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Abstract

IMPORTANCE Although chronic relapse is a characteristic of addiction to stimulants, conventional
measures (eg, clinical, demographic, and self-report) do not robustly identify which individuals are
most vulnerable to relapse.

OBJECTIVES To test whether drug cues are associated with increased mesolimbic neural activity in
patients undergoing treatment for stimulant use disorder and whether this activity is associated with
risk for subsequent relapse.

DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study of 76 participants included
a control group for baseline group comparisons. Veteran patients (n = 36) with stimulant use
disorders were recruited from a 28-day residential treatment program at the Veterans Affairs Palo
Alto Health Care System. Healthy controls (n = 40) were recruited from the surrounding community.
Baseline data were collected between September 21, 2015, and January 26, 2018, from patients and
healthy controls using functional magnetic resonance imaging during a performance of a reward cue
task. Patients’ stimulant use was subsequently assessed after treatment discharge (at approximately
1, 3, and 6 months) to assess relapse outcomes.

MAIN OUTCOMES AND MEASURES Primary measures included neural responses to drug and food
cues in estimated mesolimbic volumes of interest, including the medial prefrontal cortex, nucleus
accumbens (NAcc), and ventral tegmental area. The primary outcome variable was relapse (defined
as any stimulant use), assessed both dichotomously (3 months after discharge) and continuously
(days to relapse). Brain activity measures were contrasted between groups to validate neural
measures of drug cue reactivity, which were then used to estimate relapse outcomes of patients.

RESULTS Relative to controls (n = 40; 16 women and 24 men; mean [SD] age, 32.0 [11.6] years),
patients (n = 36; 2 women and 34 men; mean [SD] age, 43.4 [13.3] years) showed increased
mesolimbic activity in response to drug cues (medial prefrontal cortex, t74 = 2.90, P = .005, Cohen
d = 0.66; NAcc, t74 = 2.39, P = .02, Cohen d = 0.54; and ventral tegmental area, t74 = 4.04, P < .001,
Cohen d = 0.92). In patients, increased drug cue response in the NAcc (but not other volumes of
interest) was associated with time to relapse months later (Cox proportional hazards regression
hazard ratio, 2.30; 95% CI, 1.40-3.79). After controlling for age, NAcc response to drug cues classified
relapsers (12 patients; 1 woman and 11 men; mean [SD] age, 49.3 [14.1] years) and abstainers (21
patients; 1 woman and 20 men; mean [SD] age, 39.3 [12.3] years) at 3 months with 75.8%
classification accuracy. Model comparison further indicated that NAcc responses to drug cues were
associated with relapse above and beyond estimations of relapse according to conventional
measures.
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Abstract (continued)

CONCLUSIONS AND RELEVANCE Responses in the NAcc to stimulant cues appear to be associated
with relapse in humans. Identification of neural markers may eventually help target interventions to
the most vulnerable individuals.

JAMA Network Open. 2018;1(8):e186466. doi:10.1001/jamanetworkopen.2018.6466

Introduction

Harmful drug use accounts for 12.4% of global mortality and 8.9% of global disability-adjusted life
years,1 much of which can be attributed to chronic relapse. Individuals with stimulant use disorders
(including cocaine use disorder and amphetamine use disorder) have a particularly severe rate of
relapse: more than half of patients relapse 1 year after leaving treatment and an additional one-fourth
of patients relapse 2 to 5 years after leaving treatment.2 Although both social (eg, unemployment)
and clinical (eg, co-occurring psychiatric disorders) factors appear to increase the risk of relapse
across different types of drug addiction, they do so only weakly and variably in individuals with
stimulant use disorder.3 By discovering more robust factors associated with relapse, clinicians might
better identify intervention targets and direct interventions toward the most vulnerable patients.4

Cues previously associated with drug use may exacerbate the risk of relapse.5 Theorists have
suggested a number of ways that drug-associated cues could promote relapse by influencing
motivational processes.6,7 A hijacking metaphor of drug cue action implies that long-term use of
stimulants can divert motivational mechanisms from the pursuit of natural rewards toward the
pursuit of drug rewards.8 This hijacking metaphor includes multiple channels, including sensitization,
which should increase appetitive responses to drug cues,9,10 blunting, which should decrease
appetitive responses to competing natural reward cues,11 and disinhibition, which should reduce
control over these responses.12

At a neural level, animal models of cue-induced drug-seeking suggest partial mediation by
mesolimbic release of dopamine.13-15 Despite the popularity of the hijacking hypothesis, however,
little evidence indicates that drug cues increase mesolimbic activity in human users of stimulants.4,16

An early study combining positron emission tomography with a cue reactivity paradigm suggested
that drug cues (videos) increased the release of dopamine in the dorsal rather than ventral striatum
of individuals who used cocaine.17 Results from cue reactivity studies using functional magnetic
resonance imaging (fMRI) in individuals who use stimulants suggest that drug cues elicit correlated
activity in a number of sensory and frontal cortical regions,18-22 but no study, to our knowledge, has
explicitly implicated mesolimbic activity or subsequently linked that activity to relapse. More
important, these earlier studies used block designs,20 which may not be able to resolve second-to-
second changes in neural activity associated with phasic release of dopamine.13 We aimed to address
this gap in the literature by using an event-related design to directly test whether drug cues elicit
mesolimbic responses, and whether these responses are associated with relapse in human users of
stimulants.

We sought to test whether mesolimbic responses to drug cues, conventional reward cues, or
both would be associated with subsequent relapse with stimulant use. To do so, we combined an
event-related cue reactivity task with fMRI to visualize neural responses of patients with a stimulant
use disorder and healthy control participants. We first examined whether neural responses to drug
and food reward cues differed between patients and controls, and then tested whether those
responses were associated with relapse in patients. To probe clinical utility, we compared
associations supported by neural responses with those from more traditional individual difference
and clinical measures. We hypothesized that: (1) compared with controls, patients with a stimulant
use disorder would show increased mesolimbic responses to drug cues; (2) compared with controls,
patients would show decreased mesolimbic responses to food reward cues; and (3) patients’
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mesolimbic responses to drug and/or food cues might be associated with relapse above and beyond
associations indicated by traditional measures.

Methods

The study protocol was reviewed and approved by the institutional review boards of the Stanford
University School of Medicine and Research and Development Office of the Veterans Affairs Palo Alto
Health Care System. Participants provided written informed consent before participating in the
study. This study followed the Standards for Reporting of Diagnostic Accuracy (STARD) reporting
guidelines.

Participants
Patients
Patients were recruited from a substance use disorder treatment program at the Veterans Affairs
Palo Alto Health Care System, Palo Alto, California. This 28-day residential treatment program
provides a substance-free living environment, access to medical care, daily group sessions (which
include coping, problem-solving, motivational, and relapse prevention skills), holistic therapy
options, and voluntary 12-step mutual help group meetings (eg, Alcoholics Anonymous). Urine
toxicology tests were conducted throughout treatment to verify abstinence. On admission to the
program, all patients underwent a full history and physical interview by clinicians (including a
psychiatrist, psychiatry residents, clinical psychologist, or social workers), which included diagnostic
queries about past and current psychiatric and/or substance use disorder based on Diagnostic and
Statistical Manual of Mental Disorders (Fifth Edition) (DSM-5) criteria. Researchers then recruited
interested and eligible patients with current substance use disorder diagnoses for stimulant drugs
(eg, methamphetamine and crack and powder cocaine). Although some patients were mandated by
a court to receive treatment or were conditionally released from jail into treatment, the screening
tool used to determine eligibility confirmed that problems with stimulant use were the primary
reason for seeking treatment. The final sample included 28 methamphetamine users and 14 crack or
powder cocaine users (6 patients met the criteria for abusing more than 1 stimulant). Patients were
excluded if they took medications that influence vasoreactivity and/or cerebral perfusion (eg, cardiac
medications) or central dopaminergic activity (eg, stimulants or antipsychotics), had a history of
traumatic head injury, if they had a history of mania or psychosis, or reported safety contraindications
to undergoing standard magnetic resonance imaging (MRI) (eg, magnetic material in the head).

Patients were enrolled in the treatment program for a mean (SD) of 17.9 (1.4) days and reported
most recently using a stimulant a mean (SD) of 61.4 (10.4) days (range, 8-239 days) prior to
undergoing MRI as part of the study. Three of the final sample of 36 patients required medical
detoxification in an inpatient psychiatric unit prior to admission into the treatment program. Most
patients reported additional substance use (other than stimulants) prior to treatment (29 of 36
[81%]), and more than half of the patients had a comorbid alcohol use disorder (19 of 36 [53%]).
Urine toxicology and breathalyzer tests were administered to patients immediately before
undergoing MRI to detect recent use of stimulants (cocaine or amphetamines), opiates,
benzodiazepines, tetrahydrocannabinol, and/or alcohol, and 3 recruited patients did not pass this
final screening, leading to exclusion. All patients included in the final sample had negative test results
for these substances.

Controls
Healthy control participants were recruited from Stanford University’s Paid Psychology Experiments
pool and the surrounding community. The same exclusion criteria were applied to the control group
as described above for patients, with the additional requirement that controls reported no current or
past substance use disorder. A subset of these controls were US military veterans (n = 12). See
eFigure 1 in the Supplement for the participant flow diagram.
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For all participants, self-reported demographic variables (eg, age, sex, race/ethnicity, and
educational level) were assessed to confirm comparability across groups (eTables 1 and 2 in the
Supplement). Consecutive sampling was used to enroll eligible participants in both groups.

Setting
Baseline neuroimaging data were collected between September 21, 2015, and January 26, 2018, at
the Stanford Center for Cognitive and Neurobiological Imaging, Stanford, California. Patient
follow-up interviews were conducted in person at the Stanford Psychology Department and via
telephone from November 30, 2015, through March 27, 2018.

Procedures
We designed a novel cue reactivity task in which participants viewed abstract shapes that preceded
images of stimulant drugs, alcohol, food, or everyday objects (Figure 1 and eAppendix 1 and eFigure 2
in the Supplement). Images of alcohol were also presented for a separate study on alcohol use
disorder and thus were not included in analyses presented in this article. Shapes reliably preceded
images to elicit anticipatory effect and associated brain activity before the categorically specific
associated images were revealed, as in previous research.23 The task consisted of 18 trials of each cue
type. After undergoing MRI, participants rated each image on 7-point scales indexing valence (where
1 indicated very negative and 7 indicated very positive), arousal (where 1 indicated very low and 7
indicated very high), and familiarity (where 1 indicated not at all familiar and 7 indicated very familiar).
Valence and arousal ratings were later transformed to positive and negative arousal ratings.24

Patients additionally completed the Brief Addiction Monitor questionnaire, which assesses

Figure 1. Cue Task Trial Structure
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Each row depicts sequential phases in trials of different conditions. Each trial began with
the presentation of an abstract shape (2 seconds), followed by the presentation of an
associated image (6 seconds). Two seconds after image onset, wanting ratings appeared
below the image (on a 4-point Likert scale, where 1 indicates strongly do not want and 4

indicates strongly want, counterbalanced right to left), and participants rated how much
they wanted the depicted item. A fixation cross then indicated a variable intertrial
interval (2, 4, or 6 seconds) lasting until the beginning of the next trial.
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psychological factors (eg, craving and negative affect) as well as behaviors relevant to substance
dependence during the past month.25

Patients’ use of stimulants was assessed approximately 1, 3, and 6 months after completing
treatment using the Timeline Followback method26 (which shows moderate to high consistency with
results of urine toxicology screening27; see eAppendix 1 in the Supplement for follow-up procedure
details). Because treatment was abstinence based, relapse was defined as any stimulant use in the
time since treatment. We chose this definition of relapse as our dependent measure rather than more
broadly defining relapse as use of any drug of abuse because we were specifically interested in
testing whether brain responses to stimulant drug cues were associated with future use of this
category of drugs. Two treatment outcomes were considered: relapse as a binary measure (ie, a yes
or no response at the 3-month follow-up) and time to relapse (ie, continuous time in days until a yes
response). Additional steps were taken to minimize the clinical risks of performing a cue reactivity
study (eAppendix 1 in the Supplement).

Statistical Analysis
Preprocessing of fMRI data was conducted with a standard analytic pipeline using Analysis of
Functional NeuroImages (AFNI) software28 (eAppendix 1 in the Supplement). Analyses included both
whole-brain and volume of interest (VOI) approaches, with the latter testing critical hypotheses. For
whole-brain analyses, a general linear model was fit to each voxel time series that included task-
related regressors as well as nuisance regressors (eAppendix 1 in the Supplement). Trials of food vs
neutral cues, trials of drug vs neutral cues, and trials of drug vs food were then contrasted, producing
3 contrast maps for each participant. Two-tailed t tests were performed on map coefficients to assess
within-group and between-group effects, and resulting t maps were then Z transformed. Corrections
for multiple comparisons were determined using a brain mask with the AFNI program 3dClustSim
(AFNI, version 18.0.25; National Institute of Mental Health Scientific and Statistical Computing Core).
At a voxel-based threshold of P < .001, clusters with 23 or more contiguous voxels (ie, 561 mm3) were
deemed significant at P < .05, corrected. This corrected cluster size threshold was more stringent
than the cluster size determined from nonparametric permutation tests.29

Volume of interest analyses tested for changes in neural activity in specific mesolimbic circuit
foci implicated in previous studies of choice,30 which included the bilateral medial prefrontal cortex
(MPFC), nucleus accumbens (NAcc), and ventral tegmental area (VTA) (eAppendix 1 in the
Supplement). Time courses of normalized activity were extracted from each of these VOIs, and a
mean was calculated by trial type (ie, drug, food, and neutral cues) within each participant. We then
tested for differences using analysis of variance, with group (patient or control) as a between-
individuals factor and cue type (food, drug, neutral cue) as a within-individuals factor, followed by
targeted comparisons of differences: specifically, that patients would show increased activity to drug
cues but decreased activity to food cues relative to controls.

To estimate binary incidence of relapse (defined as either present or absent 3 months after
treatment), mesolimbic VOI coefficient data in patients were submitted to a series of logistic
regression models along with demographic, clinical, and self-report measures. Comparison models
included demographic and clinical variables, self-report variables (ie, want ratings from fMRI task and
overall craving and general negative mood from the Brief Addiction Monitor questionnaire), brain
activity (ie, coefficients from MPFC, NAcc, and VTA VOIs), and the strongest indices from each of
these models in combination. Models were then submitted to leave-one-individual-out cross-
validation to assess classification accuracy, and fits to the data (indexed by the Akaike information
criterion [AIC]) were compared across models.31 Training sets were oversampled to contain even
numbers of early abstainers and relapsers, setting the baseline probability of correctly classifying
each held-out test patient to 50%. We then directly compared classification performance of the best
neural risk factor (defined as the index test) associated with self-reported craving (defined as a
reference standard implicated in relapse by the literature10,32) with an area under the curve metric.
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To estimate continuous length of abstinence, VOI coefficient data for NAcc responses to drug cues
were submitted to survival analysis using a Cox proportional hazards regression model.

To assess whether activity in other brain regions was associated with relapse, we conducted an
exploratory classification analysis on patients’ whole-brain data. Binary classifiers were trained to
distinguish patients who relapsed vs abstained by applying a linear support vector machine classifier
with recursive feature elimination (SVM-RFE33) to patients’ whole-brain coefficient data modeling
neural responses to drug cues (eAppendix 1 in the Supplement).

Results

Thirty-nine patients with a diagnosis of stimulant use disorder (ie, cocaine use disorder and/or
amphetamine use disorder) and 42 healthy controls participated in the study. Data from 3 patients
and 2 controls were excluded because of excessive head motion (ie, >1-mm movement from 1 whole-
brain volume acquisition to the next in >1% of whole-brain volumes acquired), leaving 36 patients (2
women and 34 men; mean [SD] age, 43.4 [13.3] years) and 40 controls (16 women and 24 men; mean
[SD] age, 32.0 [11.6] years) for analysis (eFigure 1 and eTables 1 and 2 in the Supplement).

Behavior
Analysis of variance confirmed that group (patient or control; between-individuals factor) and cue
type (food, drug, or neutral cue; within-individuals factor) influenced self-reported ratings collected
both during and after the MRI as hypothesized (eAppendix 2 and eFigure 3 in the Supplement). Post
hoc t tests confirmed that both controls and patients reported wanting food cues more than neutral
cues (controls, t39 = 5.77; P < .001; Cohen d = 0.91; and patients, t35 = 6.55; P < .001; Cohen
d = 1.09) and drug cues less than neutral cues (controls, t39 = −13.86; P < .001; Cohen d = −2.19; and
patients, t35 = −2.14; P < .001; Cohen d= –0.36). Patients, however, still reported wanting drug cues
more than did controls (t74 = 5.61; P < .001; Cohen d = 1.28).

Brain Activity
Whole-brain contrasts compared neural responses to food, drug, and neutral cues in patients and
controls (Figure 2 and eFigure 4 and eTable 3 in the Supplement). The critical contrast of drug vs food
cues provided the most precise test of differential group responses consistent with the hijacking
hypothesis. Direct comparison of the drug vs food cue contrasts for patients vs controls confirmed
increased activity in mesolimbic regions (ie, VTA and NAcc), as well as in the left middle and medial
frontal gyri in patients. Analyses of activity time course data tested specific hypotheses about
targeted mesolimbic VOIs (including the bilateral MPFC, NAcc, and VTA; Figure 3). All 3 VOIs
(averaged across volume acquisitions occurring 6-12 seconds after trial onset) showed significant
group by cue type interactions (MPFC, F2,148 = 4.3; P = .01; ε2 = 0.037; NAcc, F2,148 = 5.3; P = .006;
ε2 = 0.043; and VTA, F2,148 = 7.2; P = .001; ε2 = 0.067). Post hoc t tests confirmed that relative to
controls, patients showed increased responses to drug cues in all 3 VOIs (MPFC, t74 = 2.90; P = .005;
Cohen d = 0.66; NAcc, t74 = 2.39; P = .02; Cohen d = 0.54; and VTA, t74 = 4.04; P < .001; Cohen
d = 0.92), decreased responses to food cues only in the NAcc (MPFC, t74 = −1.81; P = .07; Cohen
d = −0.41; NAcc, t74 = −2.67; P = .009; Cohen d = −0.61; and VTA, t74 = −1.57; P = .12; Cohen
d = −0.36), and no difference in neural responses to neutral cues (MPFC, t74 = −0.58; P = .56; Cohen
d = −0.13; NAcc, t74 = –0.94; P = .35; Cohen d = −0.21; and VTA, t74 = 0.84; P = .40; Cohen d = 0.19).

Modeling Relapse
Three months after completing treatment, 12 patients had relapsed (1 woman and 11 men; mean [SD]
age, 49.3 [14.1] years), while 21 remained abstinent (1 woman and 20 men; mean [SD] age, 39.3 [12.3]
years). Logistic regression models tested the extent to which demographic and clinical factors, self-
report measures, and brain activity were associated with relapse at 3 months (Table). Each
demographic or clinical factor (which included but was not limited to diagnoses of depression,

JAMA Network Open | Substance Use and Addiction Association of Neural Responses to Drug Cues With Subsequent Relapse

JAMA Network Open. 2018;1(8):e186466. doi:10.1001/jamanetworkopen.2018.6466 (Reprinted) December 28, 2018 6/14

Downloaded From: https://jamanetwork.com/ by a Stanford University Medical Center User  on 07/09/2019

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2018.6466&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2018.6466
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2018.6466&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2018.6466
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2018.6466&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2018.6466
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2018.6466&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2018.6466


anxiety, and posttraumatic stress disorder; use history of alcohol, marijuana, and opioids; duration of
stimulant use; days abstinent; and days in treatment prior to participation) was independently tested
for its association with treatment outcome (eTable 2 in the Supplement). None of the factors were
associated with relapse except for age (AIC, 42.95; R2 = 0.130). Although duration of use was
correlated with age (r = 0.55; P = .001), only age was significantly associated with relapse.

In a model including self-report measures (ie, craving, negative affect, and drug wanting), no
variables were significantly associated with relapse (AIC, 48.23; R2 = 0.064). In a model that
included neural variables, only NAcc response to drug cues was associated with relapse (AIC, 39.82;
R2 = 0.300). Responses in the NAcc to drug cues were comparably associated with relapse at 1 and 6
months after treatment (eTable 4 in the Supplement), suggesting that this association remained
stable during the assessment window. An alternative model including both NAcc responses to drug
cues and food cues indicated that inclusion of responses to food cues did not significantly improve
model fit (change in AIC, 1.4). Finally, a model that combined the most robust factors from separate
models revealed that the NAcc response to drug cues continued to be associated with relapse above
and beyond factors derived from demographic and self-report variables, and this combined model
accounted for slightly more variance with a better fit than other models (AIC, 36.95; R2 = 0.332)

Figure 2. Contrasts of Neural Responses to Food, Drug, and Neutral Cue Trials in Patients and Controls
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(Table). Classification accuracy for this combined model was 75.8%. Furthermore, direct comparison
of single-term models yielded an area under the curve of 77.0% for NAcc response to drug cues,
compared with an area under the curve of 57.7% for self-reported craving (eFigure 5 in the
Supplement).

To characterize the association between NAcc responses to drug cues and time to relapse, we
conducted a survival analysis with Cox proportional hazards regression, treating days to relapse as a
continuous outcome. Consistent with analyses of incidence, NAcc activity elicited by drug cues was
associated with an elevated risk to relapse sooner (hazard ratio, 2.30; 95% CI, 1.40-3.79; P = .001)
(Figure 4).

Figure 3. Mesolimbic Volume of Interest Responses to Different Cue Stimuli for Patients and Controls
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Activity time courses were extracted from predefined volumes of interest and averaged
by trial type to compare responsiveness in patients vs controls. Controls showed a higher
response to food stimuli than drug and neutral stimuli in all volumes of interest (middle
left). Patients showed a higher response to food and drug stimuli than neutral stimuli in
the medial prefrontal cortex (MPFC) and nucleus accumbens (NAcc), but not the ventral
tegmental area (VTA) (middle right). Patients showed a higher response to drug cues
than controls in all mesolimbic volumes of interest (right). Circles represent means and
error bars depict SEM across participants. The x-axes represent time elapsed from trial
onset, with white areas corresponding with the time of trial presentation (2-second
shape presentation, 2-second image presentation, and 4-second rating period; shifted

to account for a 6-second hemodynamic lag). In control and patient plots, P values
indicate results of repeated-measures analysis of variance testing for differences across
cue stimuli. In patient vs control drug response plots, P values indicate results from
2-sample t tests. All P values are 2-tailed. Δ indicates change; BOLD, blood oxygen level
dependent activity. Areas in red within ovals represent volumes of interest.
a P < .01.
b P < .001.
c P < .05.
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To check whether activity in other brain regions was associated with relapse, whole-brain
classifiers (ie, SVM-RFE with leave-one-individual-out cross-validation) identified drug response
coefficient features that best classified patients who relapsed vs those who abstained (at C = 10.00,
5% of selected features with leave-one-individual-out cross-validated test accuracy of 60.0%).
Back-projection of these features into a standard brain space confirmed that they included clusters
of coefficients in the bilateral NAcc (eFigure 6 and eTable 5 in the Supplement). Because the
classification rate of this “model-free” whole-brain analysis did not exceed that of hypothesized VOIs,
however, the findings confirmed but could not supersede targeted VOI models.

To examine why neural indices could anticipate relapse in the combined model but self-report
indices did not, a follow-up exploratory analysis tested for dissociations between brain activity and
self-report measures in patients, potentially consistent with reduced insight.34 A 2 × 3 (group:
patient, control [between-individuals factor]; and cue: neutral, food, drug [within-individuals factor])
analysis of variance on coefficients representing the association between NAcc responses and
positive arousal ratings for each picture revealed a significant main effect of group (F1,122 = 4.9;

Table. Regression Models of Factors Associated With Subsequent Relapse at 3 Months Among Patients With a Stimulant Use Disorder

Factor

Standardized Regression Coefficient (SE) [Z Score]

Demographic or Clinical Self-report Neural Combined
Intercept −0.63 (0.39) [−1.61] −0.54 (0.38) [−1.43] −0.75 (0.45) [−1.67] −0.73 (0.45) [−1.62]

Age 0.80 (0.41) [1.96]a NA NA 0.87 (0.50) [1.74]b

Drug wanting NA −0.49 (0.47) [−1.06] NA NA

Craving NA 0.41 (0.41) [1.00] NA NA

Negative moodc NA 0.45 (0.44) [1.03] NA NA

MPFC drug NA NA −0.64 (0.46); [−1.37] NA

NAcc drug NA NA 1.45 (0.57) [2.55]a 1.34 (0.56) [2.38]a

VTA drug NA NA 0.44 (0.46) [0.97] NA

Pseudo R2 0.130 0.064 0.300 0.332

AIC 42.95 48.23 39.82 36.95

Classification accuracy
(leave-one-individual-out), %

66.7 48.5 69.7 75.8

Abbreviations: AIC, Akaike information criterion; MPFC, medial prefrontal cortex; NA,
not applicable; NAcc, nucleus accumbens; VTA, ventral tegmental area.
a P < .05.

b P < .10.
c Based on responses to question 3 of the Brief Addiction Monitor questionnaire.25

Figure 4. Association of Nucleus Accumbens (NAcc) Response to Drug Cues With Incidence of Relapse and Time to Relapse
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P = .03; ε2 = 0.023), but no significant main effect of cue type (F2,122 = 0.1; P = .94) or interaction
(F2,122 = 0.1; P = .90), suggesting that controls showed a stronger association of NAcc responses with
positive arousal ratings than did patients for all cue types (eFigure 7 in the Supplement). Although
exploratory, this finding is consistent with accounts in which patients show reduced reflective insight
into their neural affective responses, rather than supporting a more targeted dissociation only
between self-reported affect and neural responses to drug cues.34

Discussion

Neuroimaging of a reward cue task revealed that drug cues increased activity in mesolimbic regions
(including the MPFC, NAcc, and VTA) in patients recovering from a stimulant use disorder relative to
controls. Patients also showed slightly decreased NAcc activity in response to conventional reward
cues (ie, food) relative to controls. Longitudinally, increased NAcc responses to drug cues in patients
anticipated both the incidence and speed of relapse above and beyond estimations supported by
clinical, self-report, and demographic measures, suggesting that neuroimaging data can add value by
providing unique and novel information about relapse. Model-free classification analyses reproduced
but did not improve on analyses using targeted brain activity. Together, in patients with a stimulant
use disorder, these findings suggest not only that neural activity indexes specific reactions to drug
cues, but moreover, that a subset of these neural responses are associated with relapse.

This research makes several novel contributions. First, consistent with the notion of hijacking,
the findings supported a sensitization mechanism of long-term use of stimulants.10 Previous drug
cue studies of patients with stimulant use disorders have not used event-related pseudorandom
designs, and so may have been unable to resolve phasic mesolimbic responses to unexpected
events.4,24 The event-related design in our study, however, revealed that patients did show increased
mesolimbic responses (ie, in the VTA, NAcc, and MFPC) to drug cues relative to controls. The
localization of these enhanced drug cue responses to mesolimbic regions rather than the
sensorimotor cortex implies that this sensitization may be affective rather than sensory or motor in
nature. Follow-up analyses, however, hinted that affective potentiation may prove difficult to detect
because of a decoupling of self-report with mesolimbic responses in patients relative to controls.34,35

Second, inclusion of multiple control conditions involving conventional reward cues (eg, for
appetizing foods) and neutral cues provided some support for a blunting mechanism of long-term
use of stimulants. Although both controls and patients showed mesolimbic responses to food cues,
these responses were diminished in patients, despite similar responses to neutral cues. These
findings are consistent with research indicating that patients with substance use disorders may show
slightly blunted responses to conventional reward cues (eg, money),4,36,37 which may or may not
precede experience with drugs of abuse.31

Third, the longitudinal design allowed us to test whether neural responses to drug cues were
also associated with subsequent relapse. Of all targeted mesolimbic regions, only NAcc responses to
drug cues were associated with relapse, both with respect to incidence at 3 months, and with respect
to timing. Mesolimbic responses to food reward cues, however, did not improve these estimations.
Furthermore, a statistical classifier trained on whole-brain responses to drug cues did not outperform
a simpler regionally specific model. These initial findings parallel recent evidence that NAcc
responses to alcohol cues are associated with incidence of relapse in patients treated for alcohol use
disorders.38 Although most patients were assessed for relapse by telephone, a subset were
interviewed and underwent urine drug screening in person, which yielded results that concurred
with self-reported relapse status.

Fourth, quantitative comparisons of novel neural markers vs traditional clinical and behavioral
assessments revealed that the neural markers could add value and might serve as a
“neurophenotype” of the risk of relapse in individuals with stimulant use disorders.39 In the current
sample, self-report measures (eg, of affect, wanting, and craving) were not significantly associated
with relapse among patients. An exploratory analysis correlating positive arousal ratings with brain
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activity across all stimuli revealed that NAcc activity was more strongly associated with self-reported
ratings in controls than in patients. These findings imply that patients may have less awareness of or
access to neural markers of motivation.34,35 Thus, measures of brain activity might reveal clinically
significant information in patients, even if they lack insight or conscious awareness into their own
motivation. Neural information might therefore aid clinicians in planning and focusing treatment
resources. The cost-effectiveness of using neural markers in clinical practice, however, remains to be
established.3

Fifth, these findings help to bridge comparative research and human studies of drug abuse. A
rich history of animal research has implicated the NAcc as a critical substrate for craving and relapse
in drug addiction.40,41 In rodents, virtually all drugs of abuse increase extracellular levels of dopamine
in the NAcc, which putatively mediates their reinforcing effects.13,42 The current results support and
extend these comparative findings by showing that NAcc activity is longitudinally associated with
relapse to stimulant use in humans.

Limitations
Several unresolved questions call for further investigation. Although the current study’s longitudinal
design supports the inference of an association between neural responses to drug cues and relapse,
the observed associations cannot establish causality. Neural markers indicating such an association
might either precede or result from drug use. In the case of affective sensitization, neural markers
indicating an association between responses to drug cues and relapse must have resulted from drug
use, as association of drug cues with motivation requires at least 1 initial exposure.43 In the case of
blunting, however, some evidence suggests that reduced responses to conventional reward cues
may also predispose vulnerable individuals toward later substance abuse.31 Further research is
needed to replicate and extend the findings to other samples (eg, women, as our sample of veterans
included primarily men). Other similar designs will be necessary to assess whether the identified
neural response is associated with other forms of addictive relapse. Although stimulant use clearly
increases mesolimbic activity, this finding represents only one of many other types of addiction (eg,
to nicotine, alcohol, or opiates). If people with opiate use disorder seek other types of hedonic
experiences (eg, calm rather than excited positive affect), for instance, different neural responses to
drug cues may be associated with relapse.44

Conclusions

The current findings may highlight neural targets for intervention in stimulant use disorders. For
instance, in rodent models, electrophysiological interference with NAcc activity can divert choices to
consume highly palatable food.45 Future longitudinal studies might test whether temporally precise
modifications of NAcc responses to drug cues can decrease the immediate or long-term risk of
relapse in humans. Follow-up studies that integrate multimodal neural measures (eg, gray matter
volume and white matter integrity) with more traditional measures (eg, self-report, behavioral, and
clinical measures) may clarify when neuroimaging markers add value. Neural factors associated with
relapse might also advance the development of new interventions. By implication, interventions that
most effectively reduce NAcc activity (and associated appetitive motivation) in response to drug
cues might diminish the risk of relapse. Finally, even in the absence of causal consequences, neural
factors associated with relapse may help clinicians to direct interventions toward those at the
greatest risk of relapse.
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