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Subgraph Frequencies
▪ Definition: The subgraph frequency s(F,G) of a k-node subgraph F in a graph G 

is the fraction of k-tuples of nodes in G that induce a copy of F.

Motifs/Frequent subgraphs: Inokuchi et al. 2000, Milo et al. 2002, Yan-Han 2002, Kuramochi-Karypis 2004
Triad census: Davis-Leinhardt 1971, Wasserman-Faust 1994
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Empirical/Extremal Questions

▪ Consider the subgraph frequencies as a ‘coordinate system’

▪ Empirical Geography: 

▪ What subgraph frequencies do social graphs exhibit?

▪ Is there a good model?

▪ Extremal Geography:

▪ How much of this space is even feasible, combinatorially?

▪ Do empirical graphs fill the feasible space?
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What do we expect?

We expect few wedges, many triangles for social networks.
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Subgraph frequency of
Frequency of the ‘forbidden triad’ is bounded at ≤ 3/4.

Sharp for Kn/2,n/2 (bipartite graph) when n is even.

50 node graphs
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Lavender - Events



Subgraph frequencies



‘Crowd-sourced’ inner bounds

Consider all social graphs and the complements of all graphs, anti-social graphs (which are also graphs!)



What graphs are missing?
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▪ Square unlikely to form:

▪ Square has very short ‘half-life’:

Triadic Closure and Squares



Continuous Time Markov Chain Model
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Edge Formation Random Walk (EFRW)
▪ Continuous-time Markov chain
▪ Transitions between unlabeled, undirected graphs based in edge formation.

▪ Independent Poisson processes for all node pairs:
▪ Arbitrary formation:  rate ɣ > 0 
▪ Arbitrary deletion:  rate δ > 0

▪ Triadic closure formation for each wedge: rate λ ≥ 0
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▪ Continuous-time Markov chain
▪ Transitions between unlabeled, undirected graphs based in edge formation.

▪ Independent Poisson processes for all node pairs:
▪ Arbitrary formation:  rate ɣ > 0 
▪ Arbitrary deletion:  rate δ > 0

▪ Triadic closure formation for each wedge: rate λ ≥ 0

▪ For 4-node graphs, succinct Markov chain state transition diagram:
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Fitting λ to subgraph data
▪ How well can we fit λ? 

▪ Subgraph frequencies are modeled very well by triadic closure.
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Extremal graph theory
▪ Subgraph frequencies s(F,G) closely related to homomorphism density t(F,G).

▪ Frequency of cliques, lower bounds:  Moon-Moser 1962, Razborov 2008
▪ Frequency of cliques, upper bounds:  Kruskal-Katona Theorem
▪ Frequency of trees:       Sidorenko Conjecture (‘Theorem for trees’)
▪ Also linear relationships across sizes.
▪  => Linear Program!

[Borgs et al. 2006, Lovasz 2009]



▪ A proposition for all subgraphs:

Proposition. For every k, there exist constants ✏ and n0 such that the following

holds. If F is a k-node subgraph that is not a clique and not empty, and G is

any graph on n � n0 nodes, then s(F,G) < 1� ✏.

Extremal graph theory



▪ How do different audience graphs differ?

Audience graph classification
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▪ How do different audience graphs differ?

▪ Classification challenges  A) 75-node neigh. vs. 75-node events 
          B) 400-node neigh. vs. 400-node groups
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▪ How do different audience graphs differ?

▪ Classification challenges  A) 75-node neigh. vs. 75-node events 
          B) 400-node neigh. vs. 400-node groups

▪ Features:  Quad frequencies :       76%  /  76% accuracy
    Global features:        69%  /  76%  accuracy
    Quad frequencies + Global features:  81%  /  82%  accuracy

Audience graph classification
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▪ Subgraph frequencies usefully characterize social graphs, have extremal limits! 

▪ Edge Formation Random Walk model of dense social graphs:

▪ Homomorphism density bounds yield subgraph density bounds:

Conclusions
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