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We explore the task of neural network connectivity inference from a set of temporal measurements
at each node (neuron). Note: This document is a work in progress and much of the text is missing.
On the other hand, I made a point of including key figures in the milestone, so that one can get
a sense of the direction of the project. More information can be found in my project blog at
cs224w.blogspot.com. I also realize that I may need to narrow the scope for the course project.

I. INTRODUCTION

A. (Brief) Motivation

I am interested in the task of network connectivity in-
ference based on a measurement of the temporal dynam-
ics of a set of nodes. Specifically, as part of my PhD
research, I am involved in the design and implementa-
tion of optical neural recording devices, through which it
is now possible to record the functional activity of hun-
dreds (and soon, thousands) of neurons in a living animal
with single-cell resolution [GBC+11].

The basic premise of the optical neural recording is as
follows: fluorescent proteins whose fluorescence is mod-
ulated by neural activity [CWS+13] is introduced to the
brain of a laboratory animal under study (mice, in my
case). Portions of the skull (and possibly some brain tis-
sue [JMA+04]) is surgically removed in order to provide
optical access to the fluorescent neurons. This patch of
neural tissue can subsequently be imaged over period of
months using various imaging methodologies, that yield a
movie of cellular populations whose brightness level en-
codes the neural activity. The video data can be seg-
mented to yield optically-derived “activity traces” for
each neuron [MNS09]. The activity dataset is studied in
the context of the biological experiment. In the future, I
intend on performing network analysis (e.g. recognition
of network motifs, etc. [BS09]) on optical brain data at
the cellular level.

For my CS224w term project, I am interested in devel-
oping a reference computational model for future analysis
of experimental data. Generally, my intent is to perform
“connectivity analysis” on a simulated dataset of neu-
ron populations, to explore the use of various coupling
metrics on time series data for network inference (e.g.
linear cross-correlation, Granger causality, etc.) and to
use the computational framework to explore several basic
questions relevant to the experimental practice of optical
neural recording.
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B. Statement of problem

Consider Fig. 1, which shows a graph of n nodes (solid
circles) that represent a single neuron in brain tissue,
and directed edges (solid arrows) that represent synaptic
connectivity between neurons. Each neuron can influence
the spiking activity of other nodes through the synaptic
contacts. In this work, only excitatory connections (those
that tend the post-synaptic neuron to fire action poten-
tials) are considered. Note that the n observed neurons
may also be influenced by neurons that are not in the
observed set (dashed circles and dashed edges).

In experimental neuroscience, there exist techniques to
record the “functional” activity of a population of neu-
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FIG. 1. The problem of neural network structure inference
from its time series. We observe n neurons (solid circles)
whose synaptic connections are represented by solid arrows.
Note that the n observed neurons can be influenced by nodes
that are not in the observed set (dashed circles). The blue
arrows represent a single-neuron recording device (e.g. single-
cell voltage-measuring electrodes) that yield time-series data
xi[t] for each observed node. The basic task of “neural net-
work inference” is to reconstruct the (observable) synaptic
connections by computational analysis of the set of single-
node measurements {xi[t]}.
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rons. For example, one can insert electrodes into a liv-
ing cell, in order to measure the membrane voltage as a
function of time, or use (as in my case) functional flu-
orescent proteins to “read out” the cell optically. Such
single-neuron recording devices are represented by the
blue arrows in Fig. 1. Regardless of the particular ex-
perimental method, the general feature is that one can
obtain a set of time series data for each cell {xi[t]} that
relates some information about the synaptic structure of
the observed neurons. The deduction of the synaptic con-
nectivity from a set of single-cell recordings is the task of
“neural network inference from its time series.”

In this work, I am interested in developing a statis-
tically rigorous framework for neural network inference
from its time series. The framework will have the abil-
ity to perform inference of both undirected and directed
edges. Based on the network inference framework, I will
then explore several questions relevant to the experimen-
tal practice of optical neural recording.

II. GENERAL QUESTIONS THAT MOTIVATE
THE WORK

In this section, various questions relevant to the prac-
tice of optical neural recording are listed, that motivate
the computational study. I do not expect that I address
all questions in the CS224w project.

A. Comparison of various coupling metrics

The task of network inference from a set of time se-
ries recordings typically begins by computing a “coupling
score” for all potential pairings in a network. For exam-
ple, given two signals xi[t] and xj [t] of length n, a com-
monly used approach is to consider the cross-correlation
Cij [τ ], defined by:

Cij [l] =
1

σ̂iσ̂j(n− |l|)

n−l∑
t=1

(xi[t]− x̄i)(xj [t+ τ ]− x̄j) (1)

where x̄ and σ̂ represent the mean and the standard de-
viation of the two signals, and the “lag” variable l ac-
counts for possible temporal delays in the interaction be-
tween nodes i and j. Given the cross-correlation func-
tion, we may define the coupling score between xi[t] and
xj [t] to be Cij = maxl |Cij [l]| [KECK09]. Once the cross-
correlation score has been computed between all poten-
tial pairs in the network, the inference algorithm then
decides whether to assign an edge between the nodes.

It is clear that the inference result will be highly depen-
dent on the coupling metric chosen to identify the interac-
tions. For instance, because the cross-correlation is sym-
metric with respect to the node ordering (Cij = Cji), it
can only infer undirected edges. Also, because the cross-
correlation metric is purely bivariate (it does not consider
the information provided by xk[t] where k 6= i, j), it is

(as will be shown later) ill-suited to the task of inferring
dense neural networks.

Therefore, in this work I am interested in comparing
the performance and robustness of multiple coupling met-
rics for the inference of the underlying neural network
from time series measurements.

B. Effect of temporal filtering on network
inferrability

Currently, a major limitation of the optical recording
method is that the fluorescent proteins involved in sig-
naling functional activity have a slow temporal response
– with time constants of 100s of ms [CWS+13] – com-
pared to the underlying voltage dynamics (the duration
of an action potential is typically a few ms). In effect,
the optical recording paradigm yields a low-pass filtered
version of the underlying voltage dynamics.

How does the inferrability of the neural network vary
as the temporal data is degraded? How sensitive is the in-
ference performance to the time constant of the low-pass
filter? How does the inference fail – with increases in false
positives or increases in false negatives? Is the tempo-
ral susceptibility comparable between different coupling
metrics or do certain measures perform better than oth-
ers? Are there methods (e.g. Section II D) that may
help recover the underlying network despite limitations
in temporal resolution?

C. Inference of complex network topology

I am interested in simulating complex network topolo-
gies (rather than just random edges) such as n1 → n2 →
n3 and considering the performance of network inference
on such structures (e.g. how often does the algorithm
ascribe an erroneous edge n1 → n3)? For instance, I
suspect that the cross-correlation metric will be likely to
falsely close the triad in the above case, whereas other
multivariate measures (such as the Granger causality)
would be less likely to make such a mistake.

More generally, for a given coupling metric, are there
local graph structures that lead to errors (such as the
n1 → n2 → n3 example above)? By compiling a suite
of such difficult-to-infer structures it may be possible to
perform a more fine grained performance comparison of
the different coupling metrics.

Also, I am curious whether different neural network
generation processes (e.g. Gnm random graph, small
world, preferential attachment) yield networks that are
more difficult to infer.

D. Connection to cascades

[This may be beyond the scope of the course project.]
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The concept of inferring network edges based on tem-
poral data has conceptual similarities to information cas-
cades in graphs, as discussed in lecture. On the other
hand, to define a particular cascade instance, one has to
“identify the contagion (i.e. the idea, information, virus,
disease)” [GRLK10]. Unfortunately, when observing the
spiking activity of an ensemble of neurons, it is difficult
to decompose the overall activity into a superposition of
independent spike cascades.

In the field of experimental neuroscience, a comple-
mentary technique to optical recording is optogenet-
ics, where the electrical activity of neurons can be di-
rectly modulated by the experimenter via light illumi-
nation [PYG+12] (the effect can be both excitatory or
inhibitory). What is the additional improvement in net-
work inference if we are given the ability to drive the ac-
tivity of a particular subset of neurons deterministically?
Is there a method to characterize the resulting cascade
even in the presence of endogeneous activity in the re-
mainder of the population? Can we adapt methods of
cascade-based network inference, in order to improve the
performance of our neural network structure inference?

III. ANALYSIS FRAMEWORK – PRIOR WORK

A. Numerical model of neuronal dynamics – model
of Izhikevich [Izh03]

Fig. 2 shows a set of ten neural traces, as simulated by
the Izhikevich numerical model. For later parts of this
work, I typically used a network of N = 100 neurons,
which is comparable to the number of cells captured by
typical optical recordings. [More description later.]

B. Significance-based network inference from
multivariate time series [KECK09]

Consider again the cross-correlation (Eq. 1), which is
a typical metric for the coupling strength between two
time series. With real and finite measurements, one can
expect to find a distribution of nonzero correlations even
in the case of truly independent processes. As a result, in
experimental analysis, a common practice is to introduce
a threshold and declare connectivity between nodes if the
measured correlation exceeds that threshold. I find the
thresholding approach to be unsatisfactory because: (1)
the conclusions drawn from the data analysis is depen-
dent on an arbitrary parameter, and (2) the approach is
mathematically unprincipled.

I am thus drawn to the work by Kramer, et.
al. [KECK09] describing a rigorous method of edge infer-
ence based on the concept of the “false discovery rate”
(FDR) [BH95]. In essence, the FDR-based inference
method makes conservative estimates regarding the pres-
ence of an edge, by bounding the expected fraction of
false edges in the inferred set (such events are termed
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FIG. 2. Typical neural data as generated by the Izhikevich
numerical model. For clarity, ten traces are shown. Most
experiments in this study were based on a network consisting
of N = 100 nodes.

“false discovery”). Kramer’s work applies FDR concepts
to the problem of network inference.

I am conceptually drawn to the idea of using FDR con-
trol (rather than thresholding) for edge inference. How-
ever, Kramer’s paper does not give a convincing sum-
mary of the expected performance of the method. (Two
simulated examples, with known ground truths, are pre-
sented but only a single inference instance is presented.)
In this work, I performed repeated FDR-based network
inferences, to verify the performance of the method.

C. Coupling metrics for directed edge inference

1. Granger causality

IV. VALIDATION OF FDR-BASED EDGE
INFERENCE

Fig. 3 illustrates the individual steps involved in FDR-
based edge inference.

Fig. 4 shows an explicit validation of the FDR method.

V. EXPERIMENTS WITH UNDIRECTED
NETWORK INFERENCE

A. Inference of dense networks

I observed that the cross-correlation metric for undi-
rected edge inference fails when the edge density in the
ground truth network is increased. I have a hypothesis
for why this may be the case, which will be tested here.
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B. Effect of temporal filtering

Fig. 5 shows the effect of the low-pass filter with
time constant τ on the neural traces and their cross-
correlation. (There is probably an easy closed-form ex-
pression for how the temporal linear filter affects the
cross-correlation.)

Fig. 6 shows the degradation in performance when the
neural traces are processed by a low-pass filter with a
time constant of τ . In Fig. 6(a), it can be observed
that the FDR framework is still valid (the actual FDR is

approximately bounded by the FDR level q). However,
Fig. 6(b) shows that the ROC curve has suffered due to
low-pass filtering of the neural traces.

VI. EXPERIMENTS WITH DIRECTED
NETWORK INFERENCE

A. Initial results

Fig. 7 shows preliminary results for directed edge infer-
ence in a network with N = 30 neurons based on Granger
causality as the coupling metric.
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FIG. 3. Individual steps in the FDR-based edge inference mechanism, shown here for a ground truth neural network with
N = 10 neurons and M = 10 directed edges. [A] For every pair of neurons in the network, compute the coupling score. In this
case, there is a notable coupling between neurons 1 and 2, as measured by the cross-correlation C12 ≈ 0.15. [B] Compare the
measured cross-correlation against the “null distribution,” i.e. the distribution of Cij for neurons i, j that are not connected.
The comparison of C12 against the null distribution yields a significance value (a p-score) to be associated with the score.
Here, the measurement of C12 ≈ 0.15 is highly significant, given that the null distribution PDF has most of its weight around
0.03 < Cij < 0.08. [C] Identify the neuron pairs with sufficiently significant p-values according to the FDR-procedure of
Benjamini and Hochberg (see text). [D] The results of the particular inference instance. Filled green squares represent true
positives (the algorithm inferred a true edge), filled red squares represent false positives (the algorithm inferred a false edge),
and the unfilled green square represent false negatives (the algorithm failed to infer a true edge). Note that we plot all results
in the upper right triangle of the adjacency matrix, since the cross-correlation can only infer undirected edges.
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FIG. 4. Demonstration of the validity of the FDR method.
For each FDR level q, we simulate 50 instances of the inference
run on a graph with N = 100 and M = 100. We then measure
the actual FDR (the fraction of false positives in the inferred
set). The mean and standard deviation of the actual FDR is
presented, which shows the mean to be well-bounded by the
FDR level (dashed diagonal).
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FIG. 5. The effect of low pass filtering (here, τ = 10 ms)
on the neural traces and the cross-correlation. The unfil-
tered quantities are plotted in blue, and the filtered results
are shown in red.
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FIG. 6. Variation in the performance of undirected edge inference, when the neural signals are low-pass filtered prior to FDR-
based inference. Unfiltered quantities are shown in blue, results with a τ = 5 ms LPF are shown in red. (More will be added
later.) [Left] The FDR-based inference method remains valid even after low-pass filtering the time series; the actual FDRs are
bound by the FDR level q, independently of filtering. [Center] The degradation in inference performance as measured on a
standard ROC plot. [Right] Significant loss in performance is shown due to filtering of the time traces. For a fixed FDR level
q, the algorithm makes significantly fewer inferences (in order to bound the false discovery rate) which results in a lower true
positive rate (TPR) compared to the unfiltered case.
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FIG. 7. Preliminary results in directed edge inference using
the Granger causality as a coupling metric.
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