 2.  Self-Report Measures, Medial Prefrontal Cortex (MPFC) Region-of-Interest 
Parameter Estimates, and Population-Level Change in Quitline Call Volume for the Three Ad 
Campaigns

Dependent variable Campaign A Campaign B Campaign C

Self-report measure
  Mean effectiveness ranking 7.64a (0.630) 9.24b (0.451) 5.75c (0.502)
  Mean favorite ranking 7.93a (0.646) 9.21b (0.423) 5.52c (0.494)
  Mean evaluation rating (1–10) 2.40a (0.122) 2.59b (0.111) 2.05c (0.117)
Neural activity
  Mean MPFC parameter estimate −0.08a (0.079) 0.03a,b (0.059) 0.08b (0.057)
Population response
  Scaled by media weight 2.8 11.5 32.0
  Unscaled by media weight 2.3 11.5 45.0

Note: Standard errors of the mean are given in parentheses; within a row, values with different sub-
scripts are significantly different (p < .05). Population-level increases in call volume to the National  
Cancer Institute’s Smoking Quitline were assessed by comparing data from 1 month prior with data 
from 1 month after each campaign aired. These numbers are presented as raw percentage increases 
and scaled by media weight purchased (the size of the audience the ads were expected to reach). Mean 
effectiveness rankings, mean MPFC parameter estimates, and population responses scaled by media 
weight are presented in Figure 1.
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2006; Paulus et al., 2005; Tusche et al., 2010) to tracking the 
responses of large groups of people at the population level; 
future studies comparing larger numbers of population out-
comes, and within identical media markets, will provide 
insight into the boundary conditions and selectivity of the 
effects observed. Inspired by recent advances in neuroimaging 
analysis, including pattern classification and other brain-as-
predictor approaches (Bandettini, 2009; Haxby et al., 2001), 
the current study suggests that, using a priori ROIs, behavioral 
responses of entire populations whose brains are never exam-
ined may be inferred from the brain activations of a small neu-
ral focus group.
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Supplemental Methods 
Additional Participant Details 

All participants were heavy smokers with the intention to quit.  Participants were considered 
heavy smokers if they smoked at least 10 cigarettes per day, 7 days per week, for at least one year, 
and had urinary cotinine levels of at least 1000 ng/mL. In addition to enrollment in a cessation 
program, quitting intentions were assessed via scores >9 out of 10 on the Contemplation Ladder, a 
single-item measure of intentions to quit (Biener & Abrams, 1991), thus holding baseline intentions 
to quit relatively constant across this sample. Participants were ethnically diverse: 50% were 
Caucasian, 27% Hispanic, 20% African American, and 4% other, and socioeconomically diverse: 
participant mean annual income = $31,000 (range = $0-$200,000); 60% completed some form of 
college, and 28% received a bachelor’s degree or higher. Participants were excluded if they were 
left-handed, did not speak English, were pregnant, claustrophobic, or had any other condition 
contraindicated for MRI.  Participants were also excluded if they consumed more than 10 alcoholic 
drinks per week, or had any of the following conditions: dependence on substances other than 
nicotine, dependence on substances within one year of the scan date, neurological or psychiatric 
disorders, cardiovascular disease. 
 
Self-report projections of ad effectiveness 

Following the fMRI procedure, participants completed a survey in which they rank ordered 
their projected efficacy for each of the ads viewed during the scanner session.  In addition to 
providing self-report rankings of ad efficacy, participants also rank ordered the ads from least 
favorite to most favorite, and evaluated each ad using a 10 item scale developed based on questions 
used to evaluate ads in other settings (e.g. the Legacy Media Tracking Survey: 
www.legacyforhealth.org/2141.aspx), and based on theoretical constructs of interest such as the 
power of internal motivation, and the power of social norms (e.g., “This ad motivates me to quit”, 
“This ad highlights for me that people who care about me want me to quit”; see Table 1 for all scale 
items). This scale produced a high degree of internal reliability (Cronbach’s alpha = .95).  The 
average ratings of the individual ads were highly consistent across the three self report measures; 
the correlation between average ratings of the 10 ads, across participants, using the two rank 
ordering scales (most effective to least effective and most favorite to least favorite) was r(8)=.94, 
p<.001; and the correlations between the 10-item scale and each of the rank order scales, 
respectively, were r(8)=.93,p<.001, and r(8)=.95,p<.001. 
 
Organization of the fMRI task 

Within our fMRI study, the campaigns were presented in a counter-balanced, pseudo-
randomized order, ensuring that ads from different campaigns followed one another across subjects.  
At the population level, individuals in a given market were exposed to exactly one of the three ad 



groups. The population data we have access to are naturalistic in that we obtained quit line call 
volume in regions after the campaigns were aired, and hence the campaigns were not rotated in 
markets.   The content of the three ad campaigns was similar in that all promoted the National 
Cancer Institute’s 1-800-QUIT-NOW call line. Across campaigns, the ads differed in the strategies 
used to persuade, but all followed a similar theme (e.g. we know it’s hard to quit, but there are 
resources that can help you quit, call 1-800-QUIT-NOW). 
 
fMRI Data Acquisition and Analysis 

Acquisition.  High-resolution structural T2-weighted echo-planar images (spin-echo; 
TR=5000ms; TE=34ms; matrix size 128x128; 34 axial slices; FOV = 192mm; 4mm thick) were 
acquired coplanar with the functional scans.  One functional scan lasting 11.5 minutes (351 
volumes) was acquired during the task (echo-planar T2*-weighted gradient-echo, TR=2000ms, 
TE=30ms, flip angle=90°, matrix size 64x64, 34 axial slices, FOV=192mm; 4mm thick). 

Preprocessing. Images were brain-extracted using BET (FSL’s Brain Extraction Tool) and 
realigned within runs using MCFLIRT (FSL’s Motion Correction using FMRIB's Linear Image 
Registration Tool), then checked for residual motion and noise spikes using a custom automated 
diagnostic tool (thresholded at 2mm motion or 2% global signal change from one image to the 
next).   In SPM8, all functional and anatomical images were reoriented to set the origin to the 
anterior commissure and the horizontal (y) axis parallel to the AC-PC line. Functional images were 
then corrected for slice acquisition timing differences within volumes, realigned within and between 
runs to correct for residual head motion, and coregistered to the matched-bandwidth structural scan 
using a 6-parameter rigid body transformation.  The coregistered structural scan was then 
normalized into the Montreal Neurological Institute (MNI) standard stereotactic space and these 
parameters were applied to all functional images.  Finally, the normalized functional images were 
smoothed (8mm FWHM Gaussian kernel). 

Analysis. The task was modeled separately for each subject, using a block design in SPM5 
(Wellcome Department of Cognitive Neurology, Institute for Neurology, London, UK).  Initial 
analyses modeled ad exposure to each campaign compared to a fixation baseline. Corresponding 
random effects models averaged across results at the single subject level. All functional imaging 
results are reported in MNI coordinates. Average parameter estimates of activity in our MPFC ROI 
were extracted at the group level using Marsbar in order to compute a rank-ordered prediction of ad 
efficacy (where higher levels of neural activity in the a priori ROI were hypothesized to correspond 
to greater ad success). An outlier analysis was conducted, and data points falling greater than 2.5 
standard deviations away from the mean for each ad group were excluded in comparing means 
parametrically (this included 3 data points out of 90 parameter estimates extracted); the ranking of 
means and substantive conclusions remain unchanged with or without inclusion of potential 
outliers. 

Construction of control ROIs. In order to confirm that results in our primary region of 
interest were not due to uniformly increased neural activity during certain ad groups (for 
discriminant validity), we subsequently constructed control regions of interest in regions not 
hypothesized to respond differentially to the ad groups.  In particular, using the wfu pickatlas and 
Marsbar, we constructed ROIs in primary visual cortex (BA 17), primary motor cortex (BAs 1,2,3), 
and right and left frontal eye fields (defined as 20mm cubes around 40,0,44 and -40,0,44, 
respectively, based on mean coordinates for this region reported in the Brede Database: 
http://neuro.imm.dtu.dk/services/jerne/brede/WOROI_434.html).  As with our primary MPFC ROI, 
average parameter estimates of activity in our control ROIs were extracted at the group level using 
Marsbar in order to compute a rank-ordered prediction of ad efficacy.  In response to an insightful 
reviewer who suggested that ventral striatum might also predict important outcomes (given it’s 
prominent role in the decision neuroscience literature), we also constructed an anatomically defined 



ventral striatum ROI. Ventral striatum ROIs were structurally defined a priori using the Wake 
Forest University Pickatlas Tool (Maldjian, Laurienti, Kraft, & Burdette, 2003) based on the 
Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al., 2002) and constrained in the 
following way: -12<x<12, 4<y<18, and -12<z<0  (Eisenberger et al., 2010). We then used the 
Marsbar toolbox (http://marsbar.sourceforge.net) to extract mean parameter estimates. 
 
Kendall’s Tau Distance Based Metric for Ranking Data 
 In order to confirm the reliability of the rank ordering suggested by MPFC, we examined 
whether the average distance between orderings obtained in our data and the modal (and correct) 
ordering is smaller that the average distance that would be expected by chance.  More specifically, 
our metric, based on Kendall’s Tau, computes pairwise comparisons between each item that has 
been ranked, and further compares each observed ordering to the modal/correct ranking:  TUW (π, σ) 
= ∑∑I {[π (i) − π (j)][σ (i) − σ (j)] < 0}.  Here, π represents the mapping function from item i (out of 
a total of k items ordered) to the observed ranking for that item; e.g., π(1)=2 indicates that the first 
item is ranked second; σ represents the comparison ranking, for example, the modal ranking or the 
correct, population level ranking. I{} is the indicator function (Critchlow, Fligner, & Verducci, 
1991; Lee & Yu, 2010; Shieh, 1998). An extension of this metric, weighted Kendall’s Tau, 
proposed by Shieh (1998), allows different ranks to be assigned weights based on theoretical 
questions of interest:  Tw (π, σ) = ∑∑ wπ0 (i) wπ0 (j) I {[π (i) − π (j)][σ (i) − σ (j)] < 0}.  Given that 
we are most interested in selection of campaigns that are likely to be most effective in reducing 
smoking, we chose weights that preference correct selection of the best ad campaign w = [.6 .2 .2], 
reported in the main body of the manuscript.  The unweighted metric w = [1 1 1] is also consistent 
with the hypothesis that the pairwise distances between our individual MPFC ratings, and the modal 
response is smaller than what would be expected by chance.  

 



 
Supplemental Results 

Figure S1. Whereas activity in the hypothesized medial prefrontal cortex region-of-interest, 
previously associated with persuasion-induced behavior change, mirrored the relative effectiveness 
of the three ad campaigns at the population level, neural activity in control regions of interest did 
not.  
 

 
 

 



Figure S2.  The proportion of cases in which each of the 6 possible orderings appeared for each type 
of measurement.  Notably, participants’ MPFC responses most frequently ordered the campaigns 
correctly, whereas other measurement types including (a) all three types of self-report, and (b) 
neural activity in control regions produced incorrect orderings as their most frequent outcome.  
Black bars indicate the proportion of cases suggesting each ordering permutation.  Grey dashed 
lines indicate chance level. 
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