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Aphysician stares at a breast x-ray,
agonizing over whether an am-

biguous spot is a tumor. A pa-
role board weighs the release of a po-
tentially violent criminal. A technician
at an airport worries over a set of ultra-
sound readings: do they suggest a dead-
ly crack in an airplane’s wing?

All these people are grappling with di-
agnostic decisions. In spite of incomplete
or ambiguous evidence, they must deter-
mine whether or not a certain condition
exists (or will occur). Such problems

abound in health care, public safety, busi-
ness, environment, justice, education,
manufacturing, information processing,
the military and government. And the
stakes can be high. In many cases, a
wrong verdict means that people will die.

Perhaps surprisingly, the diagnostic
decision-making process turns out to be
essentially the same across fields. Hence,
methods that improve the process in
one industry can usually serve in others.
At least two such methods are already
available. Sadly, though, they remain

unknown or unused in many realms.
One increases accuracy, enhancing the
odds that any given decision will be the
correct one. The other improves the
“utility” of a decision-making approach,
ensuring that the number of true cases
found does not come at the cost of an
unreasonable number of false positive
diagnoses (“false alarms”). These meth-
ods are statistical, but math phobics have
nothing to fear; the basic logic is easy to
grasp.

No one is saying that diagnosticians

Math-based aids for making decisions in medicine
and industry could improve many diagnoses—often
saving lives in the process

Better DECISIONS through

SCIENCE
by John A. Swets, Robyn M. Dawes and John Monahan
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YES/NO DIAGNOSTIC QUESTIONS ABOUND,
not just in medicine but in most fields. Yet proven
techniques that increase the odds of making a correct
call are dangerously underused.
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must always be slaves to
mathematical formulas. In

certain arenas (such as clinical
medicine and weather forecast-

ing), objective tools may function best
as “second opinions” that inform a re-
viewer’s decisions but do not have the fi-
nal word. In other fields, however, statis-
tical analyses have frequently been
found to be more accurate than subjec-
tive judgments, even those made by
highly experienced professionals.

We focus in this article on diagnoses
that hinge on a choice between just two
alternatives—yes or no (Is a tumor pres-
ent? Is an airplane wing defective?).
Certainly the world is full of problems
involving a wider range of options, but
serious yes/no decisions are prevalent.

Tools of the Trade

If diagnostic tests always produced
straightforward answers, no one

would need statistical decision-making
tools. In reality, though, the raw results
of diagnostic tests usually have to be in-

terpreted. In a simple example, the
fluid pressure in the eye is mea-
sured to detect whether a per-
son has glaucoma, which robs
vision by damaging the optic
nerve and other parts of the
eye. A very low score clearly

means the eye is healthy, and a
high score signifies glaucoma. But

scores in between are ambiguous, un-
able to indicate which patients have the
condition and which do not.

Statistics can clear some of that fog.
For argument’s sake, assume that pres-
sure is the only diagnostic measure
available for glaucoma. Assume, too,
that pressures below 10 on the standard
measuring scale always signify good
health, pressures over 40 always signify
disease, and readings between 10 and
40 can occur in affected as well as
healthy eyes.

To cope with this ambiguity, analysts

would first identify a large population
of individuals whose scores on the pres-
sure test were known. Then they would
determine which people went on to
have vision problems characteristic of
glaucoma within a set period and which
did not. And they would calculate the
odds that people having each possible
score will have glaucoma. Finally, guid-
ed by those probabilities (and by other
considerations we will discuss), they
would set a rational cut point, or diag-
nostic threshold: scores at or above that
level would yield a positive diagnosis
(“the patient has glaucoma”); scores be-
low would yield a negative diagnosis
(“the patient does not have glaucoma”).

Of course, single diagnostic tests may
not be as informative as a combination.
To enhance the accuracy of a diagnosis,
analysts can combine data from many
tests that each provide unique informa-
tion, giving greater weight to measure-
ments that are most predictive of the
condition under study. The mathemati-
cal algorithms that specify the best tests
to include in a diagnostic workup and
that calculate the likelihood, based on
the combined results, that a condition
is present are known as statistical pre-
diction rules (SPRs).

Totally objective data, such as pres-
sure readings, are not the only features
that can be incorporated to enhance the
accuracy of statistical prediction rules;
subjective impressions can be quantified
and included as well. They can be objec-
tified, for instance, by making an explic-
it list of perceptual criteria (such as the
size and irregularity of a possibly malig-
nant mole) that can be rated according
to a scale, perhaps from one to five.

If more than one statistical prediction
rule is available, decision makers have
to determine which ones are most accu-
rate. This challenge, too, can be met
objectively. The overall accuracy of pre-
diction rules can be evaluated by re-
viewing what are called ROC (receiver
operating characteristic) curves. Such
curves were first applied to assess how
well radar equipment in World War II
distinguished random interference
(noise) from signals truly indicative of
enemy planes.

Programs that generate ROC curves
consider what will happen if a particu-
lar raw score on a diagnostic test (or set
of tests) is selected as the diagnostic
threshold for a yes/no decision. What
percent of individuals who truly have
the condition in question will correctly
be deemed to have it (true positive deci-

sions, or “hits”)? And what percent of
individuals free of the condition will
mistakenly be deemed to have it (false
positive decisions, or false alarms)?

Then, for each threshold, the pro-
grams plot the percentage of true posi-
tives against the percentage of false pos-
itives. The result is a bowed curve, ris-
ing from the lower left corner, where
both percentages are zero, to the upper
right corner, where both are 100. The
more sharply the curve bends, the
greater the accuracy of the rule, be-
cause the number of hits relative to the
number of false alarms is higher. 

Obviously, true positives and false
positives are not the only outcomes
possible. A yes/no diagnosis based on
any particular threshold will also gener-
ate true negatives (individuals are cor-
rectly deemed to be free of the condition
being evaluated) and false negatives, or
“misses” (individuals are incorrectly
deemed to be free of the condition). But
these results are the exact complements
of the others and thus can be ignored
when constructing ROC curves. A true
positive rate of 80 percent, for instance,
automatically means that the miss rate
is 20 percent.

Given that few diagnostic methods
are perfect at sorting individuals who
have a condition from individuals who
do not, institutions have to decide how
important it is to find all or most true
positives—because more true positives
come at the cost of more false alarms.
That is, they need to set a threshold
that makes good sense for their particu-
lar situation.

Returning to our glaucoma example,
clinicians who looked only at pressure
could find virtually every case of glau-
coma if they chose a very “lenient” di-
agnostic cutoff—say, a score of 10. Af-
ter all, the test sample revealed that vir-
tually everyone with glaucoma has a
score above that level. Yet that cutoff
would result in many healthy people
being told they were ill; those people
would then be subjected unnecessarily
to both worry and treatment. To mini-
mize such errors, clinicians could in-
stead set a rather strict diagnostic thresh-
old—an eye pressure of 35, perhaps;
very few healthy people in the sample
had pressures that high. But this strict
criterion would miss more than half of
all affected individuals, denying them
treatment.

In setting a threshold, decision mak-
ers weigh such issues as the conse-
quences of misses and false alarms and
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the prevalence of the problem under
consideration in the population being
tested. Fortunately, some rules of thumb
and mathematical aids for finding the
optimal cutoff point have been devel-
oped. For instance, a high prevalence of
a problem in a population or a large
benefit associated with finding true cas-
es generally argues for a lenient thresh-
old; conversely, a low prevalence or a
high cost for false alarms generally calls
for a strict threshold.

Rules Come to Life

Although statistical prediction rules
and ROC curves are often sorely

underused by diagnosticians, real-life
examples of their value abound. One of
the most dramatic illustrations comes
from psychiatry.

Increasingly, psychiatrists and clinical
psychologists are asked to determine

whether incarcerated or disturbed indi-
viduals are likely to become violent.
People who seem most likely to endan-
ger others need to be identified and
treated for their own good and for oth-
ers’ safety. At the same time, interfering
in the lives of people who do not need
care is unacceptable.

Disconcertingly, in 1993 the most so-
phisticated study of clinicians’ unaided
assessments uncovered a startling lack
of accuracy. Clinicians who diagnosed
consecutive patients coming to the
emergency department of a metropoli-
tan psychiatric hospital proved no more
accurate than chance at predicting
which female patients would commit vi-
olence in the community within the next
six months. Their success rate with male
patients was only modestly better.

In response to such findings, a num-
ber of statistical prediction rules were
developed for assessing the probability

of violence. One of the most studied is
the Violence Risk Appraisal Guide
(VRAG), which measures 12 variables,
among them scores on a checklist of
features indicative of psychopathy and
assessments of maladjustment in ele-
mentary school.

In a test of the rule’s ability to predict
whether criminals being discharged
from a maximum-security hospital
would commit violent acts over the
next several years, the VRAG divided
the subjects into two categories of risk:
“high” and “low.” Fifty-five percent of
the high-risk group but only 19 percent
of the low committed a new violent of-
fense—an accuracy level well above
that of chance. And a newer statistical
prediction rule proved to be even better
at forecasting violence in noncriminals
about to be discharged from psychiatric
facilities. Nevertheless, interested par-
ties continue to disagree over whether
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Better Decision Making, Step by Step

How can decision makers ensure that the diagnos-
tic tests they use are as accurate as possible, do-

ing the best job of distinguishing individuals who have
a condition from those who do not? A major way in-
volves constructing so-called ROC (receiver operating
characteristic) curves.This approach is best described
by example. Imagine the steps an analyst might take
to evaluate how well glaucoma is diagnosed by mea-
suring the fluid pressure in patients’eyes.

STEP 1  Find a large sample population of people whose eye pres-
sure level and glaucoma status are known.Separate those who are
healthy from those with glaucoma,and plot the number of individ-
uals with each pressure level.The graph for this hypothetical popu-
lation reveals that pressure readings in the 10 to 40 range cannot
conclusively distinguish healthy people from those with glaucoma.

STEP 2 Calculate the probability that a “yes” diagnosis at or
above any given score, or threshold, would be correct for a new
patient. Find such probabilities by determining the fraction of
patients in the sample population who would have been prop-
erly diagnosed if that threshold were applied. Below, the area
under the curves represents 100 percent of each population. If
the threshold were 20, 90 percent of people who truly had glau-
coma would be diagnosed correctly (true positives),and 50 per-
cent of healthy people would be incorrectly diagnosed as hav-
ing the condition (false positives).
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clinicians should treat such rules as ad-
visory or make decisions based solely
on the statistics. 

Better Cancer Diagnoses

Statistical prediction rules have also
had impressive success in studies

aimed at helping radiologists diagnose
breast cancer. In one such investigation,
radiologists in community hospitals
evaluated mammograms in their usual,
subjective way. Months later they ex-
amined the same mammograms ac-
cording to a checklist of perceptual fea-
tures (such as how fuzzy the borders of
a mass seem to be) developed by radiol-
ogists who specialize in reviewing
mammograms. Then a statistical pre-
diction rule converted the ratings into
probability assessments indicating the
likelihood for each patient that breast
cancer was present. The radiologists re-

viewed these probabilities but ultimate-
ly made their own judgments. The ex-
tra data helped considerably. General
radiologists who took the statistical
data into account became more accu-
rate, reaching the precision of special-
ists who had used the checklist.

Physicians who treat prostate cancer
are already making extensive use of sta-
tistical prediction rules. One rule in
particular is getting a serious workout.
Once a man is “clinically” deemed to
have cancer of the prostate gland (on
the basis of a checkup, a simple needle
biopsy and noninvasive tests), the ques-
tion of the best treatment arises [see
“Combating Prostate Cancer,” by
Marc B. Garnick and William R. Fair;
Scientific American, December 1998].
Neither surgery to remove the affected
gland nor radiation focused tightly on
it (to limit side effects) will eliminate the
tumor if it has grown beyond the gland

or has spread to other parts of the
body. Hence, physicians strive to deter-
mine the status of the tumor before any
treatment is attempted. Unfortunately,
a great many tumors that initially seem
to be confined to the prostate later turn
out to have been more advanced.

For years, doctors had few good ways
of predicting which patients truly had
confined disease and which did not.
More recently, however, doctors and
patients have been able to gain a clearer
picture by consulting probability tables
published in the May 14, 1997, issue of
the Journal of the American Medical
Association. 

The researchers who created the tables
knew that three assessments each had in-
dependent predictive value: the tumor’s
“clinical stage” (a determination, based
on noninvasive tests, of tumor size and
spread), the level in the blood of a specif-
ic protein (PSA, or prostate-specific anti-

STEP 3 Construct an ROC curve by plotting, for each potential
threshold, the rate of true positives against the rate of false posi-
tives. A straight line would signify that the diagnostic test had
50/50 odds of making a correct diagnosis (no better than flip-
ping a coin). As curves bow more to the left, they indicate
greater accuracy (a higher ratio of true positives to false posi-
tives). Accuracy (A) is indexed more precisely by the amount of
area under the curve, which increases as the curves bend. Our
glaucoma protocol is moderately accurate.

STEP 4 If the accuracy is acceptable, select a threshold for
yes/no diagnoses. Choose a threshold that yields a good rate of
true positives without generating an unacceptable rate of false
positives. Each point on the curve represents a specific thresh-
old, moving from the most strict at the bottom left to the most
lenient at the top right. Strict thresholds (bottom inset) limit false
positives at the cost of missing many affected individuals; lenient
thresholds (top inset) maximize discovery of affected individuals
at a cost of many false positives. Which threshold is optimal for a
given population depends on such factors as the seriousness of
the condition being diagnosed, the prevalence of the condition
in a population, the availability of corrective measures for those
who are diagnosed, and the financial, emotional and other costs
of false alarms.
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gen) and the Gleason score (an indicator
of tumor aggressiveness, based on mi-
croscopic analyses of a biopsy sample).
The investigators therefore developed a
statistical prediction rule that looked at
virtually every combination of results for
these three variables and calculated the
odds that the initial diagnosis of “no
spread” would be correct. Then they
listed the probabilities in a user-friendly,
tabular form.

Good Chance of Rain

It would be a mistake to think that
only medical practitioners use statis-

tical prediction rules. In fact, meteorol-
ogists adopted the tools for weather
forecasting more then 25 years ago.

The National Weather Service rou-

tinely feeds weather-related data into
statistical programs designed to estimate
the likelihood that tornadoes, hurricanes,
heavy rains and other hazards will arise
in different parts of the nation. The
weather service then conveys these ob-
jective predictions to meteorologists in
local areas, who modify the predictions
in light of new information or of factors
they think the computer programs did
not address adequately.

Other groups have embraced the
techniques as well—among them, grad-
uate admissions committees at universi-

ties. In a typical example, a committee
will project first-year grades from two
variables—undergraduate grades and
graduate school aptitude exams, on the
assumption that students scoring above
some preselected high level should gen-
erally be admitted and those scoring be-
low a specified lower level should gen-
erally be rejected. Then the committee
will more subjectively evaluate the cre-
dentials of applicants who have not
been admitted or rejected by the school’s
statistical prediction rule.

One law school objectively rates two
variables that were formerly assessed
subjectively: the quality of the student’s
undergraduate institution and the extent
of grade inflation at that institution.
Along with the student’s grade point av-
erage and scores on the aptitude exam re-

quired for law school, it
considers the mean exam
score of all students from
the applicant’s college who
took the test and the
mean grade point average
of students from that col-
lege who applied to law
school. The revised for-
mula predicts first-year
law-school grades signifi-
cantly better than the two-
variable scheme.

Thorny Thresholds

So far we have high-
lighted success stories.

But the merit of statistical
analyses may be best illus-
trated by examples of fail-
ure to apply them for set-
ting rational diagnostic
thresholds—such as for
tests that detect the human
immunodeficiency virus
(HIV), the cause of AIDS.

HIV screening relies ini-
tially on a relatively sim-

ple test that detects the presence of anti-
HIV antibodies, molecules produced
when the immune system begins to re-
act against HIV. Sometimes these anti-
bodies arise for reasons other than the
presence of HIV, however. Hence, if the
outcome (based on some antibody
threshold) is positive, laboratories will
run a different, more sophisticated test.
This two-test requirement is meant to
help limit false positives. The antibody
tests are particularly problematic in that,
illogically, the several approved tests dif-
fer in their accuracies and thresholds.

Varied thresholds would make sense if
each test were aimed at a distinct popu-
lation, but that is not the case.

The thresholds are disturbing in an-
other way as well. They were originally
set to distinguish clean from tainted do-
nated blood; then they were left un-
changed when they were enlisted to
identify people infected with the virus.
Throwing out a pint of uncontaminat-
ed blood because of a false positive is a
cheap mistake; sending an alarmed, un-
infected person for further HIV testing
is not. Worse still, the original thresh-
olds have been applied mindlessly to
low-risk blood donors, high-risk donors,
military recruits and methadone-clinic
visitors—groups whose infection rates
vary over an enormous range. For the
high-risk groups, the threshold should
be set more leniently than for the low-
risk populations (to maximize discov-
ery), even if the price is a higher rate of
false positives.

Recent years have seen the introduc-
tion of confirmatory tests that are more
accurate and of HIV therapies that pro-
long life and health. Consequently, false
positive diagnoses are rare these days,
and people who are infected with HIV
benefit much more from being diag-
nosed than was true in the past. These
advances mean that the diagnostic
problem has shifted from whom to call
positive to whom to test.  

The time has come for doctors to
lower their thresholds for deciding
when to test; they should not be wait-
ing until patients show up with obvious
symptoms of infection. We would even
argue that almost every adult should be
screened and that federal agencies
should take the lead in encouraging
such testing. 

Objective methods for establishing
thresholds are also being dangerously
underused in parts of the aerospace in-
dustry. This industry must constantly di-
agnose conditions that are serious but
arise relatively infrequently, among them
cracked wings and life-threatening haz-
ards during flights. The costs of missing
a cracked wing are large and obvious:
many passengers may die if the plane
crashes. On the other hand, a false-pos-
itive decision takes a plane out of ser-
vice unnecessarily, potentially causing
inconvenience and lost income. At first
blush, the benefits and costs point to-
ward a lenient threshold, favoring lives
over dollars. Yet such cracks occur
rarely; therefore a lenient threshold yields
an unworkable number of false posi-
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ROC CURVES compared the accuracy achievable by
measuring one or more of the following variables to as-
sess whether prostate cancer is advanced: patient age,
blood level of PSA (prostate-specific antigen), tumor ag-
gressiveness (represented by the Gleason score) and tu-
mor appearance as judged by magnetic resonance imag-
ing (MRI). The scheme that included all four variables
(top curve) proved best.
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tives. Unfortunately, no one has yet
tackled this issue with the available sta-
tistical techniques.

Purchasers of cockpit alarms (such as
airlines and the military) have similarly
failed to come to grips with how best to
set decision thresholds. Alarms go off in
flight under many circumstances—when
sensing devices determine that another
plane is too close, that the plane is get-
ting too near to the ground, that an en-
gine is dying or that wind shear is
threatening the landing area. But they
cry wolf too often, largely because the
sensors are only moderately accurate
and because the thresholds set for them
are rather lenient. Pilots are reluctant to
act on the warnings unnecessarily, be-
cause doing so can be quite disruptive.
This situation has raised fears that the
high number of false alarms will cause
pilots to ignore or respond slowly to a
real emergency. To date, though, no one
has forced manufacturers to consider
the false positive rate when they estab-
lish alarm thresholds.

A Plea

Clearly, statistical prediction rules
can often raise the accuracy of

repetitive diagnostic decisions, and for-
mulas for setting decision thresholds
can improve the utility of those deci-
sions. But these tools provide other ad-
vantages as well. By standardizing the
features that are assessed to make a di-
agnosis, the prediction rules can hasten
the speed with which professionals rec-
ognize key diagnostic features. They also
give decision makers a way to commu-
nicate more easily and precisely about
impressionistic features. And they can
help teach newcomers to a field.

Yet they are often met with resistance,
especially if they are seen as replacing or

degrading clinicians. Further, diagnosti-
cians want to feel that they understand
their own diagnoses and recommenda-
tions and that they can give a narrative
of their thought processes. The results
of a statistical prediction rule may be
hard to include in such an account, par-

ticularly if the logic behind the analysis
is not self-evident.

We understand all these concerns.
Nevertheless, the benefits that statistical
tools provide surely justify considera-
tion by decision makers who hold oth-
ers’ lives and futures in their hands.
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Architects and connoisseurs of wine have invented two of the more offbeat
applications of statistical prediction rules. The architectural rule applies to

opera houses and was developed by having conductors rate the overall sound
quality of 23 facilities. The conductors favored the houses in Buenos Aires,Dresden,
Milan and Tokyo. Next,acoustical engineers physically measured several individual
acoustical properties in each of the 23 buildings—such as the time delays between
directly received and reflected sound, and the diffusion of sound waves caused
by irregularities in walls and ceilings. Statistical analyses then revealed which
properties combined to give
the favored opera houses their
exceptional sound and which
of the acoustic characteristics
were most important. The re-
sulting rule can now guide the
construction of future facilities.

The wine rule predicts the
eventual quality of red Bor-
deaux wines (as measured by
auction price) when they are still
young and undrinkable.Classi-
cally, experts have attempted
to predict later quality “clinical-
ly,”by smelling and tasting the
new product. But about 10
years ago,researchers noted that years marked by a dry August and September and
a warm growing season yield excellent wines if those years also follow a wet winter.

They then formulated the “Bordeaux equation,” a statistical prediction rule that
combines weather conditions and years of aging to predict the probability that
wine quality will be great years ahead.That equation works quite well,accounting
for 83 percent of the variance in price of mature Bordeaux red wines at auction.
But it has not met with universal acclaim.“Somewhere between violent and hys-
terical” is how the reaction of the wine-tasting industry was described in a news-
paper report soon after the equation was unveiled. —J.A.S., R.M.D.and J.M.

A QUESTION OF TASTE

SA

OPERA HOUSE in Tokyo’s New National
Theater has stellar acoustics that can be emu-
lated, thanks to a statistical prediction rule.
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