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Given:

● Social Network 

● Labels for some subset nodes

Goal:

● Infer labels for unlabeled nodes

Attribute prediction on graphs
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Semi-supervised learning Problem
Given:

● Social Network 

● Labels for some subset nodes

Goal:

● Infer labels for unlabeled nodes
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Approaches for attribute prediction
● Approach 1: Graph Smoothing based on Gaussian 

Random Field [Zhu, Ghahramani, Lafferty 2003]
○ Assumption: Gaussian Markov Random Field Prior on true 

label of all the nodes

○ Get the Bayes estimator of    on unlabeled nodes under the 

GMRF prior 

○ Be referred as ZGL later



Approaches for attribute prediction
● Approach 2: LINK classification [Lu-Getoor 2003]

○ Learn a function F:

F(row i in adjacency matrix) = i’s label

○ Example F: regularized logistic regression
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ZGL’s assumption: Homophily

● Homophily [one-hop similarity]:
○ Individuals are similar to their friends 
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ZGL’s assumption: Homophily

● Homophily [one-hop similarity]:
○ ZGL assumes information of a given node decays 

smoothly across the topology of the graph (by 
imposing the GMRF prior)
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Homophily Assumption: NOT always necessary!

● [Altenburger-Ugander 2018]：
○ LINK does well even without assuming homophily
○ Homophily assumption is not necessary for 

inference to succeed
● ...but ZGL and a lot of other graph smoothing methods 

all assumes homophily. Can we do graph smoothing 
without it? 
○ Yes (this talk)
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● Gender example:
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A situation where Homophily assumption fails

● Gender example:
○ Want to predict the gender of the center node
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A situation where Homophily assumption fails

● Gender example:
○ Want to predict the gender of the center node: 

■ Assume Homophily (1-hop majority vote): false
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A situation where Homophily assumption fails

● Observation: there are difference between one’s 

identity and preference
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Decoupled smoothing Method
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Decoupled smoothing: idea
● Idea: decoupling one’s “identity”     and “preference”

● Use separate parameters to model them accordingly!
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Decoupled smoothing: idea
● Idea: decoupling one’s “identity”     and “preference”
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Decoupled smoothing: idea
● Idea: decoupling one’s “identity”     and “preference”

● Intuition: a person’s identity will reveal information 
about their friend’s preference, and vice versa

identity preference
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Decoupled smoothing: idea
● Idea: decoupling one’s “identity”     and “preference”

● Intuition: a person’s identity will reveal information 
about their friend’s preference, and vice versa

identity preference: can’t observe, 
how to reveal?
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Decoupled smoothing: model
● Intuition: a person’s identity will reveal information 

about their friend’s preference, and vice versa
● Assumption: 
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Decoupled smoothing: model
● Intuition: a person’s identity will reveal information 

about their friend’s preference, and vice versa
● Assumption: 

● Goal: to obtain predictions for the identity     
○ the preference       is nuisance!

● Get the marginal prior for     : 
○
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How to estimate W?
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How to estimate W? 

● Intuition: 
○ Node j’th preference will imply a 2-hop similarity between 

node i and node k’s identities
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How to estimate W? 

● Intuition: 
○ Node j’th preference will imply a 2-hop similarity between 

node i and node k’s identities
○ Make use of the information of k when predicting i
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How to estimate W? 

● Intuition: 
○ Node j’th preference will imply a 2-hop similarity between 

node i and node k’s identities
○ Make use of the information of k when predicting i

● Assumption: 
○ i’s 2-hop friend k has the distribution:
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How to estimate W? 

● Why     as mean: 
○ Similarity among i and k

● Why      as variance? 
○ The more friends j have→  the better its preference being 

revealed → the less uncertainty about the similarity 
between i and k
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How to estimate W? 

● Assumption: 
○ 2-hop friend k has the distribution
○ Homogeneous standard error

● Then W can be reduced to                             
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Decoupled smoothing: model
● Now we know everything about the marginal prior for    : 

○  
● Next step:

○ Compute the Bayes estimator of     for unlabeled node 
and then make the prediction (recall ZGL)

● Done!
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Relationship between Decoupled smoothing 
and some phenomenon/concept/method that 

are related to it
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Decoupled smoothing and Monophily
● The phenomenon of Monophily [Altenburger-Ugander 2018] 

○ Two-hop similarity: individuals are similar to their friends’ 

friends

○ Innovative concept compared to Homophily

31

Identity: male
Preference: female

               
Male
Female         



Decoupled smoothing implies Monophily

● The phenomenon of Monophily [Altenburger-Ugander 2018] 

○ Two-hop similarity: 

■ similarity among the friends of a person is the result of 

personal preference

○ The 2 hop similarity phenomenon is implied by our 

decoupling smoothing idea!
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Decoupled smoothing and 2-hop MV

● Decoupled smoothing reduces to iterative 2-hop 
majority vote (under homogeneous standard error):
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2 hop Majority 
Vote (MV): 
Average over 
the labeled 
nodes in 2-hop 
friend sets



 Decoupled smoothing and ZGL

 ● ZGL:
● Assume Homophily
● Prior:

 
● Matrix A: 

adjacency matrix
● Reduce to iteratively 

1-hop majority vote 
update method!
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● Decoupled smoothing:
○ Don’t assume Homophily
○ Prior: 

○ Auxiliary matrix:

○ Reduce to iteratively 
2-hop majority vote 
update method!

Decoupled smoothing and ZGL
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Dataset
● Facebook 100: Single-day snapshots of Facebook in 

September 2005. 

● Goal: gender prediction
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School Name Number of Nodes Number of Edges

Amherst 2032 78733

Reed 962 18812

Haverford 1350 53904

Swarthmore 1517 53725



Decoupled smoothing: empirical result
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Decoupled smoothing: empirical result
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Decoupled smoothing: empirical result
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Decoupled smoothing: empirical result
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Why 2-hop Majority Vote beats Decoupled Smoothing?
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Summary
● Introduce the idea of decoupling one’s “identity”    

and “preference”
● Justify/explain the phenomenon of 2-hop similarity 

without assuming homophily
● Open questions: 

○ How to choose the weighted matrix W?
○ Why 2-hop Majority Vote outperforms decoupled 

smoothing: can you do better?
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Questions?
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Thank you for your attention!
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