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Abstract

Latent variable mixture models are a powerful tool for exploring the structure in
large datasets. A common challenge for interpreting such models is a desire to
impose sparsity, the natural assumption that each data point only contains few la-
tent features. Since mixture distributions are constrained in their L1 norm, typical
sparsity techniques based onL1 regularization become toothless, and concave reg-
ularization becomes necessary. Unfortunately concave regularization typically re-
sults in EM algorithms that must perform problematic non-concave M-step maxi-
mizations. In this work, we introduce a technique for circumventing this difficulty,
using the so-called Mountain Pass Theorem to provide easily verifiable conditions
under which the M-step is well-behaved despite the lacking concavity. We also
develop a correspondence between logarithmic regularization and what we term
the pseudo-Dirichlet distribution, a generalization of the ordinary Dirichlet distri-
bution well-suited for inducing sparsity. We demonstrate our approach on a text
corpus, inferring a sparse topic mixture model for 2,406 weblogs.

1 Introduction

The current trend towards ‘big data’ has created a strong demand for techniques to efficiently extract
structure from ever-accumulating unstructured datasets. Specific contexts for this demand include
latent semantic models for organizing text corpora, image feature extraction models for navigating
large photo datasets, and community detection in social networks for optimizing content delivery.
Mixture models identify such latent structure, helping to categorize unstructured data.

Mixture models approach datasets as a set D of element d ∈ D, for example images or text doc-
uments. Each element consists of a collection of words w ∈ W drawn with replacement from a
vocabulary W . Each element-word pair observation is further assumed to be associated with an
unobserved class z ∈ Z , where Z is the set of classes. Ordinarily it is assumed that |Z| � |D|,
namely that the number of classes is much less than the number of elements. In this work we ex-
plore an additional sparsity assumption, namely that individual elements only incorporate a small
subset of the |Z| classes, so that each element arises as a mixture of only ` � |Z| classes. We de-
velop a framework to overcome mathematical difficulties in how this assumption can be harnessed
to improve the performance of mixture models.

Our primary context for mixture modeling in this work will be latent semantic models of text data,
where elements d are documents, words w are literal words, and classes z are vocabulary topics.
We apply our framework to models based on Probabilistic Latent Semantic Analysis (PLSA) [1].
While PLSA is often outperformed within text applications by techniques such as Latent Dirichlet
Allocation (LDA) [2], it forms the foundation of many mixture model techniques, from computer
vision [3] to network community detection [4], and we emphasize that our contribution is an opti-
mization technique intended for broad application outside merely topic models for text corpora. The
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near-equivalence between PLSA and Nonnegative Matrix Factorization (NMF) [5, 6] implies that
our technique is equally applicable to NMF problems as well. Sparse inference as a rule targets point
estimation, which makes PLSA-style models appropriate since they are inherently frequentist, de-
riving point-estimated models via likelihood maximization. In contrast, fully Bayesian frameworks
such as Latent Dirichlet Allocation (LDA) output a posterior distribution across the model space.

Sparse inference is commonly achieved through two largely equivalent techniques: regularization
or MAP inference. Regularization modifies ordinary likelihood maximization with a penalty on
the magnitudes of the parameters. Maximum a posteriori (MAP) inference employs priors con-
centrated towards small parameter values. MAP PLSA is an established technique [7], but earlier
work has been limited to log-concave prior distributions (corresponding to convex regularization
functions) that make a concave contribution to the posterior log-likelihood. While such priors allow
for tractable EM algorithms, they have the effect of promoting smoothing rather than sparsity. In
contrast, sparsity-inducing priors are invariably convex in their contribution. In this work we resolve
this difficulty by showing how, even though concavity fails in general, we are able to derive simple
checkable conditions that guarantee a unique stationary point to the M-step objective function that
serves as the unique global maximum. This rather surprising result, using the so-called Mountain
Pass Theorem, is a noteworthy contribution to the theory of learning algorithms which we expect
has many applications outside merely PLSA.

Section 2 briefly outlines the structure of MAP inference for PLSA. Section 3 discusses priors ap-
propriate for inducing sparsity, and introduces a generalization of the Dirichlet distribution which
we term the pseudo-Dirichlet distribution. Section 4 contains our main result, a tractable EM algo-
rithm for PLSA under sparse pseudo-Dirichlet priors using the Mountain Pass Theorem. Section 5
presents empirical results for a corpus of 2,406 weblogs, and section 6 concludes with a discussion.

2 Background and preliminaries

2.1 Standard PLSA

Within the PLSA framework, word-document-topic triplets (w, d, z) are assumed to be i.i.d. draws
from a joint distribution onW ×D ×Z of the form

P (w, d, z | θ) = P (w | z)P (z | d)P (d), (1)
where θ consists of the model parameters P (w | z), P (z | d) and P (d) for (w, d, z) ranging over
W ×D ×Z . Following [1], the corresponding data log-likelihood can be written

`0(θ) =
∑
w,d

n(w, d) log
[∑

z

P (w | z)P (z | d)
]
+
∑
d

n(d) logP (d), (2)

where n(w, d) is the number of occurrences of word w in document d, and n(d) =
∑
w n(w, d) is

the total number of words in d. The goal is to maximize the likelihood over the set of admissible θ.
This is accomplished using the EM algorithm, iterating between the following two steps:

E-step: Find P (z | w, d, θ′), the posterior distribution of the latent variable z, given (w, d) and a
current parameter estimate θ′.

M-step: Maximize Q0(θ | θ′) over θ, where

Q0(θ | θ′) =
∑
d

n(d) logP (d) +
∑
w,d,z

n(w, d)P (z | w, d, θ′) log
[
P (w | z)P (z | d)

]
.

We refer to [1] for details on the derivations, as well as extensions using so-called tempered EM.
The resulting updates corresponding to the E-step and M-step are, respectively,

P (z | w, d, θ) = P (w | z)P (z | d)∑
z′ P (w | z′)P (z′ | d)

(3)

and

P (w | z) =
∑
d P (z | w, d, θ′)n(w, d)∑

w′,d P (z | w′, d, θ′)n(w′, d)
,

P (z | d) =
∑
w P (z | w, d, θ′)n(w, d)

n(d)
, P (d) =

n(d)∑
d′ n(d

′)
.

(4)
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Note that PLSA has an alternative parameterization, where (1) is replaced by P (w, d, z | θ) =
P (w|z)P (d|z)P (z). This formulation is less interesting in our context, since our sparsity assump-
tion is intended as a statement about the vectors (P (z | d) : z ∈ Z), d ∈ D.

2.2 MAP PLSA

The standard MAP extension of PLSA is to introduce a prior density P (θ) on the parameter vector,
and then maximize the posterior data log-likelihood `(θ) = `0(θ) + logP (θ) via the EM algorithm.

In order to simplify the optimization problem, we impose the reasonable restriction that the vectors
(P (w | z) : w ∈ W) for z ∈ Z , (P (z | d) : z ∈ Z) for d ∈ D, and (P (d) : d ∈ D) be mutually
independent under the prior P (θ). That is,

P (θ) =
∏
z∈Z

fz(P (w | z) : w ∈ W)×
∏
d∈D

gd(P (z | d) : z ∈ Z)× h(P (d) : d ∈ D),

for densities fz , gd and h on the simplexes in R|W|, R|Z| and R|D|, respectively. With this structure
on P (θ) one readily verifies that the M-step objective function for the MAP likelihood problem,
Q(θ | θ′) = Q0(θ | θ′) + logP (θ), is given by

Q(θ | θ′) =
∑
z

Fz(θ | θ′) +
∑
d

Gd(θ | θ′) +H(θ | θ′),

where

Fz(θ | θ′) =
∑
w,d

P (z | w, d, θ′)n(w, d) logP (w | z) + log fz(P (w | z) : w ∈ W),

Gd(θ | θ′) =
∑
w,z

P (z | w, d, θ′)n(w, d) logP (z | d) + log gd(P (z | d) : z ∈ Z),

H(θ | θ′) =
∑
d

n(d) logP (d) + log h(P (d) : d ∈ D).

As a comment, notice that if the densities fz , gd, or h are log-concave then Fz , Gd, and H are
concave in θ. Furthermore, the functions Fz , Gd, and H can be maximized independently, since
the corresponding non-negativity and normalization constraints are decoupled. In particular, the
|Z|+ |D|+ 1 optimization problems can be solved in parallel.

3 The pseudo-Dirichlet prior

The parameters for PLSA models consist of |Z| + |D| + 1 probability distributions taking their
values on |Z| + |D| + 1 simplexes. The most well-known family of distributions on the simplex
is the Dirichlet family, which has many properties that make it useful in Bayesian statistics [8].
Unfortunately the Dirichlet distribution is not a suitable prior for modeling sparsity for PLSA, as we
shall see, and to address this we introduce a generalization of the Dirichlet distribution which we
call the pseudo-Dirichlet distribution.

To illustrate why the Dirichlet distribution is unsuitable in the present context, consider placing a
symmetric Dirichlet prior on (P (z | d) : z ∈ Z) for each document d. That is, for each d ∈ D,

gd(P (z | d) : z ∈ Z) ∝
∏
z∈Z

P (z | d)α−1,

where α > 0 is the concentration parameter. Let fz and h be constant. The relevant case for sparsity
is when α < 1, which concentrates the density toward the (relative) boundary of the simplex. It is
easy to see that the distribution is in this case log-convex, which means that the contribution to the
log-likelihood and M-step objective function Gd(θ | θ′) will be convex. We address this problem
in Section 4. A bigger problem, however, is that for α < 1 the density of the symmetric Dirichlet
distribution is unbounded and the MAP likelihood problem does not have a well-defined solution,
as the following result shows.
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Proposition 1 Under the above assumptions on fz , gd and h there are infinitely many sequences
(θm)m≥1, converging to distinct limits, such that limm→∞Q(θm | θm) = ∞. As a consequence,
`(θm) tends to infinity as well.

Proof. Choose θm as follows: P (d) = |D|−1 and P (w | z) = |W|−1 for all w, d and z. Fix d0 ∈ D
and z0 ∈ Z , and set P (z0 | d0) = m−1, P (z | d0) = 1−m−1

|Z|−1 for z 6= z0, and P (z | d) = |Z|−1 for
all z and d 6= d0. It is then straightforward to verify that Q(θm | θm) tends to infinity. The choice of
d0 and z0 was arbitrary, so by choosing two other points we get a different sequence with a different
limit. Taking convex combinations yields the claimed infinity of sequences. The second statement
follows from the well-known fact that Q(θ | θ′) ≤ `(θ) for all θ and θ′. �

This proposition is a formal statement of the observation that when the Dirichlet prior is unbounded,
any single zero element in P (z|d) leads to an infinite posterior likelihood, and so the optimization
problem is not well-posed. To overcome these unbounded Dirichlet priors while retaining their
sparsity-inducing properties, we introduce the following class of distributions on the simplex.

Definition 1 A random vector confined to the simplex in Rp is said to follow a pseudo-Dirichlet
distribution with concentration parameter α = (α1, . . . , αp) ∈ Rp and perturbation parameter
ε = (ε1, . . . , εp) ∈ Rp+ if it has a density on the simplex given by

P (x1, . . . , xp | α, ε) = C

p∏
i=1

(εi + xi)
αi−1 (5)

for a normalizing constant C depending on α and ε. If αi = α and εi = ε for all i and some fixed
α ∈ R, ε ≥ 0, we call the resulting distribution symmetric pseudo-Dirichlet.

Notice that if εi > 0 for all i, the pseudo-Dirichlet density is indeed bounded for all α. If εi = 0
and αi > 0 for all i, we recover the standard Dirichlet distribution. If εi = 0 and αi ≤ 0 for some
i then the density is not integrable, but can still be used as an improper prior. Like the Dirichlet
distribution, when α < 1 the pseudo-Dirichlet distribution is log-convex, and it will make a convex
contribution to the M-step objective function of any EM algorithm.

The psuedo-Dirichlet distribution can be viewed as a bounded perturbation of the Dirichlet distri-
bution, and for small values of the perturbation parameter ε, many of the properties of the original
Dirichlet distribution hold approximately. In our discussion section we offer a justification for al-
lowing α ≤ 0, framed within a regularization approach.

4 EM under pseudo-Dirichlet priors

We now derive an EM algorithm for PLSA under sparse pseudo-Dirichlet priors. The E-step is the
same as for standard PLSA, and is given by (3). The M-step consists in optimizing each Fz , Gd and
H individually. While our M-step will not offer a closed-form maximization, we are able to derive
simple checkable conditions under which the M-step has a stationary point that is also the global
maximum. Once the conditions are satisfied, the M-step optimum can be found via a practitioner’s
favorite root-finding algorithm. For consideration, we propose an iteration scheme that in practice
we find converges rapidly and well. Because our sparsity assumption focuses on the parameters
P (z|d), we perform our main analysis on Gd, but for completeness we state the corresponding
result for Fz . The less applicable treatment of H is omitted.

Consider the problem of maximizing Gd(θ | θ′) over (P (z | d) : z ∈ Z) subject to
∑
z P (z |

d) = 1 and P (z | d) ≥ 0 for all z. We use symmetric pseudo-Dirichlet priors with parameters
αd = (αd, . . . , αd) and εd = (εd, . . . , εd) for αd ∈ R and εd > 0. Since each Gd is treated
separately, let us fix d and write

xz = P (z | d), cz =
∑
w

P (z | w, d, θ′)n(w, d),

where the dependence on d is suppressed in the notation. For x = (xz : z ∈ Z) and a fixed θ′, we
write Gd(x) = Gd(θ | θ′), which yields, up to an additive constant,

Gd(x) =
∑
z

[
(αd − 1) log(εd + xz) + cz log xz

]
.
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The task is to maximize Gd, subject to
∑
z xz = 1 and xz ≥ 0 for all z. Assuming that every word

w is observed in at least one document d and that all components of θ′ are strictly positive, Lemma 1
below implies that any M-step optimizer must have strictly positive components. The non-negativity
constraint is therefore never binding, so the appropriate Lagrangian for this problem is

Ld(x;λ) = Gd(x) + λ
[
1−

∑
z

xz

]
,

and it suffices to consider its stationary points.

Lemma 1 Assume that every word w has been observed in at least one document d, and that P (z |
w, d; θ′) > 0 for all (w, d, z). If xz → 0 for some z, and the nonnegativity and normalization
constraints are maintained, then Gd(x)→ −∞.

Proof. The assumption implies that cz > 0, ∀z. Therefore, since log(εd + xz) and log xz are
bounded from above, ∀z, when θ stays in the feasible region, xz → 0 leads to Gd(x)→ −∞. �

The next lemma establishes a property of the stationary points of the Lagrangian Ld which will be
the key to proving our main result.

Lemma 2 Let (x, λ) be any stationary point of Ld such that xz > 0 for all z. Then λ ≥ n(d) −
(1− αd)|Z|. If in addition to the assumptions of Lemma 1 we have n(d) ≥ (1− αd)|Z|, then

∂2Gd
∂x2z

(x, λ) < 0 for all z ∈ Z.

Proof. We have ∂Ld

∂xz
= cz

xz
− 1−αd

εd+xz
− λ. Since ∂Ld

∂xz
(x, λ) = 0 at the stationary point, we get

λxz = cz−(1−αd) xz

εd+xz
≥ cz−(1−αd), which, after summing over z and using that

∑
z xz = 1,

yields
λ ≥

∑
z

cz − (1− αd)|Z|.

Furthermore,
∑
z cz =

∑
w n(w, d)

∑
z P (z | w, d, θ′) = n(d), so λ ≥ n(d)− (1− αd)|Z|.

For the second assertion, using once again that ∂Ld

∂xz
(x, λ) = 0 at the stationary point, a calculation

shows that
∂2Gd
∂x2z

(x, λ) = − 1

x2z(εd + xz)

[
x2zλ+ czεd

]
.

The assumptions imply that cz > 0, so it suffices to prove that λ ≥ 0. This follows from our
hypothesis and the first part of the lemma. �

This allows us to obtain our main result result concerning the structure of the optimization problem
associated with the M-step.

Theorem 1 Assume that (i) every word w has been observed in at least one document d, (ii) P (z |
w, d, θ′) > 0 for all (w, d, z), and (iii) n(d) > (1 − αd)|Z| for each d. Then each Lagrangian
Ld has a unique stationary point, which is the global maximum of the corresponding optimization
problem, and whose components are strictly positive.

The proof relies on the following version of the so-called Mountain Pass Theorem.

Lemma 3 (Mountain Pass Theorem) Let O ⊂ Rn be open, and consider a continuously differen-
tiable function φ : O → R s.t. φ(x) → −∞ whenever x tends to the boundary of O. If φ has two
distinct strict local maxima, it must have a third stationary point that is not a strict local maximum.

Proof. See p. 223 in [9], or Theorem 5.2 in [10]. �

Proof of Theorem 1. Consider a fixed d. We first prove that the corresponding Lagrangian Ld
can have at most one stationary point. To simplify notation, assume without loss of generality that
Z = {1, . . . ,K}, and define

G̃d(x1, . . . , xK−1) = Gd

(
x1, . . . , xK−1, 1−

K−1∑
k=1

xk

)
.
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The constrained maximization of Gd is then equivalent to maximizing G̃d over the open set O =
{(x1, . . . , xK−1) ∈ RK−1++ :

∑
k xk < 1}. The following facts are readily verified:

(i) If (x, λ) is a stationary point of Ld, then (x1, . . . , xK−1) is a stationary point of G̃d.

(ii) If (x1, . . . , xK−1) is a stationary point of G̃d, then (x, λ) is a stationary point of Ld, where
xK = 1−

∑K−1
k=1 xk and λ = cK

xK
− 1−αd

εd+xK
.

(iii) For any y = (y1, . . . , yK−1,
∑K−1
k=1 yk), we have yT∇2G̃dy =

∑K
k=1 y

2
k
∂2Gd

∂x2
k
.

Now, suppose that (x, λ) is a stationary point of Ld. Property (i) and property (iii) in conjunction
with Lemma 2 imply that (x1, . . . , xK−1) is a stationary point of G̃d and that ∇2G̃d is negative
definite there. Hence it is a strict local maximum.

Next, suppose for contradiction that there are two distinct such points. By Lemma 1, G̃d tends to
−∞ near the boundary of O, so we may apply the mountain pass theorem to get the existence of a
third point (x̃1, . . . , x̃K−1), stationary for G̃d, that is not a strict local maximum. But by (ii), this
yields a corresponding stationary point (x̃, λ̃) for Ld. The same reasoning as above then shows that
(x̃1, . . . , x̃K−1) has to be a strict local max for G̃d, which is a contradiction. We deduce that Ld has
at most one stationary point.

Finally, the continuity of Gd together with its boundary behavior (Lemma 1) implies that a maxi-
mizer exists and has strictly positive components. But the maximizer must be a stationary point of
Ld, so together with the previously established uniqueness, the result follows. �

Condition (i) in Theorem 1 is not a real restriction, since a word that does not appear in any doc-
ument typically will be removed from the vocabulary. Moreover, if the EM algorithm is initialized
such that P (z | w, d; θ′) > 0 for all (w, d, z), Theorem 1 ensures that this will be the case for all fu-
ture iterates as well. The critical assumption is Condition (iii). It can be thought of as ensuring that
the prior does not drown the data. Indeed, sufficiently large negative values of αd, corresponding to
strong prior beliefs, will cause the condition to fail.

While there are various methods available for finding the stationary point of Ld, we have found that
the following fixed-point type iterative scheme produces satisfactory results.

xz ←
cz

n(d) + (1− αd)
[

1
εd+xz

−
∑
z′

xz′
εd+xz′

] , xz ←
xz∑
z xz

. (6)

To motivate this particular update rule, recall that

∂Ld
∂xz

=
cz
xz
− 1− αd
εd + xz

− λ, ∂Ld
∂λ

= 1−
∑
z

xz.

At the stationary point, λxz = cz − 1−αd

εd+xz
xz , so by summing over z and using that

∑
z xz = 1

and
∑
z cz = n(d), we get λ = n(d) − (1 − αd)

∑
z

xz

εd+xz
. Substituting this for λ in ∂Ld

∂xz
= 0

and rearranging terms yields the first part of (6). Notice that Lemma 2 ensures that the denominator
stays strictly positive. Further, the normalization is a classic technique to restrict x to the simplex.
Note that (6) reduces to the standard PLSA update (4) if αd = 1.

For completeness we also consider the topic-vocabulary distribution (P (w|z) : w ∈ W). We
impose a symmetric pseudo-Dirichlet prior on the vector (P (w | z) : w ∈ W) for each z ∈ Z . The
corresponding parameters are denoted by αz and εz . Each Fz is optimized individually, so we fix
z ∈ Z and write yw = P (w | z). The objective function Fz(y) = Fz(θ | θ′) is then given by

Fz(y) =
∑
w

[
(αz − 1) log(εz + yw) + bw log yz

]
, bw =

∑
d

P (z | w, d, θ′)n(w, d). (7)

The following is an analog of Theorem 1, whose proof is essentially the same and therefore omitted.

Theorem 2 Assume condition (i) and (ii) of Theorem 1 are satisfied, and that for each z ∈ Z ,∑
w bw ≥ (1 − αz)|W|. Then each Fz has a unique local optimum on the simplex, which is also a

global maximum and whose components are strictly positive.
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Unfortunately there is no simple expression for
∑
w bw in terms of the inputs to the problem. On

the other hand, the sum can be evaluated at the beginning of each M-step, which makes it possible
to verify that αz is not too negative.

5 Empirical evaluation

To evaluate our framework for sparse mixture model inference, we develop a MAP PLSA topic
model for a corpus of 2,406 blogger.com blogs, a dataset originally analyzed by Schler et al. [11]
for the role of gender in language. Unigram frequencies for the blogs were built using the python
NLTK toolkit [12]. Inference was run on the document-word distribution of 2,406 blogs and 2,000
most common words, as determined by the aggregate frequencies across the entire corpus. The
implications of Section 4 is that in order to adapt PLSA for sparse MAP inference, we simply need
to replace equation (4) from PLSA’s ordinary M-step with an iteration of (6).

The corpus also contains a user-provided ‘category’ for each blog, indicating one of 28 categories.
We focused our analysis on 8 varied but representative topics, while the complete corpus contained
over 19,000 blogs. The user-provided topic labels are quite noisy, and so in order to have cleaner
ground truth data for evaluating our model we chose to also construct a synthetic, sparse dataset.
This synthetic dataset is employed to evaluate parameter choices within the model.

To generate our synthetic data, we ran PLSA on our text corpus and extracted the inferred P (w|z)
and P (d) distributions, while creating 2,406 synthetic P (z|d) distributions where each synthetic
blog was a uniform mixture of between 1 and 4 topics. These distributions were then used to
construct a ground-truth word-document distribution Q(w, d), which we then sampled N times,
where N is the total number of words in our true corpus. In this way we were able to generate a
realistic synthetic dataset with a sparse and known document-topic distribution.

We evaluate the quality of each model by calculating the model perplexity of the reconstructed word-
document distribution as compared to the underlying ground truth distribution used to generate the
synthetic data. Here model perplexity is given by

P(P (w, d)) = 2−
∑

w,dQ(w,d) log2 P (w,d),

where Q(w, d) is the true document-word distribution used to generate the synthetic dataset and
P (w, d) is the reconstructed matrix inferred by the model. Using this synthetic dataset we are able
to evaluate the roles of α and ε in our algorithm, as seen in Figure 1.

From Figure 1 we can conclude that α should in practice be chosen close the algorithm’s feasible
lower bound, and ε can be almost arbitrarily small. Choosing α = d1−maxd n(d)/ke and ε = 10−6,
we return to our blog data with its user-provided labels. In Figure 2 we see that sparse inference
indeed results in P (z|d) distributions with significantly sparser support. Furthermore, we can more
easily see how certain categories of blogs cluster in their usage of certain topics. For example,
a majority of the blogs self-categorized as pertaining to ‘religion’ employ almost exclusively the
second topic vocabulary of the model. The five most exceptional unigrams for this topic are ‘prayer’,
‘christ’, ‘jesus’, ‘god’, and ‘church’.

6 Discussion

We have shown how certain latent variable mixture models can be tractably extended with sparsity-
inducing priors using what we call the pseudo-Dirichlet distribution. Our main theoretical result
shows that the resulting M-step maximization problem is well-behaved despite the lack of concavity,
and empirical findings indicate that the approach is indeed effective. Our use of the Mountain Pass
Theorem to prove that all local optima coincide is to the best of our knowledge new in the literature,
and we find it intriguing and surprising that the global properties of maximizers, which are very
rarely susceptible to analysis in the absence of concavity, can be studied using this tool.

The use of log-convex priors (equivalently, concave regularization functions) to encourage sparsity is
particularly relevant when the parameters of the model correspond to probability distributions. Since
each distribution has a fixed L1 norm equal to one, the use of L1-regularization, which otherwise
would be the natural choice for inducing sparsity, becomes toothless. The pseudo-Dirichlet prior
we introduce corresponds to a concave regularization of the form

∑
i log(xi + ε). We mention in

7



−50 −40 −30 −20 −10 0
2.85

2.9

2.95
x 10

5

m
o

d
e

l p
e

rp
le

xi
ty

α

 

 

ε=10−6
ε=0.1 ε=1 PLSA

α

Figure 1: Model perplexity for inferred models with k = 8 topics as a function of the concentration
parameter α of the pseudo-Dirichlet prior, shown from the algorithm’s lower bound α = 1−n(d)/k
to the uniform prior case of α = 1. Three different choices of ε are shown, as well as the base-
line PLSA perplexity corresponding to a uniform prior. The dashed line indicates the perplexity
P(Q(w, d)), which should be interpreted as a lower bound.

  P(z|d), PLSA, Religion    P(z|d), Ps-Dir MAP, Religion  

  P(z|d), PLSA, Internet    P(z|d), Ps-Dir MAP, Internet  

  P(z|d), PLSA, Engineering    P(z|d), Ps-Dir MAP, Engineering  

 P(z|d), PLSA, Technology    P(z|d), Ps-Dir MAP, Technology    P(z|d), PLSA, Fashion    P(z|d), Ps-Dir MAP, Fashion  

  P(z|d), PLSA, Media    P(z|d), Ps-Dir MAP, Media  

  P(z|d), PLSA, Tourism    P(z|d), Ps-Dir MAP, Tourism  

  P(z|d), PLSA, Law    P(z|d), Ps-Dir MAP, Law  

Figure 2: Document-topic distributions P (z|d) for the 8 different categories of blogs studied. All
distributions share the same color scale.

passing that the same sum-log regularization has also been used for sparse signal recovery in [13].
It should be emphasized that the notion of sparsity we discuss in this work is not in the formal sense
of a small L0 norm. Indeed, Theorem 1 shows that, no different from ordinary PLSA, the estimated
parameters for MAP PLSA will all be strictly positive. Instead, we seek sparsity in the sense that
most parameters should be almost zero.

Next, let us comment on the possibility to allow the concentration parameter αd to be negative,
assuming for simplicity that fz and h are constant. Consider the normalized likelihood, where
clearly `(θ) may be replaced by `(θ)/N ,

`(θ)

N
=
`0(θ)

N
−
∑
d

1− αd
N

∑
z

log(εd + P (z | d)),

which by (2) we deduce only depends on the data through the normalized quantities n(w, d)/N .
This indicates that the quantity (1 − αd)/N , which plays the role of a regularization ‘gain’ in the
normalized problem, must be non-negligible in order for the regularization to have an effect. For
realistic sizes of N , allowing αd < 0 therefore becomes crucial.

Finally, while we have chosen to present our methodology as applied to topic models, we expect the
same techniques to be useful in a notably broader context. In particular, our methodology is directly
applicable to problems solved through Nonnegative Matrix Factorization (NMF), a close relative of
PLSA where matrix columns or rows are often similarly constrained in their L1 norm.
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