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1 Reaction paper / Related work

1.1 Motivation

I am interested in the task of network inference based on the temporal dynamics of a set of nodes. Specifically,
as part of my PhD research, I am involved in the design and implementation of optical neural recording
devices, through which it is now possible to record the functional activity of hundreds (and very soon
thousands, given the pace of the field) of neurons in a living animal with single-cell resolution [GBC+11].

The basic premise of the optical neural recording is as follows: fluorescent proteins whose fluorescence is
modulated by neural activity [CWS+13] is introduced to the brain of a laboratory animal under study (mice,
in my case). Portions of the skull (and possibly some brain tissue [JMA+04]) is surgically removed in order
to provide optical access to the fluorescent neurons. This patch of neural tissue can subsequently be imaged
over period of months using various imaging methodologies, that yield a movie of cellular populations whose
brightness level encodes the neural activity. The video data can be segmented to yield optically-derived
“activity traces” for each neuron [MNS09]. The activity dataset is studied in the context of the biological
experiment. In the future, I am interested in performing network analysis (e.g. recognition of network motifs,
etc. [BS09]) on optical brain data at the cellular level.

For my CS224w term project, I am interested in developing a reference computational model for future
analysis of experimental data.1 Generally, my intent for the project is to perform “connectivity analysis” on
a simulated data of neuron populations, to explore the use of various coupling metrics on time series data
(e.g. linear cross-correlation, Granger causality, etc.), and to use the computational framework to address
several basic questions relevant to the experimental practice of optical neural recording.

Next, I describe specific papers relevant to my task.

1.2 Network inference with confidence from multivariate time series [KECK09]

Consider the cross-correlation, which is a standard basic metric for the “coupling strength” between two
variables (e.g. two time-series x1[t] and x2[t]). With real and finite measurements, one can expect to
find a distribution of nonzero correlations even in the case of truly independent processes. As a result, in
experimental anaylsis, a common practice is to introduce a threshold, and declare connectivity between nodes

1Actually, I had intended to perform analysis on my original experimental data, but decided that it would be beyond the
scope of the course project. Perhaps in CS341.
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if the correlation exceeds that threshold. I find the thresholding approach to be unsatisfactory because: (1)
the conclusions drawn from the data analysis is dependent on an arbitrary parameter, and (2) the approach
is unprincipled.

I am thus drawn to the work by Kramer, et. al. [KECK09] describing a rigorous foundation for connectivity
inference based on the concept of “false discovery rate” (FDR) [BH95]. In essence, the FDR-based network
inference makes conservative estimates regarding the existence of an edge, by bounding the expected fraction
of false edges in the inferred set (such events are termed “false discovery”). Kramer’s work applies FDR
concepts to the problem of network inference, and provides “analytical shortcuts” when the choice of the
coupling metric is linear cross-correlation.

I am conceptually drawn to the idea of using FDR control (over thresholding) for edge inference. However,
Kramer’s paper does not give a convincing summary of the expected performance of the method. (Two
simulated examples are provided, with known ground truths, but only a single instance of the inference is
presented.) In Section 2.2.1, I performed repeated FDR-based inference on a toy network under various
conditions, to verify the performance of the method.

In the current work, I also intend to generalize Kramer’s method by utilizing alternative coupling metrics,
including ones that assign a directionality to the edge. Kramer alludes to several alternative metrics, e.g.
the synchronization likelihood, wavelet coherence, Granger causality, and the directed transfer function.

1.3 Simple model of spiking neurons [Izh03]

My work will be based on simulations of neural dynamics. There are several choices for the model, includ-
ing [Izh03, Ger95]. Kramer’s work on FDR-based edge inference (as well as other studies, e.g. [MPF05])
use the simulated neural model from Izhikevich [Izh03]. Based on this observation, I will be basing my
simulations on the Izhikevich model. However, for generality, I will seek to demonstrate the conclusions of
my work on multiple numerical models.

I will describe the Izhikevich model in more detail in Section 2.2.2.

1.4 Miscellaneous references

1.4.1 Relation to information cascades [GRLK10]

The concept of inferring network edges via a coupling measure inferred from temporal data has conceptual
similarities to cascades in graphs, as discussed in lecture. On the other hand, to define a particular cascade
instance, one has to “identify the contagion (i.e. the idea, information, virus, disease)” [GRLK10]. Unfortu-
nately, when observing the (voltage) spiking activity of an ensemble of neurons, it is difficult to decompose
the overall activity into a superposition of independent spike cascades.

In the field of experimental neuroscience, a complementary technique to optical recording is optogenetics,
through which the electrical activity of neurons can be directly modulated by the experimenter via light
illumination [PYG+12] (the effect can be excitatory or inhibitory). In contrast to the endogenous neural
activity, it may be possible to identify the result of an optogenically-driven activity as a cascade. I am
interested in the possibility of capturing this idea (identification of unique cascades) in my simulations,
and to quantify the additional information – if any – that the externally-driven cascade reveals about the
network over network analysis of endogenous activity. More generally, I would like to evaluate whether
cascade analysis algorithms can be integrated into the FDR-based network inference method.
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1.4.2 Application of network theory to brain science [BS09]

The review paper by Bullmore and Sporns gives many references to the applications of graph theory to
neuroscience, though much of the prior work is not at the individual cellular level.

2 Proposal

2.1 Project goals

2.1.1 Basic machinery

I will begin the work by building the machinery for FDR-based network inference, based on the work
of [KECK09]. I will begin with the simplest coupling metric of linear cross-correlation. Using the cross-
correlation, I will apply the inference method to simulated data of neural activity according to the Izhikevich
model [Izh03]. The performance of the FDR-based inference method will be observed, by comparison of the
predictions against the ground truth.

2.1.2 Robustness of network inference to degraded temporal signals

Currently, a major limitation of the optical recording method is that the fluorescent proteins involved in
signaling functional activity have a slow temporal response – at roughly 10 Hz – than the voltage dynamics,
which occurs at 1 kHz scale. In effect, the optical recording paradigm described in Section 1.1 yields a
low-pass filtered version of the underlying voltage dynamics.

As the Izhikevich numerical model yields simulated traces that represent voltage dynamics with a physical
scale (mV voltage; ms time scale), I am interested in the robustness (or lack thereof) of the FDR inference
method to filtering of the temporal signals.

2.1.3 Complex network topology

The physical neuronal network (as well as its simulation model) implements directed edges, whereas the
cross-correlation metric infers an undirected network.

I will simulate more complex network topologies (rather than just random edges) such as n1 → n2 → n3,
and consider the performance of the undirected network inference on such structures (e.g. how often does
it ascribe an edge to n1 → n3?). I would also consider the case in which portions of the underlying network
are hidden from the inference analysis (e.g. hide n2). This models the experimental fact that, even with
the state-of-the-art recording methodologies, we have no a priori reason that our recording site reveals
information over all neurons relevant to a particular biological function. It is thus interesting to examine
how the performance of network inference varies when portions of the neural circuits are “hidden” from
analysis.

2.1.4 Higher-order network analysis

On one hand, we do not expect that a set of neurons observable at a particular recording site captures all
neurons relevant to a biological function. On the other hand, as we improve the capture efficiency of our
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recording devices, we also expect that many neurons unrelated to a biological task at hand would also be
present in the dataset.

Thus, I would like to evaluate the performance of the inference mechanism not only by the correctness of
each inferred edge, but also by its ability to identify, for example, the connected components (so that we can
disregard unrelated disconnected components), and other graphical structures.

2.1.5 Alternate coupling metrics

I am interested in exploring the use of other coupling metrics, especially ones that ascribe a directionality
to an edge. Based on my early review of the literature, Granger causality appears to be a widely-accepted
method for inferring directed edges. With alternate metrics, I am interested in re-examining the questions
discussed above.

2.1.6 Connection to cascades

What is the additional improvement in network inference if we are given the ability to drive the activity of a
particular subset of neurons deterministically? The resulting “cascade” can be quantified in the presence or
the absence of endogenous activity in the remainder of the population. Can we adapt methods on cascade-
based network inference to our FDR-based network inference, in order to improve the performance?

This question has implications for experimental neuroscience, where there are efforts underway to integrate
recording and perturbation (optogenetic) methods [PYG+12].

2.2 Initial ground work

The following section describes some early work that I have performed. Note: I often find it useful to
maintain a blog that describes progress on projects such as this one. I am making a record of my progress
at: cs224w.blogspot.com.

2.2.1 FDR performance on a toy network

I recreated the FDR-based inference model of [KECK09]. As mentioned previously, the original publication
did not give a complete sense of the performance of the method, as it gave the results of only a single
inference instance. I am interested in the distribution of results over multiple inference instances.

As in [KECK09], I modeled a toy network of N = 9 nodes and M = 9 directed edges. The temporal signal
ni[t] at each node is generated as follows:

ni[t] = wi[t] + α ·
∑

(j,i)∈E

wj [t] (1)

where {wi} are independent white noise signals for each node i, and α = 0.4 represents the coupling constant.

I performed Ninf = 105 instances FDR-based edge inference with an FDR-level q = 0.1 (which means that,
in expectation, 10% of our inferred edges will be incorrect). The results are shown in Fig. 1.

Some interesting features of Fig. 1:
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Figure 1: Results of applying FDR-based network inference method of [KECK09] on a toy network of N = 9
nodes and M = 9 randomly-chosen, directed edges, with FDR-level q = 0.1. The number of inferences is
Ninf = 106. [Left] The distribution of the number of edges in the inferred network. [Right] The distribution
of the false positives in the inferred network.

• On average, the inferred network has Minf ≈ 7 < M = 9 edges. In the toy network, the inference
method tends to be conservative.

• The mean of the proportion of falsely inferred edges is qinf ≈ 0.07 < q = 0.1 as advertised, which
means that roughly 7% of the inferred edges are false positives, in expectation.

2.2.2 Numerical simulation of neuron dynamics

Fig. 2 shows the basic implementation of the Izhikevich neuron model. Only a subset of the N = 1000
neurons are shown, whose connectivity structure was randomly generated.

Based on my initial work with the Izhikevich model, few issues were apparent:

1. Depending on choice of the numerical parameters, the dynamical model for a single neuron can show
differing firing characteristics [Izh03]. I will have to make a simplifying choice for the type of neuron
that I wish to model. (In the neural simulation example of [KECK09], the “simplest” type of neurons
– known as “regularly spiking” (RS) neurons – are simulated.)
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Figure 2: Example instance of the Izhikevich neuron model. Only a subset of the N = 103 simulated neurons
are shown. The (directed) connection strengths between the neurons was generated randomly.

2. Izhikevich’s presentation of the model is very mathematical, and does not give an assessment of the
reasonable range of parameters for the connection strengths. I have chosen to interpret the connection
strengths in the Izhikevich model in terms of the amplitude of the excitatory postsynaptic potential
that it generates – and determined a range of values that are biologically plausible.

3. I find that the simple numerical integration method proposed by Izhikevich is unstable over short
time frames. In particular, as shown in Fig. 2, the height of the action potential is often too high
(and is a result of numerical noise). This numerical instability perturbs the calculation of the analog
cross-correlations. I will have to implement the integration at finer time steps.

Another possibility is to base the time-series analysis not on the voltage traces as shown in Fig. 2, but on
digitized traces (i.e. ni[t] = 1 if neuron i fired at time t, otherwise ni[t] = 0). Performing analysis at the
“digital trace” level would have natural correspondence to the conventional method of analyzing optical
neural measurements, which digitizes the measurements.

References

[BH95] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society. Series B, 57:289–300, 1995.

[BS09] E. Bullmore and O. Sporns. Complex brain networks: graph theoretical analysis of structural
and functional systems. Nat Rev Neuro, 10:186–198, 2009.

[CWS+13] T.-W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter,
R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim. Ultrasensitive
fluorescent proteins for imaging neuronal activity. Nature, 499:295–300, 2013.

[GBC+11] K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M. J.
Schnitzer. Miniaturized integration of a fluorescence microscope. Nature Methods, 8:871–878,
2011.

6



[Ger95] W. Gerstner. Time structure of the activity in neural network models. Phys. Rev. E, 51:738–748,
1995.

[GRLK10] M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring network of diffusion and influence.
ACM Transactions on Knowledge Discovery from Data, 2010.

[Izh03] E. M. Izhikevich. Simple model of spiking neurons. IEEE Transactions on Neural Networks,
14:1569–1572, 2003.

[JMA+04] J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer. In vivo mammalian brain
imaging using one- and two-photon fluorescence microscopy. J Neurophysiol, 92:3121–3133, 2004.

[KECK09] M.A. Kramer, U. T. Eden, S. S. Cash, and E. D. Kolaczyk. Network inference with confidence
from multivariate time series. Phys. Rev. E, 79:061916, 2009.

[MNS09] E. A. Mukamel, A. Nimmerjahn, and M. J. Schnitzer. Automated analysis of cellular signals
from large-scale calcium imaging data. Neuron, 63:747–760, 2009.

[MPF05] V. A. Makarov, F. Panetsos, and O. Feo. A method for determining neural connectivity and
inferring the underlying network dynamics using extracellular spike recordings. Journal of Neu-
roscience Methods, 144:265–279, 2005.

[PYG+12] R. Prakash, O. Yizhar, B. Grewe, C. Ramakrishnan, N. Wang, I. Goshen, A. M. Packer, D. S.
Peterka, R. Yuste, M. J. Schnitzer, and K. Deisseroth. Two-photon optogenetic toolbox for fast
inhibition, excitation and bistable modulation. Nature Methods, 9:1171–1179, 2012.

7


	Reaction paper / Related work
	Motivation 
	Network inference with confidence from multivariate time series [KECK09]
	Simple model of spiking neurons [Izh03]
	Miscellaneous references
	Relation to information cascades [GRLK10]
	Application of network theory to brain science [BS09]


	Proposal
	Project goals
	Basic machinery
	Robustness of network inference to degraded temporal signals
	Complex network topology
	Higher-order network analysis
	Alternate coupling metrics
	Connection to cascades

	Initial ground work
	FDR performance on a toy network
	Numerical simulation of neuron dynamics



