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This thesis investigates both how computational perspectives can improve our under-

standing of social networks, and also how modern insights about social networks can be

put to work to address difficult computational and inferential challenges across systems

engineering and the social sciences. The microstructure of human behavior has a rich

history of study across many disciplines, and only recently — through the data deluge of

online instrumentation and experimentation — has the role networks play across social

and economic domains come into full view. Work in this thesis examines how social net-

work neighborhoods, the rich local networks that surround individuals, function as con-

tact surfaces through which individuals process information, mediating social decision

and social contagion processes. Work in this thesis on distributing graph computations

at Facebook, the online social networking service, has led to dramatic efficiency gains

there, successfully deploying a new partitioning algorithm to reduce average query times

for their “People You May Know” link prediction system by 50%. These improvements

were achieved by harnessing both geographic and network structures of social graphs

not necessarily found in other graph contexts. Additional work presents a highly scal-

able “restreaming” approach to partitioning massive graphs with rich local structure.

Lastly, work on interference in online experiments (A/B tests) offers a framework based

on graph partitioning to design lower variance estimators for treatment effects under

network interference, a grand challenge of modern online experimentation. As individ-

uals bring their social relations online, the web is rapidly evolving from a network of

documents to a network of people, and computing with social data will require richer,

novel methods for working with the subtleties that give social networks their distinctive

character.
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control, shown clustered in groups of c = 2 vertices. (b) Asymptotic
variance of the estimator for this graph as a function of the number of
vertices per cluster, normalized by estimator variance for c = 1 vertices
per cluster. (c) Simulated variance of the estimator for kth powers of
the cycle graph for k = 1, . . . , 5 as a function of the number of vertices
per cluster. For each k the variance for cluster size c = 2k + 1 grows
linearly in k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xvii



CHAPTER 1

INTRODUCTION

“Alas! Forgetful of a husband’s home duties I again became involved in the
dissipated social network, whose fatal meshes too surely entangled me, and
unfitted me for that active exertion which was now rendered doubly necessary.”

– John Bartholomew Gough, Autobiography (1846)

The quantitative study of the structure of social systems dates back to at least the

1930’s, when the social scientist Jacob Moreno introduced the sociogram, a graphical

representation of ties between individuals to illustrate the structure of social groups,

more modernly referred to as a social network [113]. While the notion that relationships

in society form something akin to a “network” is a metaphor that significantly predates

Moreno — see the epigraph above — his initial work on sociograms in his 1934 book

Who Shall Survive? introduced much more than just a metaphor or visual tool, and

in fact developed precursors to many of the modern tools used for analyzing social

networks today.

Moreno’s work was inspired by investigations he conducted as Director of Research

at the New York Training School for Girls reformatory school in Hudson, NY, where

he sought to broadly study determinants of human behavior. Moreno wondered if there

were structural explanations for why certain young girls were running away from the

school, and thought that sociographic analysis might hold an answer. He was a care-

ful thinker, and beyond merely analyzing the networks he observed, he was quick to

seek notions of statistical significance in his analyses. As part of his earliest work,

he introduced what he called chance sociograms and what we would now call random

graphs, used in permutation tests to see if the structures he was observing were statis-

tically significant. Analyses performed against such randomized baselines are now the

cornerstone of many modern measures on social networks, such as network modularity

[119], and many of the computational tools for analyzing modern large-scale social net-
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works rely on appropriate constructed random graphs, e.g. random graphs with arbitrary

degree distributions [117].

Concurrent with Moreno’s development of sociometry and the 1934 publication of

Who Shall Survive?, in 1936 the Hungarian mathematician Dénes Kőnig published the

first organized textbook on the emerging mathematical field of graph theory, Theorie

der endlichen und unendlichen Graphen. The study of graphs is generally considered to

have begun in 1736 with Leonhard Euler’s analysis of the “Seven Bridges of Königsberg

problem” [48, 71], and has a rich history that predates Kőnig’s textbook [21], but it

was Kőnig’s textbook that first organized the discipline. It is fortuitous that this should

happen concurrently with Moreno’s initial investigations.

As the study of sociograms and sociometry began to take off in the 1950’s, mathe-

maticians such as Anatol Rapoport and Frank Harary successfully led efforts to apply

the mathematical language of graph theory to social networks [128, 67, 30, 69]. At the

end of the 1950’s, the rigorous study of random graphs initiated by Paul Erdős and Al-

fred Rényi [47] laid further foundations for studying social networks as mathematical

objects. By studying probability distributions over the space of graphs, random graphs

made it possible to view Moreno’s work on “chance sociograms” in a rigorous light.

Since these early syntheses, the study of social networks has benefited from a sym-

biotic relationship with graph theory, which has contributed important operational tools

for analyzing social theories. A notable early example of such operationalization —

providing precise definitions and measures that enable quantitative analysis — was the

work by James Davis and Samuel Leinhardt published in 1967. In that work, Davis and

Leinhardt set out to operationalize a theory of small social groups put forward in 1950

by George Homans, contained in his book The Human Group [68]. Homans’ theory

proposed that small groups of people inevitably generate a social structure that contains

many clique subgroups and a ranking system. Through their work, Davis and Lein-
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hardt provided an “operational statement of Homans’ theory”, that “seven key triads are

less frequent than the random model would predict” [44], the infrequent triads being

those triads that a graph would be free from if it consisted only of clique subgraphs and

directed relationships aligned with an hierarchy.

Davis and Leinhardt’s work was importantly exceptional in that it employed an

“electronic computer” to perform the involved analysis — in 1967(!) — of adjacency

matrices representing 427 groups, and 60 simulated groups with random relationships.

While the mathematics of random graphs provided a language for describing Homans’

theory, it was the computational perspective gained through data analysis that was the

true essence of their landmark operationalization. Recently, Homans’ social theory of

cliques and ranking was re-examined within the context of the National Longitudinal

Study of Adolescent Health [131], examining over 90,000 students across 84 school

networks in a manner similar to Davis and Leinhardt. This recent work corroborated the

findings of Davis and Leinhardt, while also introducing a maximum likelihood inference

framework for inferring rankings within the theory [16], a computationally intensive line

of inquiry far beyond what Davis and Leinhardt could have hoped to achieve in 1967.

The early computational analyses of Davis and Leinhardt recognized that social net-

works are complicated mathematical objects, and any manual analysis was intractable

even for moderately sized networks. In the decades the followed, the field of social

network analysis developed a rich set of computational tools to analyze various social

theories computationally [158], but for the most part these analyses did not attract much

attention from mathematicians or computer scientists.

As the 20th century drew to close, however, a broad range of other research commu-

nities turned their attention to diverse research problems centered around large-scale

graphs. In the narrow window between 1997 and 2000, significant advances were

made by mathematicians studying the theory of random graphs and percolation theory
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[111, 5], applied mathematicians studying synchronization of oscillators [159], statisti-

cal physicists studying scaling laws [141, 17, 6, 73], and computer scientists from sub-

fields including artificial intelligence, information retrieval, and data mining all studying

various combinations of web mining [42, 60], link analysis [86, 123], graph partitioning

[79], and communication network architectures [49].

Some of these early analyses did in fact extend to social networks, notably the Watts-

Strogatz model of “small-world networks” that introduced a class of sparse graphs con-

currently exhibiting both a small diameter and clustering (many triangles). Before small-

world networks were introduced, it was known that sparse Erdős-Rényi random graphs

exhibited a small diameter with high probability and that lattice graphs exhibited cluster-

ing, while empirically it was known that social networks exhibited both these properties,

but there was no good model of sparse graphs exhibiting the two traits concurrently. By

introducing the clustering coefficient of a graph as a definition of clustering, and by

showing that small-world networks exhibit a high clustering coefficient and a small di-

ameter, Watts and Strogatz contributed an important measure of how social network

models can be deemed realistic.

In addition to analyzing their theoretical model of small-world networks, Watts and

Strogatz analyzed three datasets: a network of film actors collaborations, the electri-

cal power grid of the western United States, and the neuronal network of the nematode

worm C. elegans. The network of film actors was quite large, documenting collabora-

tions between more than 225,000 actors using data available from the Internet Movie

Database (IMDB) as of April 1997. While the traditional social network analysis com-

munity had been studying small-scale network datasets for decades, the work by Watts

and Strogatz coincided with the availability of large-scale datasets being organized on

the world wide web, including the link structure of the web itself [6, 73] and the net-

work structure of the internet itself [49, 5]. While the early web was principally orga-
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nized around documents and information, it soon became clear that large portions of the

internet were in fact encoding human relationships and other human behavior. In the

presence of data, the scale of social networks being analyzed was perched to grow by

orders of magnitude.

Research efforts gradually began targeting increasingly ambitious scales of social

network structure, a progression that in turn required increasing computational sophisti-

cation. Some efforts focussed on the social network of academic collaborators, studying

first smaller networks of researchers affiliated with a single institution [61], and in 2003

Liben-Nowell and Kleinberg used a dataset of 23,500 authors and 100,000 edges to

frame the problem of link prediction in social networks [99]. Another source of social

relations that quickly landed under the microscope was e-mail: in 2004 a corpus of over

600,000 emails between 158 employees of the Enron Corporation was released to the

public through the Federal Energy Regulatory Commission, and subsequently became

an object of frequent study [85, 107], while another major study by Kossinets and Watts

examined the email exchanges of 43,000 students, faculty, and staff at a large university

[89]. As more and more individuals set up personal homepages on the web, in 2003 it

occured to Adamic and Adar to study the links between 9,700 homepages at Stanford

and at MIT as social networks [1]. The link structure of personal weblogs was next, and

it was here that scales first became truly overwhelming. In 2005, Adamic and Glance

studied 1,494 political blogs in the wake of the 2004 election [2], while later the same

year the analysis of 1.03 million weblogs indexed through blogdex was released [106],

and two separate studies of over 1 million blogs hosted at LiveJournal were used to

perform detailed analyses of geographic assortativity [100] and of the social process of

group formation [10]. To both gather and analyze graph data of these scales, computa-

tional naiveté was no longer admissible.

In a few short years, computational perspectives had made it possible to study social
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networks at tremendous scales. In many ways the 21st century’s first decade offered a

golden age of large-scale observational data analysis: because no one had ever assem-

bled datasets of these magnitudes before, answering basic questions in an observational

setting made it possible to propose answers, albeit coarse answers, where no previous

attempt at answers had been possible. In 2006, basic questions of collective action and

group dynamics studied in the 1970’s by Granovetter [64] and Schelling [134] were

given computational reformulations and analyzed at scale in the context of LiveJournal

group formation by Backstrom and colleagues [10]. In 2008, Stanley Milgram’s creative

investigations of the 1960’s into the six degrees of separation phenomenon by initiating

160 chain letters [108] was reexamined at a planetary scale through the MSN online chat

network [95] (and more recently on Facebook [14]). As the study of large-scale social

networks progressed to encompass not just small groups or samples but various notions

of “all the data,” for a while it nearly seemed as though any social theory could be tested

by studying large enough observational social network datasets.

Unfortunately, there are limits to what an observational data analysis can discern,

no matter how large the dataset. While more and more data makes it possible to pro-

vide increasingly accurate predictive understandings of nearly any question related to

that data, social theories often concern themselves with causal/explanatory relationships,

not merely predictive/descriptive relationships. Most particularly, theories of social in-

fluence are specifically theories about a causal relationship. In line with these concerns,

the more recent era of analyses examining large-scale social networks has been attempt-

ing to target causal understandings, when possible.

In 2007, Christakis and Fowler released a large-scale analysis of social contagion

within the 12,000 study participants in the longitudinal Framingham Heart Study, claim-

ing that obesity was socially contagious [38]. Christakis and Fowler were interested in

the role of social influence in public health, and realized that the Framingham study,
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which had been running for over thirty years, had been surreptitiously collecting social

relationship information as part of its periodic surveys over these thirty years, providing

a convenient chance to test various theories of how individuals influence each others’

health through social relationships. The difficulty with understanding social influence

in social settings is that, even if they could have gone back in time to design the study

to include a randomized trial, or even if they were able to wait 30 years for a new

study to be conducted, it is not possible to reliably randomize individuals’ social ties.

Recognizing that a randomized trial would be difficult, they hoped that by applying a

thoughtful methodology they could tease out a causal understanding of how the health

of individuals influence each other through time. Unfortunately, a careful analysis by

Shalizi and Thomas in 2011 showed that, as the title of that work clearly communicated,

“homophily and contagion are generically confounded in observational social network

studies” [135]. Shalizi and Thomas showed that it was not possible to distinguish ho-

mophily — the notion that like attracts like and that similar people are more likely to

be friends — from social influence. Christakis and Fowler had established that being

friends with an obese person predicted that you would become obese, but attempts to

establish causality inherently ran up against the obstacles discovered by Shalizi and

Thomas.

The research conversations surrounding the Christakis and Fowler study, including

the Shalizi and Thomas negative result, rightly gave the large-scale social networks re-

search community pause for thought. The conversation initiated a rapid shift towards

more careful experimental approaches that married large-scale analysis with causal in-

ference. As another analogy, in 2007 Centola and Macy had initiated a successful re-

search program studying complex contagion, the notion in collective action that individ-

uals do not respond to social cues independently or linearly, but they perhaps respond

superlinearly as a function of the number of peers providing cues. Through simula-
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tion analyses [32, 33], they had shown that complex contagion behaved very differently

than simple contagion on various network topologies. In 2010 and 2011, Centola pub-

lished two randomized experiments to establish that human subjects did in fact make

decisions consistent with complex contagion [34, 35]. Other important work, including

by Aral and colleagues [8], introduced the social networks community to propensity

score matching, an established methodology developed in the 1980’s by the statistical

inference community [132] for reducing bias in observational studies.

In recent years, the widespread application of randomized experiments to large-scale

social networks studies has been tremendously successful. A large-scale hold-out ex-

periment conducted in 2010 on Facebook was able to quantify the significant role of ho-

mophily in information diffusion [15], the general confounder that Shalizi and Thomas

had identified in observational studies of influence. The important role of social fac-

tors in voter turn-out was similarly examined at scale through Facebook in a 61-million

participant experiment led by Fowler and colleagues, this time employing a randomized

experiment [23]. Throughout these advances, computational perspectives have been at

the heart of operationalizing diverse theories of social and human behavior, and as stud-

ies target increasingly sophisticated hypotheses, including those pertaining to causal

relationships, the demand for computational machinery only increases.

It is important to emphasize that the negative result of Shalizi and Thomas, that

homophily and social influence are generally confounded, is specifically a critique of

studies of social influence. It is certainly not a blanket dismissal of non-causal investi-

gations of social networks. First, there are many social theories that are not causal, such

as basic structural claims of connectivity, clustering, and assortativity. Second, there are

many questions where causal experiments are not possible, such as randomizing who

people are friends with. The questions posed by Christakis and Fowler are still of grave

consequence for public health, and the best possible answers, with known caveats, are
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certainly of great interest.

Beyond providing a quantitative language for existing social theories, computational

perspectives also contribute their own findings. The investigations of network ranking

and centrality that helped transform search engines such as Google into the backbones

of the modern web [123] have also had exciting implications for understanding social

networks. When tracking infectious diseases, it has been postulated [41] and shown

[39] that rather than tracking random individuals, there are significant advantages to

tracking friends of random individuals, a strategy that explicitly seeks out nodes of a

social network with higher centrality. The use of such “friend sensing” has been shown

empirically to track a flu epidemic on a college campus with a two week lead time

compared to tracking random individuals [39]. In another vein, link prediction algo-

rithms [99] have been tremendously useful to online social networking services such as

Facebook and LinkedIn. In the context of link prediction, the fundamental question is

precisely predictability, and not causality, and Facebook has employed various observa-

tional findings regarding assortative mixing in geographic [100] and other latent spaces

to improve friend recommendations through their “People You May Know” service.

These recommendations ultimately drives 40% of all friendships formed on Facebook.

Overall, the study of social networks has come to increasingly rely on computational

perspectives, and it has been the goal of this thesis to push the means of analysis for-

ward for a new generation of both insights and applications. The contributions in this

thesis are variously distributed, and were developed to enrich several of the points in the

above overview of the field.

1.1 Contributions

Chapter 2 presents work in the tradition of operationalizing a social theory through a

computational perspective, examining the role of diversity in social decision-making by
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studying the growth of the Facebook online social networking service. The growth of

Facebook as a service constitutes a rare social contagion process with genuinely global

adoption, now with over one billion active users. In 2010 I initiated a collaboration with

Facebook to study the role of graph structure in this rapid growth. Traditional models

of social contagion have been based on analogies with biological contagion, where the

probability that an individual is affected by the contagion grows monotonically with the

number of affected individuals with whom he or she is in contact. The role of graph

structure — how the affected neighbors are related — has been challenging to evaluate

due to the difficulty in obtaining detailed data on individual network neighborhoods dur-

ing the course of a large-scale contagion process. We found that the spread of Facebook

departed notably from traditional epidemiological models of contagion. In particular,

we observed that the probability of contagion was tightly controlled by the number of

connected components in an individual’s contact neighborhood — the “structural diver-

sity” — rather than by the actual size of the neighborhood. We also examined the role

of structural diversity in long-term user engagement: studying the network neighbor-

hoods that new users formed after one week, we found that users with many distinct

and substantive components in their network neighborhood were much more likely to

become engaged users, logging in at least six out of seven days per week. Similar to

the health questions examined by Christakis and Fowler, randomizing the structure of

people’s friendships was not an admissible strategy.

The work presented in Chapter 3 is closely related to the work of Davis and Lein-

hardt, who used subgraph frequencies compared against a random graph baseline as an

operational measure of Homans’ theory of group formation. The work in Chapter 3

shows how, in the study of dense social networks such as groups or network neighbor-

hoods, combinatorial structure constrains graph statistics in significant and non-trivial

ways. The key question driving that work was to ask: when studying social networks,
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what properties are “social” properties and what are “network” properties? Using the

theory of graph homomorphisms, we studied the combinatorial constraints on frequen-

cies of induced subgraphs, that statistics studied by Davis and Leinhardt and in many

other contexts since. We found that the space of subgraph frequencies is governed both

by its combinatorial properties, based on extremal results that constrain all graphs, as

well as by its empirical properties of social graphs, manifested in the way that real so-

cial graphs appear to lie near a simple one-dimensional “human manifold” through this

space. In particular, we show that the frequency of the subgraph sometimes referred to

as the “forbidden triad” — three people with two social relationships between them but

one absent relationship — has a non-trivial upper bound in not just social graphs, but in

all graphs: no sufficiently large graph can possess forbidden triads at a frequency greater

than 3/4 + o(1) of all triads. More generally, we showed that any k-node subgraph that

is not a complete or empty subgraph has a frequency among k-node subgraphs that

is bounded away from one. Thus, there is an extent to which almost all subgraphs are

mathematically “forbidden” from occurring beyond a certain frequency. For dense graph

contexts such the study of network neighborhoods or social groups, these combinatorial

constraints that govern subgraph frequencies provide a significant new perspective for

understanding when observed structures indicate social structure and not merely struc-

tures that constrain all graphs.

In Chapters 4 and 5, we ask: can the abundance of modern insights about social net-

works be applied to improve the efficiency of social data analysis? How can we “close

the loop” on the study of social data, using insights to make analysis more efficient? The

work in Chapter 4, conducted in collaboration with Facebook, developed a way to use

social graph structure to dramatically improve the partitioning of the distributed com-

puting infrastructure supporting Facebook’s “People You May Know” machine learning

system. By using a novel graph partitioning algorithm that we developed, which we call
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“balanced label propagation,” we were able to harness the locally clustered structure of

social graphs while still achieving a global balancing objective. Graph partitioning has

a very rich literature, but existing algorithms typically cannot scale to billions of edges,

or cannot provide guarantees about partition sizes. This algorithm combined the com-

putational efficiency of local label propagation — where nodes are iteratively relabeled

to the same “label” as the plurality of their graph neighbors — with the guarantees of

constrained optimization, guiding the propagation by a linear program constraining the

partition sizes. By initializing this local algorithm using a geographic partitioning of the

graph, we were ultimately able to achieve very strong performance gains: in a system

distributed across 78 machines, the median number of machines queried per request fell

from 60 to 9, when compared to the previous naive random sharding. The average query

times and average network traffic levels were reduced by 50.5% and 37.1%, respectively.

The work presented in Chapter 5, a separate collaboration not involving Facebook,

shows how light-weight streaming partitioning algorithms making local decisions can

efficiently divide graphs into balanced disjoint partitions while also satisfying balancing

objectives much more sophisticated than node count. The partitioning not only provides

a good graph cut, but it can scalably do so while also balancing node attributes, such as

gender, age, or degree. As an example, we apply the technique to partitioning graphs

such that all the subsets have the same degree distribution. Being a local algorithm that

harnesses local structure, the relative performance of this streaming algorithm was again

strongest for social graph data.

The work presented in Chapter 6 engages directly with the challenges of causal in-

ference on networks described in this introduction, developing a new framework for de-

signing and analyzing large-scale network experiments, in situations where randomized

experiments are feasible. Specifically, the standard goal of experiments is to causally

estimate the “treatment effect” of a node-level intervention by testing it on a random
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sample of the overall population. Inference in these settings becomes much more diffi-

cult when the experimental treatment of individuals spills over to neighboring individ-

uals along an underlying social network. In the absence of the so-called “stable unit

treatment value assumption” (SUTVA), accurate inference requires new modeling as-

sumptions about social network structure and/or social behavior. The framework that

this work proposes for network experimentation relies heavily on graph partitioning. As

a result, we show how the approaches developed in Chapters 4 and 5, and in fact any

previous work on graph partitioning, can be tremendously important to designing low

variance experiments on networks.

The work begins by characterizing graph-theoretic conditions under which individ-

uals can be considered to be “network exposed” to an experiment, operationalizing as-

sumptions about social behavior. Given these assumptions as part of our analysis strat-

egy, the work then focused on designing graph clustering algorithms with favorable

estimator variance properties. For any graph clustering, our strategy of graph cluster

randomization admits an efficient exact dynamic program for computing the probabili-

ties for each node being network exposed under our exposure conditions. These exact

probabilities therefore facilitate an unbiased effect estimator (provided that the expo-

sure model has been properly specified) by using inverse-probability weights. Under

a restricted-growth assumption on the growth rate of graph neighborhoods, we showed

that a simple constructive clustering algorithm based on node neighborhoods provides

an estimator with a variance that can be upper bounded by a linear function of the graph

degrees. We do not provide any variance guarantees for the algorithms given in Chapter

4 and 5, but in practice they may be much more performative. In particular, the ability

of the algorithm in Chapter 5 to balance node attributes through stratification provides

a promising variance reduction strategy. Establishing reasonable assumptions about so-

cial structure and behavior will be key to providing both rigorous experimentation tools
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for social science questions and for many other new computing applications.
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CHAPTER 2

STRUCTURAL DIVERSITY IN SOCIAL CONTAGION

The concept of contagion has steadily expanded from its original grounding in epi-

demic disease to describe a vast array of processes that spread across networks, notably

social phenomena such as fads, political opinions, the adoption of new technologies,

and financial decisions. Traditional models of social contagion have been based on

physical analogies with biological contagion, in which the probability that an individual

is affected by the contagion grows monotonically with the size of his or her “contact

neighborhood” — the number of affected individuals with whom he or she is in con-

tact. Whereas this contact neighborhood hypothesis has formed the underpinning of

essentially all current models, it has been challenging to evaluate it due to the difficulty

in obtaining detailed data on individual network neighborhoods during the course of a

large-scale contagion process. Here we study this question by analyzing the growth of

Facebook, a rare example of a social process with genuinely global adoption. We find

that the probability of contagion is tightly controlled by the number of connected com-

ponents in an individual’s contact neighborhood, rather than by the actual size of the

neighborhood. Surprisingly, once this “structural diversity” is controlled for, the size of

the contact neighborhood is in fact generally a negative predictor of contagion. More

broadly, our analysis shows how data at the size and resolution of the Facebook network

make possible the identification of subtle structural signals that go undetected at smaller

scales yet hold pivotal predictive roles for the outcomes of social processes.

2.1 Introduction

Social networks play host to a wide range of important social and nonsocial contagion

processes [125, 118, 45, 10, 82, 160, 38, 145]. The microfoundations of social contagion

can, however, be significantly more complex, as social decisions can depend much more
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subtly on social network structure [134, 64, 27, 89, 32, 33, 124, 8, 57]. In this study we

show how the details of the network neighborhood structure can play a significant role

in empirically predicting the decisions of individuals.

We perform our analysis on two social contagion processes that take place on the

social networking site Facebook: the process whereby users join the site in response to

an invitation e-mail from an existing Facebook user (henceforth termed “recruitment”)

and the process whereby users eventually become engaged users after joining (hence-

forth termed “engagement”). Although the two processes we study formally pertain to

Facebook, their details differ considerably; the consistency of our results across these

differing processes, as well as across different national populations (see Section 2.5),

suggests that the phenomena we observe are not specific to any one modality or locale.

The social network neighborhoods of individuals commonly consist of several sig-

nificant and well-separated clusters, reflecting distinct social contexts within an individ-

ual’s life or life history [138, 63, 28]. We find that this multiplicity of social contexts,

which we term structural diversity, plays a key role in predicting the decisions of indi-

viduals that underlie the social contagion processes we study.

We develop means of quantifying such structural diversity for network neighbor-

hoods, broadly applicable at many different scales. The recruitment process we study

primarily features small neighborhoods, but the on-site neighborhoods that we study in

the context of engagement can be considerably larger. For small neighborhoods, struc-

tural diversity is succinctly measured by the number of connected components of the

neighborhood. For larger neighborhoods, however, merely counting connected compo-

nents fails to distinguish how substantial the components are in their size and connec-

tivity. To determine whether the structural diversity of on-site neighborhoods is a strong

predictor of on-site engagement, we evaluate several variations of the connected com-

ponent concept that identify and enumerate substantial structural contexts within large
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neighborhood graphs. We find that all of the different structural diversity measures we

consider robustly predict engagement. For both recruitment and engagement, structural

diversity emerges as an important predictor for the study of social contagion processes.

2.2 User recruitment

To study the spread of Facebook as it recruits new members, we require information

not just about Facebook’s users but also about individuals who are not yet users. Thus,

suppose that an individual A is not a user of Facebook; it is still possible to identify a

set of Facebook users that A may know because these users have all imported A’s e-

mail address into Facebook. We define this set of Facebook users possessing A’s e-mail

address to be A’s contact neighborhood in Facebook. This contact neighborhood is the

subset of potential future friendship ties that can be determined from the presence of

A’s e-mail address (Figure 2.1a). Whereas A may in fact know many other people on

Facebook as well, such additional friendship ties remain unknown for individuals who

do not choose to register and so cannot be studied as a predictor of recruitment. The

e-mail contact neighborhoods we study are generally quite small, typically on the order

of five or fewer nodes.

We can now study an individual’s decision to join Facebook as follows. Facebook

provides a tool through which its users can e-mail friends not on Facebook to invite

them to join; such an e-mail invitation contains not only a presentation of Facebook and

a profile of the inviter, but also a list of the other members of the individual’s contact

neighborhood. We analyze a corpus of 54 million such invitation e-mails, and the fun-

damental question we consider is the following: How does an individual’s probability

of accepting an invitation depend on the structure of his or her contact neighborhood?

Traditional hypotheses suggest that this probability should grow monotonically in

the size of the contact neighborhood [45, 134, 64]. What we find instead, however, is
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Figure 2.1: Contact neighborhoods during recruitment. (a) An illustration of a small
friendship neighborhood and a highlighted contact neighborhood consisting of four
nodes and three components. (b–d) The relative conversion rates for two-node, three-
node, and four-node contact neighborhood graphs. Shading indicates differences in
component count. For five-node neighborhoods, see Figure 2.6. Invitation conversion
rates are reported on a relative scale, where 1.0 signifies the conversion rate of one-node
neighborhoods. Error bars represent 95% confidence intervals and implicitly reveal the
relative frequency of the different topologies.

a striking stratification of acceptance probabilities by the number of connected compo-

nents in the contact neighborhood (Figure 2.1b–d and Figure 2.6). When going beyond

component count, one may suspect that edge density has a significant impact on the re-

cruitment conversion rate: Among the single-component neighborhoods of a given size,

there is a considerable structural difference between neighborhoods connected as a tree

and those connected as a clique. However, within the controlled conditional datasets of

one-component neighborhoods of sizes 4–6, we see that edge density has no discernible

effect (Figure 2.2a).

Moreover, we see that once component count is controlled for (Figure 2.2b), neigh-

borhood size is largely a negative indicator of conversion. In effect, it is not the number

of people who have invited you, nor the number of links among them, but instead the

number of connected components they form that captures your probability of accepting

the invitation. Note that this analysis has been performed in aggregate and thus un-

avoidably reflects the decisions of different individuals. The ability to reliably estimate

acceptance probabilities as a function of something as specific as the precise topology
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Figure 2.2: Recruitment contact neighborhoods and component structure. (a) Conver-
sion as a function of edge count neighborhoods with one connected component (1 CC)
with four to six nodes, where variations in edge count predict no meaningful difference
in conversion. (b) Conversion as a function of neighborhood size, separated by CC
count. When component count is controlled for, size is a negative indicator of conver-
sion. (c) Conversion as a function of tie strength in two-node neighborhoods, measured
by photo co-tags, a negative indicator of predicted conversion. Recruitment conversion
rates are reported on a relative scale, where 1.0 signifies the conversion rate of one-node
neighborhoods. Error bars represent 95% confidence intervals.

of the contact neighborhood is possible only because the scale of the dataset provides

us with sufficiently many instances of each possible contact neighborhood topology (up

through size 5).

We view the component count as a measure of “structural diversity,” because each

connected component of an individual’s contact neighborhood hints at a potentially dis-

tinct social context in that individual’s life. Under this view, it is the number of dis-

tinct social contexts represented on Facebook that predicts the probability of joining.

We show that the effect of this structural diversity persists even when other factors are
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controlled for. In particular, the number of connected components in the contact neigh-

borhood remains a predictor of invitation acceptance even when restricted to individuals

whose neighborhoods are demographically homogeneous (in terms of sex, age, and na-

tionality; Figure 2.7), thus controlling for a type of demographic diversity that is poten-

tially distinct from structural diversity. The component count also remains a predictor of

acceptance even when we compare neighborhoods that exhibit precisely the same mix-

ture of “bridging” and “embedded” links (Figure 2.8), the key distinction in sociological

arguments based on information novelty [63, 28].

For contact neighborhoods consisting of two nodes, we observe that the probability

an invitation is accepted is much higher when the two nodes in the neighborhood are not

connected by a link (hence forming two connected components, Figure 2.1b) compared

with when they are connected (forming one component). Is there a way to identify cases

where people are likely to know each other, even if they are not linked on Facebook? The

photo tagging feature on Facebook suggests such a mechanism. Photographs uploaded

to Facebook are commonly annotated by users with ?tags? denoting the people present

in the photographs. We can use these tags to deduce whether two unlinked nodes in

a contact neighborhood have been jointly tagged in any photos, a property we refer to

as ?co-tagging,? which serves as an indication of a social tie through copresence at an

event [43].

Using photo co-tagging, we find strong effects even in cases where the presence of

a friendship tie is only implicit. If a contact neighborhood consists of two unlinked

nodes that have nevertheless been co-tagged in a photo, then the invitation acceptance

probability drops to approximately what it is for a neighborhood of two linked nodes

(Figure 2.2c). In other words, being co-tagged in a photo indicates roughly the same

lack of diversity as being connected by a friendship link. We interpret this result as

further evidence that diverse endorsement is key to predicting recruitment. Meanwhile,
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Figure 2.3: Inviter position during recruitment. Shown is recruitment conversion as
a function of neighborhood graph topology and inviter position in neighborhoods of
size 4. The position of the inviter within the neighborhood graph is described exactly
(up to symmetries) by node degree. Shading indicates differences in component count.
Recruitment conversion rates are reported on a relative scale, where 1.0 signifies the
conversion rate of one-node neighborhoods. Error bars represent 95% confidence inter-
vals.

when the two nodes are friends, co-tags offer a proxy for tie strength, and we see that if

the two nodes have also been co-tagged, then the probability of an accepted invitation

decreases further. From this we can interpret tie strength as an extension of context,

because two strongly tied nodes plausibly constitute an even less diverse endorsement

neighborhood.

Finally, we study the position of the inviter within the neighborhood topologies.

When studying recruitment, one might suspect that the structural position of the inviter

— the person who extended the invitation — might signify differences in tie strength

with the invitee and therefore might significantly affect the predicted conversion rate.

We find that inviter position figures only slightly in the conversion rate (Figure 2.3), with

invitations stemming from a high-degree position in the contact neighborhood predicting

only a slightly higher conversion rate than if the inviter is a peripheral node.
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2.3 User engagement

Participation in a social system such as Facebook is built upon a spectrum of social de-

cisions, beginning with the decision to join (recruitment) and continuing on to decisions

about how to choose a level of engagement. We now show how structural diversity also

plays an analogous role in this latter type of decision process, studying long-term user

engagement in the Facebook service. Whereas recruitment is a function of the com-

plex interplay between multiple acts of endorsement, engagement is a function of the

social utility a user derives from the service. Our study of engagement focuses on users

who registered for Facebook during 2010, analyzing the diversity of their social neigh-

borhoods 1 week after registration as a basis for predicting whether they will become

highly engaged users 3 months later. Users are considered engaged at a given time point

if they have interacted with the service during at least 6 of the last 7 days. Facebook had

845 million monthly active users on December 31, 2011, and during the month of De-

cember 2011, an average of 360 million users were active on at least 6 out of the last 7

days. We define engagement on a weekly timescale to stabilize the considerable weekly

variability of user visits. Our goal is therefore to predict whether a newly registered user

will visit Facebook at least 6 of 7 days per week 3 months after registration.

Friendship neighborhoods on Facebook are significantly larger than the e-mail con-

tact neighborhoods from our recruitment study. We focus our engagement study on a

population of ∼10 million users who registered during 2010 and had assembled neigh-

borhoods consisting of exactly 10, 20, 30, 40, or 50 friends 1 week after registration.

For social network neighborhoods of this size, we find that a neighborhood containing a

large number of connected components primarily indicates a large number of one-node

components, or “singletons”, and as such, it is not an accurate reflection of social context

diversity.

To address this, we evaluate three distinct parametric generalizations of component

22



count. First, we measure diversity simply by considering only components over a certain

size k. Second, we measure diversity by the component count of the k-core of the

neighborhood graph [22], the subgraph formed by repeatedly deleting all vertices of

degree less than Graphic. Third, we define a measure that isolates dense social contexts

by removing edges according to their embeddedness, the number of common neighbors

shared by their two endpoints; intuitively this is an analog, for edges, of the type of node

removal that defines the k-core. Adapting earlier work on embeddedness by Cohen [40],

we define the k-brace of a graph to be the subgraph formed by repeatedly deleting all

edges of embeddedness less than Graphic and then deleting all single-node connected

components. (Cohen’s work was concerned with a definition equivalent to the largest

connected component of the k-brace; because we deal with the full subgraph of all

nontrivial components, it is useful to adapt the definitions as needed.) Examples of these

three measures applied to a neighborhood graph are shown in Figure 2.4a and 2.4b,

illustrating the connected components of size 3 or greater, the connected components

of the 2-core, and the connected components of the 1-brace. We see that the three

parametric measures we evaluate differ measurably in how they isolate “substantial”

social contexts.

The k-core component count for Graphic is simply the component count of the orig-

inal graph, the same as we analyzed when examining recruitment. For k = 1, the k-core

component count is the count of nonsingleton components, whereas for k = 2, all

tree-like components are discarded and the remaining components are counted. When

considering the k-brace, observe that for all graphs the k-brace is a subgraph of the

(k + 1)-core: indeed, because each node in the k-brace is incident to at least one edge,

and each edge in the k-brace has embeddedness at least k + 1, all nodes in the k-brace

must have degree at least k + 1. It is therefore reasonable to compare the 1-brace to

the 2-core. Both of these restrictions discard tree-like components, but the 1-brace will
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tend to break up components further than the 2-core does — the operation defining the

1-brace continues to cleave components in cases where sets of nodes forming triangles

are linked together by unembedded edges or where a component contains cycles but no

triangles. The notion of the k-core has been applied both to the study of critical phe-

nomena in random graphs [104, 75] and to models of the Internet [7, 29], but to our

knowledge the k-brace has not been studied extensively (see Section 2.6 for some basic

results on the k-brace and [40] for analysis of a related definition).

When studying the structural diversity of 1-week Facebook friendship neighbor-

hoods as a predictor of long-term engagement, simply counting connected components

leads to a muddled view of predicted engagement (Figure 2.4c). However, extending the

notion of diversity according to any of the definitions above suffices to provide positive

predictors of future long-term engagement. Specifically, when considering the compo-

nents of the 1-brace, which removes small components and severs unembedded edges,

we see that diversity (captured by the presence of multiple components) emerges as a

significant positive predictor of future long-term engagement (Figure 2.4f). We also

see that the closely related 2-core component count is a clean predictor (Figure 2.4e).

Finally, if we consider simply the number of components of size k or larger in the orig-

inal neighborhood (without applying the core or brace definitions), we see that small

values of k are not enough (Figure 2.4d); but even here, when k is increased to make

the selection over components sufficiently astringent (in particular, when we count only

components of size 8 or larger), a clean indicator of engagement again emerges.

When considering the k-brace, it is sufficient to consider the component count of

the 1-brace for our purposes, but larger values of k may be useful for analyzing larger

neighborhoods in other domains. We note that the presence of several components in

the k-core and the k-brace is fundamentally limited by the size of the core/brace, and we

perform a control of this potentially confounding factor (Figure 2.10). The conventional
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Figure 2.4: Engagement and structural diversity for 50-node friendship neighborhoods.
(a) Illustration of the connected components in a friendship neighborhood, delineating
connected components and components of size ≥ 3. (b) Illustration of the k-core and
the k-brace, delineating the connected components of the 2-core and the 1-brace. (c)
Engagement as a function of connected component count. (d) Engagement as a function
of the number of components of size ≥ k, for k = 2, 3, 4, 8, with connected component
(CC) count shown for comparison. (e) Engagement as a function of k-core component
count for k = 1, 2, 3, with CC count shown for comparison. (f) Engagement as a func-
tion of k-brace component count for k = 1, 2, with CC count shown for comparison.
Engagement rates are reported on a relative scale, where 1.0 signifies the average con-
version rate of all 50-node neighborhoods. All error bars are 95% confidence intervals.
For other neighborhood sizes, see Figure 2.9.

wisdom for social systems such as Facebook is that their utility depends crucially upon

the presence of a strong social context. Our findings validate this view, observing that
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Figure 2.5: Engagement as a function of edge density. For five different neighborhood
sizes, n = 10, 20, 30, 40, 50, we see that when component count is not accounted for,
an internal engagement optimum is observed, showing the combined forces of focused
context and structural heterogeneity. Engagement rates are reported on a relative scale,
where 1.0 signifies the average conversion rate of all 50-node neighborhoods. All error
bars are 95% confidence intervals.

the predicted engagement for users who lack any strong context (e.g., those who have

zero components in their neighborhood 1-brace) is much lower than for those with such a

context. Our analysis importantly extends this view, finding that the presence of multiple

contexts introduces a sizable additional increase in predicted engagement.

A cruder approach to diversity might consider measuring diversity through the edge

density of a neighborhood, figuring that sparse neighborhoods would be more varied in

context. In Figure 2.5 we see how this approach results in a complicated view where the

optimal edge density for predicting engagement lies at an internal and size-dependent

optimum. Given what our component analysis reveals, we interpret this observation as

a superposition of two effects: Too few edges imply a lack of context [10] but too many

edges imply a lacking diversity of contexts, with a nontrivial interior clearly dominating

the boundary conditions. From Figure 2.5 it also becomes clear that internal neighbor-

hood structure is at least as important as size, with a 20-node neighborhood featuring

a well-balanced density predicting higher conversion than a sparse or dense 50-node

neighborhood.
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2.4 Discussion

Detailed traces of Facebook adoption provide natural sources of data for studying social

contagion processes. Our analysis provides a high-resolution view of a massive social

contagion process as it unfolded over time and suggests a rethinking of the underlying

mechanics by which such processes operate. Rather than treating a person’s number

of neighbors as the crucial parameter, consider instead the number of distinct social

contexts that these neighbors represent as the driving mechanism of social contagion.

The role of neighborhood diversity in contagion processes suggests interesting fur-

ther directions to pursue, both for mathematical modeling and for potential broader

applications. Mathematical models in areas including interacting particle systems

[101, 46] and threshold contagion [45, 114] have explored some of the global phenom-

ena that arise from contagion processes in networks for which the behavior at a given

node has a nontrivial dependence on the full set of behaviors at neighboring nodes.

Neighborhood diversity could be naturally incorporated into such models by basing the

underlying contagion probability, for example, on the number of connected components

formed by a node’s affected neighbors. It then becomes a basic question to understand

how the global properties of these processes change when such factors are incorporated.

More broadly, across a range of further domains, these findings suggest an alternate

perspective for recruitment to political causes, the promotion of health practices, and

marketing; to convince individuals to change their behavior, it may be less important

that they receive many endorsements than that they receive the message from multiple

directions. In this way, our findings propose a potential revision of core theories for the

roles that networks play across social and economic domains.
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2.5 Data collection

2.5.1 Recruitment data collection

Here we discuss details of the e-mail recruitment data. All user data were analyzed

in an anonymous, aggregated form. The contact neighborhood individuals included in

invitation e-mails are limited to nine in number, and so we have restricted our analysis

to neighborhoods (inviter plus contact importers) of 10 nodes or less. In cases with

more than nine candidate “other people you may know,” the invitation tool selects a

randomized subset of nine for inclusion in the e-mail.

We conditioned our data collection upon several criteria. First, we considered only

first invitations to join the site. Subsequent invitations to an e-mail address are handled

differently by the invitation tool, and so we have not included them in our study. Second,

we considered only invitations where the inviter invited at most 20 e-mail addresses on

the date of the invitation. This conditioning is meant to omit invitation batches where the

inviter opted to ?select all? within the contact import tool and focuses our investigation

on socially selective invitations.

Invitations were sent during an 11-week period spanning July 12, 2010 to September

26, 2010. An e-mail address was considered to have converted to a registered user

account if the address was registered for an account within 14 days of the invitation,

counting both individuals who signed up via links provided in the invitation e-mail and

users who signed up by visiting the Facebook website directly within 14 days. Only

contact import events that occurred before the invitation event are considered. Likewise,

only friendship edges that existed before the invitation event are considered to be part

of the neighborhood.

Many of the findings we investigate are governed by complex nonlinear effects,

which make traditional regression controls generally inadequate. In an attempt to control
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for confounding signals in our data, several parallel observation groups were maintained,

against which all findings were validated. As a means of capturing potential artifacts

from duplicitous private/business e-mail address use, a first such validation group was

constructed by conditioning upon e-mail invitations sent to a small set of common and

commonly private e-mail providers: Hotmail, Yahoo!, Gmail, AOL, and Yahoo! France.

As a means of observing any differences between already established and growing Face-

book markets, two parallel validation groups were constructed to observe established

markets (United States) and emerging Facebook markets (Brazil, Germany, Japan, and

Russia), classified by the most recently resolved country of login for the inviting Face-

book account. Whereas invitation conversion rates were generally higher in emerging

markets, none of the conditional datasets were observed to deviate from the complete

dataset with regard to internal structural findings.

Highly sparse neighborhoods were a very common occurrence in these data, ow-

ing to the fact that the neighborhoods we study here are only partial observations of

an individual’s actual connection to Facebook. We are able to infer links only to those

site users who have used the contact importer tool and maintain active e-mail commu-

nication with the e-mail address in question, criteria that induce a sampled subgraph

that we then observe. The probability of sampling an edge uniformly at random in any

neighborhood with low edge density is therefore quite low, and the probability that all

sampled nodes come from the same cluster within a clustered neighborhood is lower

still. From the perspective of communication multiplexity [70], we should in fact expect

that our randomly induced subgraph sample is biased toward strongly connected ties

that tend to communicate on multiple mediums, but this expectation is not at issue with

our results. The real matter of the fact is that contact neighborhoods where the induced

subgraph consists of a single connected component are likely to come from very tightly

connected neighborhood graphs.
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Although the contact importer tool and invitation tool are prominently featured as

part of the new user experience on Facebook, they are also heavily used by experienced

users of the site: The median site age of an inviter in our dataset was 262 days. Although

e-mail invitations constitute only a small portion of Facebook’s growth, they provide a

valuable window into the otherwise invisible growth process of the Facebook product.

For the analysis of photo co-tags, only co-tags since January 1, 2010 were consid-

ered.

2.5.2 Engagement data collection

We consider users engaged at a given time point if they have interacted with the appli-

cation during at least 6 of the last 7 days. As with any measure of user behavior, this

metric is a heuristic merely meant to approximate a broader notion of involvement on

the site. Highly engaged users who do not access the Internet on weekends will never

qualify as “six-plus engaged,” whereas users who simply log in on a daily basis to check

their messages will qualify. Our analysis is restricted to the population level, so such

confounders are not a problem.

Due to the technical nature of how engagement data are stored at Facebook, it is

impractical to retrieve six-plus engagement measures for dates exactly 3 months after

registration. As an appropriate surrogate, we consider the six-plus engagement of users

on the first day of their third calendar month as users.

2.6 The k-brace

In this section we present formal results regarding the notion of a k-brace defined in this

work. Recall from the main text that the k-brace is constructed by repeatedly deleting

edges of embeddedness less than k until there are no such edges remaining, followed by
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a single pass in which all isolated nodes are deleted. The first thing we prove is that this

procedure leads to a well-defined outcome. Indeed, some iterative update procedures of

this general flavor can potentially produce different end results depending on the order

in which the updates are performed; what we wish to show is that the final subgraph

produced by the k-brace procedure does not in fact depend on the order in which the

edge deletions are performed. To do this, we provide a succinct graph-theoretic char-

acterization of this final subgraph, and then show that all ways of scheduling the edge

deletions lead to this subgraph. Finally, we give an efficient algorithm, adapted from the

work of Cohen [40], for computing the k-brace.

To characterize the end result of the edge deletion process, we begin with the follow-

ing definition. Given a graph G = (V,E), a subgraph H of G is a pair (W,F ), where

W ⊆ V and F ⊆ E, and each edge in F has both endpoints in W . We now define the

following collection of subgraphs Bk(G): we say that a subgraph H of G belongs to

Bk(G) if (i) each edge of H belongs to at least k distinct triangles in H , and (ii) each

node of H has at least one incident edge in H . We observe that Bk(G) is a non-empty

set, since the subgraph consisting of no nodes and no edges satisfies conditions (i) and

(ii), and hence belongs to Bk(G).

To motivate the definition of property Bk(G), note that the outcome of the procedure

defining the k-brace of G produces a subgraph in Bk(G). We would like to show more,

namely that the k-brace is in fact the unique maximal element of Bk(G) under a certain

natural partial order. In particular, for two subgraphs of G, denoted H1 = (W1, F1) and

H2 = (W2, F2), we say that H1 � H2 if W1 ⊆ W2 and F1 ⊆ F2. We now claim the

following proposition.

Proposition 1. In the set Bk(G), partially ordered by �, there is a unique maximal

element.

Proof. Let us define the following union operation on subgraphs: if H1 =
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(W1, F1), H2 = (W2, F2), . . . , Hs = (Ws, Fs) are subgraphs of G, then we define their

union ∪si=1Hi to be the subgraph (∪si=1Wi,∪si=1Fi) .

The key fact underlying the proof is that if H1 = (W1, F1), H2 =

(W2, F2), . . . , Hs = (Ws, Fs) are subgraphs in Bk(G), then ∪si=1Hi also belongs to

Bk(G). To see why, we simply observe that (i) every edge in ∪si=1Hi belongs to at least

one of the Hi, and hence is part of at least k triangles; and (ii) every node in ∪si=1Hi

belongs to at least one of the Hi, and hence is incident to at least one edge.

Given this, if we enumerate all the subgraphs H1, H2, . . . , Ht in Bk(G), then their

union ∪ti=1Hi is also an element of Bk(G). It is the unique maximal element of Bk(G),

since for any subgraph H in Bk(G), the subgraph H is one of the elements in the union

∪ti=1Hi, and hence H � ∪ti=1Hi.

Let βk(G) denote the unique maximal element of Bk(G). We now claim the follow-

ing.

Proposition 2. Any execution of the procedure defining the k-brace, regardless of the

order of edge deletions, results in the subgraph βk(G).

Proof. Consider an execution of the edge deletion procedure, removing edges in the

order e1, e2, . . . , es. Let Gj = (V,E−{e1, e2, . . . , ej−1}) be the subgraph of G after the

first j − 1 edge deletions, at the moment just before ej was deleted.

We claim that none of the deleted edges e1, e2, . . . , es belong to any subgraph in

Bk(G). Indeed, suppose by way of contradiction that this were not the case, and consider

the first edge ej that does belong to a subgraph H = (W,F ) in Bk(G). In H = (W,F ),

the edge ej belongs to a set of k distinct triangles; let T ⊆ F be the set of 2k edges other

than ej that constitute these triangles. None of the edges e1, e2, . . . , ej−1 can belong

to T , since by assumption ej is the first edge in the sequence of deletions to belong to

any subgraph in Bk(G). But this means that all the edges of T were still present in the

underlying graph Gj at the moment that ej was considered for deletion, and since ej
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therefore belonged to at least k distinct triangles in Gj , it should not have been deleted

— a contradiction.

Similarly, we claim that none of the isolated nodes deleted at the end of the procedure

belong to any subgraph in Bk(G). Again, suppose by way of contradiction that one of

the deleted nodes v belonged to a subgraph H = (W,F ) in Bk(G). In H , node v is

incident to some edge e. But e was not present when v was deleted, and hence e itself

must have been deleted earlier in the procedure; hence, e ∈ {e1, e2, . . . , es}. But we

have just shown that none of the edges in {e1, e2, . . . , es} belong to any subgraph in

Bk(G), whereas e belongs to H , a contradiction.

Finally, consider any execution of the edge deletion procedure, and let H∗ denote

the subgraph that results from it. H∗ belongs to Bk(G), since at the termination of the

procedure all edges in H∗ have embeddedness at least k and there are no isolated nodes,

and hence by Proposition 1, H∗ � βk(G). On the other hand, we have just established

that any node or edge that belongs to any subgraph in Bk(G) also belongs to H∗, and

hence βk(G) � H∗. It follows that H∗ = βk(G), as desired.

Finally, we describe the following efficient implementation of the edge deletion pro-

cedure for computing the k-brace, adapted from Cohen [40].

Algorithm 1 (Extracting the k-brace). Given a graphG and a parameter k, use a queue

q to efficiently traverse the graph and iteratively remove all edges with embeddedness

< k.

for e ∈ G.edges() do
Em(e)← size(G.neighbors(e[0]) ∩ G.neighbors(e[1]));
if Em(e) < k then

q.append(e);
G.removeEdge(e);

end if
end for
while size(q) != 0 do
e← q.pop();
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I ← G.neighbors(e[0]) ∩ G.neighbors(e[1])
for v ∈ I do
e′← (e[0],v);
Em(e′)← Em(e′) - 1;
if Em(e′) < k then

q.append(e′);
G.removeEdge(e′);

end if
e′′← (e[1],v);
Em(e′′)← Em(e′′) - 1;
if Em(e′′) < k then

q.append(e′′);
G.removeEdge(e′′);

end if
end for

end while
for v in G.nodes() do

if degree(v) == 0 then
G.removeNode(v);

end if
end for

For a graph with n nodes and m edges, a straight-forward analysis shows that the

runtime for this algorithm is at most O(
∑

v∈V degree2(v)) = O(m2), which is rather

expensive, but fortunately our focus on neighborhood graphs implies that all the graphs

we consider are very modest in size.

As mentioned in the text, the k-brace is always a subgraph of the (k+1)-core. Since

finding the (k + 1)-core takes merely O(n + m), in practice it is more efficient to first

compute the (k + 1)-core of a graph G, and then find the k-brace of the (k + 1)-core

rather than the full graph G; the analogue of this optimization is also present in Cohen’s

work [40].
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Figure 2.6: Invitation conversion rates of size five neighborhoods, grouped by their
number of connected components and their degree distribution, which equates to 31
equivalence classes (for graphs of size four or smaller, degree distribution is a unique
determinant of isomorphism, but this is not true for graphs of size five or larger). For
example, the label “1:[4,4,4,4,4]” indicates the clique, 1 component where all the nodes
have degree 4. The label “2:[1,1,2,2,2]” indicates a graph of two components (a triangle
and a pair), while the label “1:[1,1,2,2,2]” indicates the one component line graph. The
five-cycle topology “1:[2,2,2,2,2]” was exceedingly rare, and no conversions for this
topology were observed. The conversion scale is the same as for the recruitment figures
in the main text. Error bars are 95% confidence intervals.

2.7 Additional analyses of recruitment

2.7.1 Five node neighborhood topologies

As an extension of Figure 2.1b-d, we present the recruitment rates for invitation neigh-

borhoods consisting of five nodes, see Figure 2.6. We note that when studying neigh-

borhoods with more than five nodes, the recorded data is spread thinly across an over-

whelming number of possible graph topologies, and considering every topology is no

longer possible.

2.7.2 Structural vs. demographic diversity

As a potential confounder for our findings, we consider the fact that neighborhoods with

many components are comparatively likely to also exhibit increased demographic diver-

sity, which may figure into conversion in a manner outside our structural analysis. To
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Figure 2.7: Recruitment conversion for demographically homogeneous neighborhoods,
as a function of (a) 2-node, (b) 3-node, and (c) 4-node contact neighborhood graphs.
The conversion scale is the same as for the recruitment figures in the main text. Error
bars represent 95% confidence intervals.

control for this, to the extent that it is possible, we condition our data on neighborhoods

that are demographically homogenous with respect to self-reported gender, geography,

and age, meaning that all the site users within the neighborhood are of the same gen-

der, from the same country, and all contained within a 5-year range of age. We note

that for neighborhoods larger than two in size, this homogeneity requirement entails

an aggressive restriction on the amount of admissible data, to the point that for neigh-

borhoods composed of a 4-node cycle, we observe no converted registrations. We find

that the significance of our structural measure of neighborhood diversity persists in this

demographically controlled dataset; see Figure 2.7.

2.7.3 Embeddedness and weak ties

Here we study the role of Granovetter’s structural measure of weak and strong ties,

termed embeddedness. For an individual i ∈ V on a social graph G = (V,E), let

their neighborhood graph Ni be the subgraph of G induced by their neighboring nodes

Vi = {j ∈ V : eij ∈ E}. Weak ties, in a structural sense, are ties with low embedded-

ness in the social graph, where the embeddedness of edge eij is the number of common
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neighbors of the two node endpoints, Em(eij) = |Ni∩Nj|. As an equivalent definition,

the embeddedness of edge eij is also equal to the degree of node vj within the neighbor-

hood of node vi, Em(eij) = degNi
(j). Through this, we observe that the embeddedness

distribution of a neighborhood, Em(Ni) = {Em(eij) : j ∈ Ni}, is the same as the

degree distribution of the neighborhood.

Granovetter’s work on ‘the strength of weak ties’ found that unembedded edges

— those with embeddedness zero, termed local bridges — play an important role in

the spread of awareness for new opportunities, specifically in the labor market [63].

Applying this principle of information novelty to our recruitment domain suggests that

invitations arriving along edges with low embeddedness may be more likely to result in

successful recruitment. As a consequence, if i is a node who accepts an invitation, one

might expect that at least some neighbors j of i will tend to be connected via edges eij

of low embeddedness. In other words, the embeddedness distributionEm(Ni) will have

small values: viewed as a multiset, it will contain small numbers as elements.

This leads to a potential confounding effect in our analysis of connected components,

in the following way. As noted above, the embeddedness distribution of the neighbor-

hood Ni is the same as its degree distribution; hence, small values in this distribution

are consistent with a sparse structure for Ni, and hence with the potential for Ni to have

many components. What if the relationship between the number of components and

the probability of recruitment is in fact a consequence of the relationship between small

numbers in the embeddedness distribution and the probability of recruitment?

Fortunately, we can separate these effects quite cleanly, as follows. There exist

pairs of graphs on five and six nodes with precisely the same degree distribution, but

with different numbers of connected components (Figure 2.8a). If we look for invitees i

whose contact neighborhoods come from these pairs, we will have neighborhoods whose

degree distributions — and hence whose embeddedness distributions — are identical,
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Figure 2.8: Recruitment conversion rates for the nine most frequent pairs of graphs with
matched embeddedness distributions. (a) Illustrations of the three most frequent neigh-
borhood graphs pairs with identical embeddedness distributions but differing component
counts. The invited node is shown in gray, and the embeddedness distribution refers to
the embeddedness of the gray edges. The other six frequent graph topology pairs all
contain one of these pairs, up to the addition of a node singleton. (b) The importance of
diversity when controlling for embeddedness, examining the nine most common neigh-
borhood graph pairs with identical embeddedness distributions but differing component
counts. Each data point is labelled by its degree distribution and its connected compo-
nent count, as in Figure 2.6. The conversion scale is the same as for the recruitment
figures in the main text. Error bars are 95% confidence intervals.

but which have different numbers of connected components. Any argument based on

embeddedness values has no way to distinguish among these pairs of graphs, and hence

would necessarily predict equivalent rates of recruitment.

Analyzing recruitment rates on precisely these 5-node and 6-node topologies pushes

the resolution limits of what is possible even with huge amounts of data, but even so

we see that for every such pair of graphs in which the embeddedness distributions are

identical but the compoment counts differ, the neighborhood with more components has

a higher rate of recruitment (Figure 2.8b). Thus diversity, as measured by component

count, appears to play an important role in recruitment conversion in a manner decidedly

outside traditional theories of information diffusion.
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2.8 Additional analyses of engagement

2.8.1 Predicted engagement for other neighborhood sizes

Here we present results that extend Figure 2.4d-f from the main text, see Figure 2.9.

Similar to our comments in the main text, notice that when comparing neighborhoods of

different sizes, we can see that having a 30-node neighborhood with two components in

the 1-brace predicts as much engagement as having a 50-node neighborhood with only

one components in the 1-brace.

2.8.2 Controlling for k-brace size

Figure 2.10 presents a control of the potential confounding factor that k-braces with

multiple components are may have a tendency to be larger. Here we control for the

size of the 1-brace to show that predicted engagement is still an increasing function of

component count when controlling for size.
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Figure 2.9: Engagement as a function of diversity in a neighborhood, conditioned on
size. For each size n = 10, 20, 30, 40, 50, plots are shown that correspond to Fig-
ure 2.4(d-f), showing the relative engagement rate as a function of component counts.
The right three plots correspond exactly to the plots in Figure 2.4(d-f). All engagement
rates are reported on a single relative scale, where 1.0 signifies the average conversion
rate across all 50-node neighborhoods. Error bars are 95% confidence intervals.
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Figure 2.10: Controlling for the size of the k-brace. We focus on neighborhoods of size
50 with exactly 35 and 45 nodes in their 1-brace, and again see that engagement is an
increasing function of 1-brace component count. All engagement rates are reported on
a single relative scale, where 1.0 signifies the average conversion rate across all 50-node
neighborhoods. Error bars are 95% confidence intervals.
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CHAPTER 3

SUBGRAPH FREQUENCIES: MAPPING THE EMPIRICAL AND

EXTREMAL GEOGRAPHY OF LARGE GRAPH COLLECTIONS

A growing set of on-line applications are generating data that can be viewed as very

large collections of small, dense social graphs — these range from sets of social groups,

events, or collaboration projects to the vast collection of graph neighborhoods in large

social networks. A natural question is how to usefully define a domain-independent

‘coordinate system’ for such a collection of graphs, so that the set of possible structures

can be compactly represented and understood within a common space. In this work,

we draw on the theory of graph homomorphisms to formulate and analyze such a repre-

sentation, based on computing the frequencies of small induced subgraphs within each

graph. We find that the space of subgraph frequencies is governed both by its combi-

natorial properties — based on extremal results that constrain all graphs — as well as

by its empirical properties — manifested in the way that real social graphs appear to lie

near a simple one-dimensional curve through this space.

We develop flexible frameworks for studying each of these aspects. For capturing

empirical properties, we characterize a simple stochastic generative model, a single-

parameter extension of Erdős-Rényi random graphs, whose stationary distribution over

subgraphs closely tracks the one-dimensional concentration of the real social graph fam-

ilies. For the extremal properties, we develop a tractable linear program for bounding

the feasible space of subgraph frequencies by harnessing a toolkit of known extremal

graph theory. Together, these two complementary frameworks shed light on a funda-

mental question pertaining to social graphs: what properties of social graphs are ‘social’

properties and what properties are ‘graph’ properties?

We conclude with a brief demonstration of how the coordinate system we exam-

ine can also be used to perform classification tasks, distinguishing between structures
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arising from different types of social graphs.

3.1 Introduction

The standard approach to modeling a large on-line social network is to treat it as a

single graph with an enormous number of nodes and a sparse pattern of connections.

Increasingly, however, many of the key problems encountered in managing an on-line

social network involve working with large collections of small, dense graphs contained

within the network.

On Facebook, for example, the set of people belonging to a group or attending an

event determines such a graph, and considering the set of all groups or all events leads to

a very large number of such graphs. On any social network, the network neighborhood

of each individual — consisting of his or her friends and the links among them —

is also generally a small dense graph with a rich structure, on a few hundred nodes

or fewer [151]. If we consider the neighborhood of each user as defining a distinct

graph, we again obtain an enormous collection of graphs. Indeed, this view of a large

underlying social network in terms of its overlapping node neighborhoods suggests a

potentially valuable perspective on the analysis of the network: rather than thinking

of Facebook, for example, as a single billion-node network, with a global structure

that quickly becomes incomprehensible, we argue that it can be useful to think of it as

the superposition of a billion small dense graphs — the network neighborhoods, one

centered at each user, and each accessible to a closer and more tractable investigation.

Nor is this view limited to a site such as Facebook; one can find collections of small

dense graphs in the interactions within a set of discussion forums [54], within a set of

collaborative on-line projects [157], and in a range of other settings.

Our focus in the present work is on a fundamental global question about these types

of graph collections: given a large set of small dense graphs, can we study this set by
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defining a meaningful ‘coordinate system’ on it, so that the graphs it contains can be

represented and understood within a common space? With such a coordinate system

providing a general-purpose framework for analysis, additional questions become pos-

sible. For example, when considering collections of a billion or more social graphs, it

may seem as though almost any graph is possible; is that the case, or are there under-

lying properties guiding the observed structures? And how do these properties relate

to more fundamental combinatorial constraints deriving from the extremal limits that

govern all graphs? As a further example, we can ask how different graph collections

compare to one another; do network neighborhoods differ in some systematic way, for

instance, from social graphs induced by other contexts, such as the graphs implicit in

social groups, organized events, or other arrangements?

The Present Work In this chapter we develop and analyze such a representation,

drawing on the theory of graph homomorphisms. Roughly speaking, the coordinate

system we examine begins by describing a graph by the frequencies with which all pos-

sible small subgraphs occur within it. More precisely, we choose a small number k (e.g.

k = 3 or 4); then, for each graph G in a collection, we create a vector with a coordinate

for each distinct k-node subgraph H , specifying the fraction of k-tuples of nodes in G

that induce a copy of H (in other words, the frequency of H as an induced subgraph of

G). For k = 3, this description corresponds to what is sometimes referred to as the triad

census [44, 50, 51, 158]. The literature on frequent subgraph mining [74, 91, 161], and

motif counting [109] is also is closely related, but focuses on connected subgraphs.

With each graph in the collection mapped to such a vector, we can ask how the full

collection of graphs fills out this space of subgraph frequencies. This turns out to be

a subtle issue, because the arrangement of the graphs in this space is governed by two

distinct sets of effects: extremal combinatorial constraints showing that certain com-

binations of subgraph frequencies are genuinely impossible; and empirical properties,
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which reveal that the bulk of the graphs tend to lie close to a simple one-dimensional

curve through the space. We formulate results on both these types of properties, in the

former case building on an expanding body of combinatorial theory [25, 103] for bound-

ing the frequencies at which different types of subgraphs can occur in a larger ambient

graph.

The fact that the space of subgraph frequencies is constrained in these multiple ways

also allows us to concretely address the following type of question: When we see that

human social networks do not exhibit a certain type of structure, is that because such a

structure is mathematically impossible, or simply because human beings do not create

it when they form social connections? In other words, what is a property of graphs and

what is a property of people? Although this question is implicit in many studies of social

networks, it is hard to separate the two effects without a formal framework such as we

have here.

Indeed, our framework offers a direct contribution to one of the most well-known

observations about social graphs: the tendency of social relationships to close triangles,

and the relative infrequency of what is sometimes called the ‘forbidden triad’: three

people with two social relationships between them, but one absent relationship [128].

There are many sociological theories for why one would expect this subgraph to be

underrepresented in empirical social networks [63]. Our framework shows that the fre-

quency of this ‘forbidden triad’ has a non-trivial upper bound in not just social graphs,

but in all graphs. Harnessing our framework more generally, we are in fact able to show

that any k node subgraph that is not a complete or empty subgraph has a frequency that

is bounded away from one. Thus, there is an extent to which almost all subgraphs are

mathematically ‘forbidden’ from occurring beyond a certain frequency.

We aim to separate these mathematical limits of graphs from the complementary

empirical properties of real social graphs. The fact that real graph collections have a
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roughly one-dimensional structure in our coordinate system leads directly to our first

main question: is it possible to succinctly characterize the underlying backbone for this

one-dimensional structure, and can we use such a characterization to usefully describe

graphs within our coordinate system in terms of their deviation from this backbone?

The subgraph frequencies of the standard Erdős-Rényi random graph [22] Gn,p pro-

duce a one-dimensional curve (parametrized by p) that weakly approximates the layout

of the real graphs in the space, but the curve arising from this random graph model

systematically deviates from the real graphs in that the random graph contains fewer

triangles and more triangle-free subgraphs. This observation is consistent with the so-

ciological principle of triadic closure — that triangles tend to form in social networks.

As a means of closing this deviation from Gn,p, we develop a tractable stochastic model

of graph generation with a single additional parameter, determining the relative rates of

arbitrary edge formation and triangle-closing edge formation. The model exhibits rich

behaviors, and for appropriately chosen settings of its single parameter, it produces re-

markably close agreement with the subgraph frequencies observed in real data for the

suite of all possible 3-node and 4-node subgraphs.

Finally, we use this representation to study how different collections of graphs may

differ from one another. This arises as a question of basic interest in the analysis of

large social media platforms, where users continuously manage multiple audiences [13]

— ranging from their set of friends, to the members of a groups they’ve joined, to the

attendees of events and beyond. Do these audiences differ from each other at a structural

level, and if so what are the distinguishing characteristics? Using Facebook data, we

identify structural differences between the graphs induced on network neighborhoods,

groups, and events. The underlying basis for these differences suggests corresponding

distinctions in each user’s reaction to these different audiences with whom they interact.
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3.2 Data description

Throughout our presentation, we analyze several collections of graphs collected from

Facebook’s social network. The collections we study are all induced graphs from the

Facebook friendship graph, which records friendship connections as undirected edges

between users, and thus all our induced graphs are also undirected. The framework

we characterize in this work would naturally extend to provide insights about directed

graphs, an extension we do not discuss. We do not include edges formed by Facebook

‘subscriptions’ in our study, nor do we include Facebook ‘pages’ or connections from

users to such pages. All Facebook social graph data was analyzed in an anonymous,

aggregated form.

For this work, we extracted three different collections of graphs, around which we

organize our discussion:

• Neighborhoods: Graphs induced by the friends of a single Facebook user ego and the

friendship connections among these individuals (excluding the ego).

• Groups: Graphs induced by the members of a ‘Facebook group’, a Facebook feature

for organizing focused conversations between a small or moderate-sized set of users.

• Events: Graphs induced by the confirmed attendees of ‘Facebook events’, a Facebook

feature for coordinating invitations to calendar events. Users can response ‘Yes’, ‘No’,

and ‘Maybe’ to such invitations, and we consider only users who respond ‘Yes’.

The neighborhood and groups collections were assembled in October 2012 based

on monthly active user egos and current groups, while the events data was collected

from all events during 2010 and 2011. For event graphs, only friendship edges formed

prior to the date of the event were used. Subgraph frequencies for four-node subgraphs

were computed by sampling 11,000 induced subgraphs uniformly with replacement,

providing sufficiently precise frequencies without enumeration. The graph collections
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Figure 3.1: Subgraph frequencies for three node subgraphs for graphs of size 50, 100,
and 200 (left to right). The neighborhoods are orange, groups are green, and events are
lavender. The black curves illustrate Gn,p as a function of p.

were targeted at a variety of different graph sizes, as will be discussed in the text.

3.3 Subgraph space

In this section, we study the space of subgraph frequencies that form the basis of our co-

ordinate system, and the one-dimensional concentration of empirical graphs within this

coordinate system. We derive a model capable of accurately identifying the backbone

of this empirical concentration using only the basic principle of triadic closure, showing

how the subgraph frequencies of empirical social graphs are seemingly restricted to the

vicinity of a simple one-dimensional structure.

Formally, the subgraph frequency of a k-node graph F in an n-node graph G (where

k ≤ n) is the probability that a random k-node subset of G induces a copy of F . It is

clear that for any integer k, the subgraph frequencies of all the k-node graphs sum to

one, constraining the vector of frequencies to an appropriately dimensioned simplex. In

the case of k = 3, this vector is simply the relative frequency of induced three-node

subgraphs restricted to the 4-simplex; there are just four such subgraphs, with zero, one,

two, and three edges respectively. When considering the frequency of larger subgraphs,

the dimension of the simplex grows very quickly, and already for k = 4, the space of
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four-node subgraph frequencies lives in an 11-simplex.

Empirical distribution In Figure 3.1, the three-node subgraph frequencies of 50-

node, 100-node, and 200-node graph collections are shown, with each subplot showing

a balanced mixture of 17,000 neighborhood, group and event graphs – the three col-

lections discussed in Section 3.2, totaling 51,000 graphs at each size. Because these

frequency vectors are constrained to the 4-simplex, their distribution can be visualized

in R3 with three of the frequencies as axes.

Notice that these graph collections, induced from disparate contexts, all occupy a

sharply concentrated subregion of the unit simplex. The points in the space have been

represented simply as an unordered scatterplot, and two striking phenomena already

stand out: first, the particular concentrated structure within the simplex that the points

follow; and second, the fact that we can already discern a non-uniform distribution of

the three contexts (neighborhoods, groups and events) within the space — that is, the

different contexts can already be seen to have different structural loci. Notice also that

as the sizes of the graphs increases – from 50 to 100 to 200 – the distribution appears

to sharpen around the one-dimensional backbone. The vast number of graphs that we

are able to consider by studying Facebook data is here illuminating a structure that is

simply not discernible in previous examinations of subgraph frequencies [51], since no

analysis has previously considered a collection near this scale.

The imagery of Figure 3.1 directly motivates our work, by visually framing the

essence of our investigation: what facets of this curious structure derive from our graphs

being social graphs, and what facets are simply universal properties of all graphs? We

will find, in particular, that parts of the space of subgraph frequencies are in fact inac-

cessible to graphs for purely combinatorial reasons — it is mathematically impossible

for one of the points in the scatterplot to occupy these parts of the space. But there are

other parts of the space that are mathematically possible; it is simply that no real social
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graphs appear to be located within them. Intuitively, then, we are looking at a population

density within an ambient space (the Facebook graphs within the space of subgraph fre-

quencies), and we would like to understand both the geography of the inhabited terrain

(what are the properties of the areas where the population has in fact settled?) and also

the properties of the boundaries of the space as a whole (where, in principle, would it be

possible for the population to settle?).

Also in Figure 3.1, we plot the curve for the frequencies for 3 node subgraphs in

Gn,p as a function of p. The curves are given simply by the probability of obtaining the

desired number of edges in a three node graph, ((1 − p)3, 3p(1 − p)2, 3p2(1 − p), p3).

This curve closely tracks the empirical density through the space, with a single notable

discrepancy: the real world graphs systemically contain more triangles when compared

to Gn,p at the same edge density. We emphasize that it is not a priori clear why Gn,p

would at all be a good model of subgraph frequencies in modestly-sized dense social

graphs such as the neighborhoods, groups, and events that we have here; we believe

the fact that it tracks the data with any fidelity at all is an interesting issue for future

work. Beyond Gn,p, in the following subsection, we present a stochastic model of edge

formation and deletion on graphs specifically designed to close the remaining discrep-

ancy. As such, our model provides a means of accurately characterizing the backbone

of subgraph frequencies for social graphs.

Stochastic model of edge formation The classic Erdős-Rényi model of random

graphs, Gn,p, produces a distribution over n-node undirected graphs defined by a simple

parameter p, the probability of each edge independently appearing in the graph. We

now introduce and analyze a related random graph model, the Edge Formation Random

Walk, defined as a random walk over the space of all unlabeled n-node graphs. In its

simplest form, this model is closely related to Gn,p, and will we show via detailed bal-

ance that the distribution defined by Gn,p on n-node graphs is precisely the stationary
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Figure 3.2: The state transitions diagram for our stochastic graph model with k = 4,
where γ is the arbitrary edge formation rate, λ is the triadic closure formation rate, and
δ is the edge elimination rate.

distribution of this simplest version of the random walk on the space of n-node graphs.

We first describe this basic version of the model; we then add a component to the model

that captures a triadic closure process, which produces a close fit to the properties we

observe in real graphs.

Let Gn be the space of all unlabeled n-node graphs, and let X(t) be the following

continuous time Markov chain on the state space Gn. The transition rates between the

graphs in Gn are defined by random additions and deletions of edges, with all edges

having a uniform formation rate γ > 0 and a uniform deletion rate δ > 0. Thus the single

parameter ν = γ/δ, the effective formation rate of edges, completely characterizes the

process. Notice that this process is clearly irreducible, since it is possible to transition

between any two graphs via edge additions and deletions.

Since X(t) is irreducible, it possesses a unique stationary distribution. The station-

ary distribution of an irreducible continuous time Markov chain can be found as the

unique stable fixed point of the linear dynamical system X ′(t) = Qn(ν)X(t) that de-

scribes the diffusion of probability mass during a random walk on n-node graphs, where

Qn(ν) is the generator matrix with transition rates qij and qii = −∑j 6=i qji, all depend-

ing only on ν. The stationary distribution πn then satisfies Qn(ν)πn = 0.

The following proposition shows the clear relationship between the stationary dis-
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tribution of this simplest random walk and the frequencies of Gn,p.

Proposition 3.3.1. The probabilities assigned to (unlabeled) graphs by Gn,p satisfy the

detailed balance condition for the Edge Formation Random Walk with edge formation

rate ν = p/1− p, and thus characterizes the stationary distribution.

Proof. We first describe an equivalent Markov chain based on labeled graphs: there is

a state for each labeled n-node graph; the transition rate qij from a labelled graph Gi to

a labelled graph Gj is qij = γ if Gj can be obtained from Gi by adding an edge; and

qij = δ if Gj can be obtained from Gi by removing an edge. All other transition rates

are zero. We call this new chain the labeled chain, and the original chain the unlabeled

chain.

Now, suppose there is a transition from unlabeled graph Ha to unlabeled graph Hb

in the unlabeled chain, with transition probability kγ. This means that there are k ways

to add an edge to a labeled copy of Ha to produce a graph isomorphic to Hb. Now, let

Gi be any graph in the labeled chain that is isomorphic to Ha. In the labeled chain,

there are k transitions out of Gi leading to a graph isomorphic to Hb, and each of these

has probability γ. Thus, with probability kγ, a transition out of Gi leads to a graph

isomorphic to Hb. A strictly analogous argument can be made for edge deletions, rather

than edge additions.

This argument shows that the following describes a Markov chain equivalent to the

original unlabeled chain: we draw a sequence of labeled graphs from the labeled chain,

and we output the isomorphism classes of these labeled graphs. Hence, to compute

the stationary distribution of the original unlabeled chain, which is what we seek, we

can compute the stationary distribution of the labeled chain and then sum stationary

probabilities in the labeled chain over the isomorphism classes of labeled graphs.

It thus suffices to verify the detailed balance condition for the distribution on the

labeled chain that assigns probability p|E(Gi)|(1−p)(n
2)−|E(Gi)| to each labeled graph Gi.
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Since every transition of the labeled walk occurs between two labeled graphs Gi and

Gj , with |E(Gi)| = |E(Gj)| + 1, the only non-trivial detailed balance equations are of

the form:

qijPr[X(t) = Gi] = qjiPr[X(t) = Gj]

Pr[X(t) = Gi] = νPr[X(t) = Gj]

Pr[X(t) = Gi] =
p

1− pPr[X(t) = Gj].

Since the probability assigned to the labeled graph Gi by Gn,p is simply p|E(Gi)|(1 −

p)(
n
2)−|E(Gi)|, detailed balance is clearly satisfied.

Incorporating triadic closure The above modeling framework provides a simple ana-

log of Gn,p that notably exposes itself to subtle adjustments. By simply adjusting the

transition rates between select graphs, this framework makes it possible to model ran-

dom graphs where certain types of edge formations or deletions have irregular proba-

bilities of occurring, simply via small perturbations away from the classic Gn,p model.

Using this principle, we now characterize a random graph model that differs from Gn,p

by a single parameter, λ, the rate at which 3-node paths in the graph tend to form trian-

gles. We call this model the Edge Formation Random Walk with Triadic Closure.

Again let Gn be the space of all unlabeled n-node graphs, and let Y (t) be a contin-

uous time Markov chain on the state space Gn. As with the ordinary Edge Formation

Random Walk, let edges have a uniform formation rate γ > 0 and a uniform deletion

rate δ > 0, but now also add a triadic closure formation rate λ ≥ 0 for every 3-node path

that a transition would close. The process is still clearly irreducible, and the stationary

distribution obeys the stationary conditions Qn(ν, λ)πn = 0, where the generator matrix

Qn now also depends on λ. We can express the stationary distribution directly in the

parameters as πn(ν, λ) = {π : Qn(ν, λ)π = 0}. For λ = 0 the model reduces to the

ordinary Edge Formation Random Walk.
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The state transitions of this random graph model are easy to construct for n = 3 and

n = 4, and transitions for the case of n = 4 are shown in Figure 3.2. Proposition 3.3.1

above tells us that for λ = 0, the stationary distribution of a random walk on this state

space is given by the graph frequencies of Gn,p. As we increase λ away from zero, we

should therefore expect to see a stationary distribution that departs from Gn,p precisely

by observing more graphs with triangles and less graphs with open triangles.

The framework of our Edge Formation Random Walk makes it possible to model

triadic closure precisely; in this sense the model forms an interesting contrast with other

models of triangle-closing in graphs that are very challenging to analyze (e.g. [36, 76,

94, 126, 144]). We will now show how the addition of this single parameter makes it

possible to describe the subgraph frequencies of empirical social graphs with remarkable

accuracy.

Fitting subgraph frequencies The stationary distribution of an Edge Formation Ran-

dom Walk model describes the frequency of different graphs, while the coordinate sys-

tem we are developing focuses on the frequency of k-node subgraphs within n-node

graphs. For Gn,p these two questions are in fact the same, since the distribution of ran-

dom induced k-node subgraphs of Gn,p is simply Gk,p. When we introduce λ > 0,

however, our model departs from this symmetry, and the stationary probabilities in a

random walk on k node graphs is no longer precisely the frequencies of induced k-node

subgraphs in a single n-node graph.

But if we view this as a model for the frequency of small graphs as objects in

themselves, rather than as subgraphs of a larger ambient graph, the model provides a

highly tractable parameterization that we can use to approximate the structure of sub-

graph frequencies observed in our families of larger graphs. In doing so, we aim to fit

πk(ν(p, λ), λ) as a function of p, where ν(p, λ) is the rate parameter ν that produces edge

density p for the specific value of λ. For λ = 0 this relationship is simply ν = p/(1−p),
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Figure 3.3: Subgraph frequencies for 3-node subgraphs in 50-node graphs, shown as a
function of p. The black curves illustrate Gn,p, while the yellow curves illustrate the fit
model.

but for λ > 0 the relation is not so tidy, and in practice it is easier to fit ν numerically

rather than evaluate the expression.

When considering a collection of graph frequencies we can fit λ by minimizing

residuals with respect to the model. Given a collection of N graphs, let y1
k, . . . , y

N
k be

the vectors of k-node subgraph frequencies for each graph and p1, . . . , pN be the edge

densities. We can then fit λ as:

λoptk = arg min
λ

N∑

i=1

||πk(ν(pi, λ), λ)− yik||2.

In Figure 3.3 we plot the three-node subgraph frequencies as a function of edge

density p, for a collection of 300,000 50-node subgraphs, again a balanced mixture of

neighborhoods, groups, and events. In this figure we also plot (in yellow) the curve

resulting from fitting our random walk model with triadic closure, πk(ν(p, λoptk ), λoptk ),

which is thus parameterized as a function of edge density p. For this mixture of col-

lections and k = 3, the optimal fit is λopt3 = 1.61. Notice how the yellow line deviates
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Figure 3.4: The four-node subgraph frequencies for the means of the 50-node graph
collections in Figure 3.3, and the subgraph frequency of the model, fitting the triadic
closure rate λ to the mean vectors. As λ increases from λ = 0 to λ = λopt, we see how
this single additional parameter provides a striking fit.

from the black Gn,p curve to better represent the backbone of natural graph frequencies.

From the figure it is clear that almost all graphs have more triangles than a sample from

Gn,p of corresponding edge density. When describing extremal bounds in Section 3.4,

we will discuss how Gn,p is in fact by no means the extremal lower bound.
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As suggested by Figure 3.2, examining the subgraph frequencies for four-node sub-

graphs is fully tractable. In Figure 3.4, we fit λ to the mean subgraph frequencies of

our three different collections of graphs separately. Note that the mean of the subgraph

frequencies over a set of graphs is not necessarily itself a subgraph frequency corre-

sponding to a graph, but we fit these mean 11-vectors as a demonstration of the model’s

ability to fit an ‘average’ graph. The subgraph frequency of Gn,p at the edge density

corresponding to the data is shown as a black dashed line in each plot — with poor

agreement — and gray dashed lines illustrate an incremental transition in λ, starting

from zero (when it corresponds to Gn,p) and ending at λopt.

The striking agreement between the fit model and the mean of each collection is

achieved at the corresponding edge density by fitting only λ. For neighborhood graphs,

this agreement deviates measurably on only a single subgraph frequency, the four-node

star. The y-axis is plotted on a logarithmic scale, which makes it rather remarkable how

precisely the model describes the scarcity of the four-node cycle. The scarcity of squares

is observed in email neighborhoods on Facebook in Chapter 2, and our model provides

the first intuitive explanation of this scarcity.

The model’s ability to characterize the backbone of the empirical graph frequencies

suggests that the subgraph frequencies of individual graphs can be usefully studied as

deviations from this backbone. In fact, we can interpret the fitting procedure for λ as a

variance minimization procedure. Recall that the mean of a set of points in Rn is the

point that minimizes the sum of squared residuals. In this way, the procedure is in fact

fitting the ‘mean curve’ of the model distribution to the empirical subgraph frequencies.

Finally, our model can be used to provide a measure of the triadic closure strength

differentially between graph collections, investigating the difference in λopt for the sub-

graph frequencies of different graph collections. In Figure 3.4, the three different graph

types resulted in notably different ratios of λ/ν — the ratio of the triadic closure for-

56



mation rate to the basic process rate — with a significantly higher value for this ratio

in neighborhoods. We can interpret this as saying that open triads in neighborhoods are

more prone to triadic closure than open triads in groups or events.

3.4 Extremal bounds

As discussed at the beginning of the previous section, we face two problems in analyzing

the subgraph frequencies of real graphs: to characterize the distribution of values we

observe in practice, and to understand the combinatorial structure of the overall space in

which these empirical subgraph frequencies lie. Having developed stochastic models to

address the former question, we now consider the latter question.

Specifically, in this section we characterize extremal bounds on the set of possible

subgraph frequencies. Using machinery from the theory of graph homomorphisms, we

identify fundamental bounds on the space of subgraph frequencies that are not proper-

ties of social graphs, but rather, are universal properties of all graphs. By identifying

these bounds, we make apparent large tracts of the feasible region that are theoretically

inhabitable but not populated by any of the empirical social graphs we examine.

We first review a body of techniques based in extremal graph theory and the theory of

graph homomorphisms [103]. We use these techniques to formulate a set of inequalities

on subgraph frequencies; these inequalities are all linear for a fixed edge density, an ob-

servation that allows us to cleanly construct a linear program to maximize and minimize

each subgraph frequency within the combined constraints. In this manner, we show how

it is possible to map outer bounds on the geography of all these structural constraints.

We conclude by offering two basic propositions that transcend all edge densities, thus

identifying fundamental limits on subgraph frequencies of all sizes.
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3.4.1 Background on subgraph frequency and homomorphism den-

sity

In this subsection, we review some background arising from the theory of graph homo-

morphisms. We will use this homomorphism machinery to develop inequalities gov-

erning subgraph frequencies. These inequalities allow us to describe the outlines of the

space underlying Figure 3.1(a) — the first step in understanding which aspects of the

distribution of subgraph frequencies in the simplex are the result of empirical proper-

ties of human social networks, and which are the consequences of purely combinatorial

constraints.

Linear constraints on subgraph frequency Let s(F,G) denote the subgraph fre-

quency of F in G, as defined in the last section: the probability that a random |V (F )|-

node subset of G induces a copy of F . Note that since s(F,G) is a probability over

outcomes, it is subject to the law of total probability. The law of total probability for

subgraph frequencies takes the following form.

Proposition 3.4.1. For any graph F and any integer ` ≥ k, where |V (F )| = k, the

subgraph density of F in G, s(F,G) satisfies the equality

s(F,G) =
∑

{H:|V (H)|=`}

s(F,H)s(H,G).

Proof. Let H ′ be a random `-vertex induced subgraph of G. Now, the set of outcomes

H = {H : |V (H)| = `} form a partition of the sample space, each with probability

s(H,G). Furthermore, conditional upon an `-vertex induced subgraph being isomor-

phic to H , s(F,H) is the probability that a random k-vertex induced subgraph of H is

isomorphic to F .

This proposition characterizes an important property of subgraph frequencies: the

vector of subgraph frequencies on k nodes exists in a linear subspace of the vector of

58



subgraph frequencies on ` > k nodes. Furthermore, this means that any constraint on

the frequency of a subgraph F will also constrain the frequency of any subgraph H for

which s(F,H) > 0 or s(H,F ) > 0.

Graph homomorphisms A number of fundamental inequalities on the occurrence of

subgraphs are most naturally formulated in terms of graph homomorphisms, a notion

that is connected to but distinct from the notion of induced subgraphs. In order to de-

scribe this machinery, we first review some basic definitions [25]. if F andG are labelled

graphs, a map f : V (F )→ V (G) is a homomorphism if each edge (v, w) of F maps to

an edge (f(v), f(w)) of G. We now write t(F,G) for the probability that a random map

from V (F ) into V (G) is a homomorphism, and we refer to t(F,G) as a homomorphism

density of F and G.

There are three key differences between the homomorphism density t(F,G) and the

subgraph frequency s(F,G) defined earlier in this section. First, t(F,G) is based on

mappings of F into G that can be many-to-one — multiple nodes of F can map to the

same node of G — while s(F,G) is based on one-to-one mappings. Second, t(F,G) is

based on mappings of F into G that must map edges to edges, but impose no condition

on pairs of nodes in F that do not form edges: in other words, a homomorphism is

allowed to map a pair of unlinked nodes in F to an edge of G. This is not the case for

s(F,G), which is based on maps that require non-edges of F to be mapped to non-edges

of G. Third, t(F,G) is a frequency among mappings from labeled graphs F to labelled

graphs G, while s(F,G) is a frequency among mappings from unlabeled F to unlabeled

G.

From these three differences, it is not difficult to write down a basic relationship

governing the functions s and t [25]. To do this, it is useful to define the intermediate

notion tinj(F,G), which is the probability that a random one-to-one map from V (F ) to

V (G) is a homomorphism. Since only an O(1/V (G)) fraction of all maps from V (F )
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to V (G) are not one-to-one, we have

t(F,G) = tinj(F,G) +O(1/|V (G)|). (3.1)

Next, by definition, a one-to-one map f of F intoG is a homomorphism if and only if the

image f(F ), when viewed as an induced subgraph of G, contains all of F ’s edges and

possibly others. Correcting also for the conversion from labelled to unlabeled graphs,

we have

tinj(F,G) =
∑

F ′:F⊆F ′

ext(F, F ′) · aut(F ′)
k!

· s(F ′, G), (3.2)

where aut(F ′) is the number of automorphisms of F ′ and ext(F, F ′) is the number of

ways that a labelled graph F can be extended (by adding edges) to form a labelled graph

H isomorphic to F ′.

Homomorphism inequalities There are a number of non-trivial results bounding the

graph homomorphism density, which we now review. By translating these to the lan-

guage of subgraph frequencies, we can begin to develop bounds on the simplexes in

Figure 3.1.

For complete graphs, the Kruskal-Katona Theorem produces upper bounds on ho-

momorphism density in terms of the edge density while the Moon-Moser Theorem pro-

vides lower bounds, also in terms of the edge density.

Proposition 3.4.2 (Kruskal-Katona [103]). For a complete graph Kr on r nodes and

graph G with edge density t(K2, G),

t(Kr, G) ≤ t(K2, G)r/2.

Proposition 3.4.3 (Moon-Moser [112, 130]). For a complete graph Kr on r nodes and

graph G with edge density t(K2, G) ∈ [(k − 2)/(k − 1), 1],

t(Kr, G) ≥
r−1∏

i=1

(1− i(1− t(K2, G))).

60



The Moon-Moser bound is well known to not be sharp, and Razborov has recently

given an impressive sharp lower bound for the homomorphism density of the triangle

K3 [130] using sophisticated machinery [129]. We limit our discussion to the simpler

Moon-Moser lower bound which takes the form of a concise polynomial and provides

bounds for arbitrary r, not just the triangle (r = 3).

Finally, we employ a powerful inequality that is known to lower bound the homo-

morphism density of any graph F that is either a forest, an even cycle, or a complete

bipartite graph. Stated as such, it is the solved special cases of the open Sidorenko Con-

jecture, which posits that the result could be extended to all bipartite graphs F . We will

use the following proposition in particular when F is a tree, and will refer to this part of

the result as the Sidorenko tree bound.

Proposition 3.4.4 (Sidorenko [103, 137]). For a graph F that is a forest, even cycle, or

complete bipartite graph, with edge set E(F), and G with edge density t(K2, G),

t(F,G) ≥ t(K2, G)|E(F )|.

Using Equations (3.1) and (3.2), we can translate statements about homomorphisms

into asymptotic statements about the combined frequency of particular sets of sub-

graphs. We can also translate statements about frequencies of subgraphs to frequencies

of their complements using the following basic fact.

Lemma 3.4.5. If for graphs F1, . . . F`, coefficients αi ∈ R, and a function f ,

α1s(F1, G) + . . .+ α`s(F`, G) ≥ f(s(K2, G)), ∀G,

then

α1s(F 1, G) + . . .+ α`s(F `, G) ≥ f(1− s(K2, G)), ∀G.

Proof. Note that s(F,G) = s(F ,G). Thus if

α1s(F 1, G) + . . .+ α`s(F `, G) ≥ f(s(K2, G)), ∀G,
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Figure 3.5: Subgraph frequencies for 3-node and 4-node subgraphs as function of edge
density p. The light green regions denote the asymptotically feasible region found via
the linear program. The empirical frequencies are as in Figure 3.3. The black curves
illustrate Gn,p, while the yellow curves illustrate the fit triadic closure model.

then

α1s(F 1, G) + . . .+ α`s(F `, G) ≥ f(s(K2, G)), ∀G,

where s(K2, G) = 1− s(K2, G).

3.4.2 An LP for subgraph frequency bounds

In the previous section, we reviewed linear constraints between the frequencies of sub-

graphs of different sizes, and upper and lower bounds on graph homomorphism densities

with applications to subgraph frequencies. We will now use these constraints to assem-

ble a linear program capable to mapping out bounds on the extremal geography of the

subgraph space we are considering. To do this, we will maximize and minimize the

frequency of each individual subgraph frequency, subject to the constraints we have just
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catalogued.

We will focus our analysis on the cases k = 3, the triad frequencies, and k = 4, the

quad frequencies. Let x1, x2, x3, x4 denote the subgraph frequencies s(·, G) of the four

possible 3-vertex undirected graphs, ordered by increasing edge count.

Program 3.4.6. The frequency xi of a 3-node subgraph in any graphGwith edge density

p is bounded asymptotically (in |V (G)|) by max /minxi subject to xi ≥ 0,∀i and:

x1 + x2 + x3 + x4 = 1,
1

3
x2 +

2

3
x3 + x4 = p, (3.3)

x4 ≤ p3/2, x1 ≤ (1− p)3/2, (3.4)

x4 ≥ p(2p− 1) p ≥ 1/2, (3.5)

x1 ≥ (1− p)(1− 2p) p ≤ 1/2, (3.6)

(1/3)x3 + x4 ≥ p2, x1 + (1/3)x2 ≥ (1− p)2. (3.7)

Here the equalities in (3.3) derive from the linear constraints, the constraints in (3.4)

derive from Kruskal-Katona, the constraints (3.5-3.6) derive from Moon-Moser, and the

constraints in (3.7) derive from the Sidorenko tree bound. More generally, we obtain

the following general linear program that can be used to find nontrivial bounds for any

subgraph frequency:

Program 3.4.7. The frequency fF of a k-node subgraph F in any graph G with edge

density p is bounded asymptotically (in |V (G)|) by max /min fF , subject to AfF =

b(p), CfF ≤ d(p), appropriately assembled.

From Program 1 given above it is possible to derive a simple upper bound on the

frequency of the 3-node-path (sometimes described in the social networks literature as

the “forbidden triad”, as mentioned earlier).

Proposition 3.4.8. The subgraph frequency of the 3-node-path F obeys s(F,G) ≤

3/4 + o(1),∀G.
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Proof. Let x1, x2, x3, x4 again denote the subgraph frequencies s(·, G) of the four pos-

sible 3-vertex undirected graphs, ordered by increasing edge count, where x3 is the

frequency of the 3-node-path. By the linear constraints,

(1/3)x2 + (2/3)x3 + x4 = p,

while by Moon-Moser, x4+O(1/|V (G)|) ≥ p(2p−1). Combining these two constraints

we have:

x3 ≤ 3p(1− p) + o(1).

The polynomial in p is maximized at p = 1/2, giving an upper bound of 3/4+o(1).

This bound on the “forbidden triad” is immediately apparent from Figure 3.5 as

well, which shows the bounds constructed via linear programs for all 3-node and 4-node

subgraph frequencies. In fact, the subgraph frequency of the ‘forbidden” 3-node-path

in the balanced complete bipartite graph Kn/2,n/2, which has edge density p = 1/2, is

exactly s(F,G) = 3/4, demonstrating that this bound is asymptotically tight. (In fact,

we can perform a more careful analysis showing that it is exactly tight for even n.)

Figure 3.5 illustrates these bounds for k = 3 and k = 4. Notice that our empirical

distributions of subgraph frequencies fall well within these bounds, leaving large tracts

of the bounded area uninhabited by any observed dense social graph. While the bounds

do not fully characterize the feasible region of subgraph frequencies, the fact that the

bound is asymptotically tight at p = 1/2 for the complete bipartite graph Kn/2,n/2 is

important — practically no empirical social graphs come close to the boundary, despite

this evidence that it is feasibly approachable. We emphasize that an exact characteriza-

tion of the feasible space would necessitate machinery at least as sophisticated as that

used by Razborov.

In the next subsection we develop two more general observations about the subgraph

frequencies of arbitrary graphs, the latter of which illustrates that, with the exception of
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clique subgraphs and empty subgraphs, it is always possible to be free from a subgraph.

This shows that the lower regions of the non-clique non-empty frequency bounds in

Figure 3.5 are always inhabitable, despite the fact that social graphs do not empirically

populate these regions.

3.4.3 Bounding frequencies of arbitrary subgraphs

The upper bound for the frequency of the 3-node-path given in Proposition 3.4.8

amounted to simply combining appropriate upper bounds for different regions of pos-

sible edge densities p. In this section, we provide two general bounds pertaining to the

subgraph frequency of an arbitrary subgraph F . First, we show that any subgraph that is

not a clique and is not empty must have a subgraph density bounded strictly away from

one. Second, we show that for every subgraph F that is not a clique and not empty, it

is always possible to construct a family of graphs with any specified asymptotic edge

density p that contains no induced copies of F .

With regard to Figures 3.5, the first of the results in this subsection uses the

Sidorenko tree bound to show that in fact no subgraph other than the clique or the empty

graph, not even for large values of k, has a feasible region that can reach a frequency of

1− o(1). The second statement demonstrates that it is always possible to be free of any

subgraph that is not a clique or an empty graph, even if this does not occur in the real

social graphs we observe.

Proposition 3.4.9. For every k, there exist constants ε and n0 such that the following

holds. If F is a k-node subgraph that is not a clique and not empty, and G is any graph

on n ≥ n0 nodes, then s(F,G) < 1− ε.

Proof. Let Sk denote the k-node star — in other words the tree consisting of a single

node linked to k − 1 leaves. By Equation (3.1), if G has n nodes, then tinj(Sk, G) ≥
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t(Sk, G)− c/n for an absolute constant c. We now state our condition on ε and n0 in the

statement of the proposition: we choose ε small enough and n0 large enough so that

(1− ε)k

2
(
k
2

)k−1
> max

(
ε,
c

n

)
. (3.8)

For a k-node graph F , let P(F ) denote the property that for all graphs G on at

least n0 nodes, we have s(F,G) < 1 − ε. Our goal is to show that P(F ) holds for

all k-node F that are neither the clique nor the empty graph. We observe that since

s(F,G) = s(F ,G), the property P(F ) holds if and only if P(F ) holds.

The basic idea of the proof is to consider any k-node graph F that is neither complete

nor empty, and to argue that the star Sk lacks a one-to-one homomorphism into at least

one of F or F — suppose it is F . The Sidorenko tree bound says that Sk must have

a non-trivial number of one-to-one homomorphisms into G; but the images of these

homomorphisms must be places where F is not found as an induced subgraph, and this

puts an upper bound on the frequency of F .

We now describe this argument in more detail; we start by considering any specific

k-node graph F that is neither a clique nor an empty graph. We first claim that there

cannot be a one-to-one homomorphism from Sk into both of F and F . For if there is

a one-to-one homomorphism from Sk into F , then F must contain a node of degree

k − 1; this node would then be isolated in F , and hence there would be no one-to-

one homomorphism from Sk into F . Now, since it is enough to prove that just one

of P(F ) or P(F ) holds, we choose one of F or F for which there is no one-to-one

homomorphism from Sk. Renaming if necessary, let us assume it is F .

Suppose by way of contradiction that s(F,G) ≥ 1 − ε. Let q denote the edge

density of F — that is, q = |E(F )|/
(
k
2

)
. The edge density p of G can be written, using

Proposition 3.4.1, as

p = s(K2, G) =
∑

{H:|V (H)|=k}

s(K2, H)s(H,G)

≥ s(K2, F )s(F,G) ≥ q(1− ε).
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By a k-set of G, we mean a set of k nodes in G. We color the k-sets of G according

to the following rule. Let U be a k-set of G: we color U blue if G[U ] is isomorphic to

F , and we color U red if there is a one-to-one homomorphism from Sk to G[U ]. We

leave the k-set uncolored if it is neither blue nor red under these rules. We observe that

no k-set U can be colored both blue and red, for if it is blue, then G[U ] is isomorphic to

F , and hence there is no one-to-one homomorphism from Sk into G[U ]. Also, note that

s(F,G) ≥ 1 − ε is equivalent to saying that at least a (1 − ε) fraction of all k-sets are

blue.

Finally, what fraction of k-sets are red? By the Sidorenko tree bound, we have

t(Sk, G) ≥ pk−1 ≥ qk(1− ε)k ≥ (1− ε)k
(
k
2

)k−1
,

where the last inequality follows from the fact that F is not the empty graph, and hence

q ≥ 1/
(
k
2

)
. Since tinj(Sk, G) ≥ t(Sk, G) − c/n, our condition on n from (3.8) implies

that

tinj(Sk, G) ≥ (1− ε)k

2
(
k
2

)k−1
> ε.

Now, let inj(Sk, G) denote the number of one-to-one homomorphisms of Sk into G; by

definition,

tinj(Sk, G) =
inj(Sk, G)

n(n− 1) · · · (n− k + 1)
=

inj(Sk, G)

k!
(
n
k

) ,

and hence

inj(Sk, G) = k!

(
n

k

)
tinj(Sk, G) > εk!

(
n

k

)
.

Now, at most k! different one-to-one homomorphisms can map Sk to the same k-set of

G, and hence more than ε
(
n
k

)
many k-sets of G are red. It follows that the fraction of

k-sets that are red is > ε; but this contradicts our assumption that at least a (1 − ε)

fraction of k-sets are blue, since no k-set can be both blue and red.

Proposition 3.4.10. Assume F is not a clique and not empty. Then for each edge density

p there exists a sequence Gp
1, G

p
2, . . . of asymptotic edge density p for which F does not
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appear as an induced subgraph in any Gp
i . Equivalently, s(F,Gp

i ) = 0,∀i.

Proof. We callH a near-clique if it has at most one connected component of size greater

than one, and this component is a clique. For any p ∈ [0, 1], it is possible to construct

an infinite sequence Hp
1 , H

p
2 , . . . of near-cliques with asymptotic density p, by simply

taking the non-trivial component of each Hp
i to be a clique of the appropriate size.

Now, fix any p ∈ [0, 1], and let F be any graph that is neither a clique nor an empty

graph. If F is not a near-clique, then the required sequenceGp
1, G

p
2, . . . is the sequence of

near-cliquesHp
1 , H

p
2 , . . ., since all the induced subgraphs of a near-clique are themselves

near-cliques.

On the other hand, if F is a near-clique, then since F is neither a clique nor an empty

graph, the complement of F is not a near-clique. It follows that the required sequence

Gp
1, G

p
2, . . . is the sequence of complements of the near-cliques H1−p

1 , H1−p
2 , . . ..

Note that it is possible to take an F -free graph with asymptotic density p and append

nodes with local edge density p and random (Erdős-Rényi) connections to obtain a graph

with any intermediate subgraph frequency between zero and that of Gn,p. The same

blending arguement can be applied to any graph with a subgraph frequency above Gn,p

to again find graphs with intermediate subgraph frequencies. In this way we see that

large tracts of the subgraph frequency simplex are fully feasible for arbitrary graphs, yet

by Figure 3.5 are clearly not inhabited by any real world social graph.

3.5 Classification of audiences

The previous two sections characterize empirical and extremal properties of the space of

subgraph frequencies, providing two complementary frameworks for understanding the

structure of social graphs. In this section, we conclude our work with a demonstration

of how subgraph frequencies can also provide a useful tool for distinguishing between
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different categories of graphs. The Edge Formation Random Walk model introduced

in Section 3.3 figures notably, providing a meaningful baseline for constructing classi-

fication features, contributing to the best overall classification accuracy we are able to

produce.

Thus, concretely our classification task is to take a social graph and determine

whether it is a node neighborhood, the set of people in a group, or the set of people

at an event. This is a specific version of a broader characterization problem that arises

generally in social media — namely how social audiences differ in terms of social graph

structure [3]. Each of the three graph types we discuss — neighborhoods, groups, and

events — define an audience with which a user may choose to converse. The defining

feature of such audience decisions has typically been their size — as users choose to

share something online, do they want to share it publicly, with their friends, or with

a select subgroup of their friends? Products such as Facebook groups exist in part to

address this audience problem, enabling the creation of small conversation circles. Our

classification task is essentially asking: do audiences differ in meaningful structural

ways other than just size?

In Figure 3.1 and subsequently in Figure 3.5, we saw how the three types of graphs

that we study — neighborhoods, groups, and events — are noticeably clustered around

different structural foci in the space of subgraph frequencies. Figure 3.5 focused on

graphs consisting of exactly 50-nodes, where it is visibly apparent that both neighbor-

hoods and events tend to have a lower edge density than groups of that size. Neigh-

borhood edge density — equivalent to the local clustering coefficient — is known to

generally decrease with graph size [121], but it is not clear that all three of the graph

types we consider here should decrease at the same rate.

In Figure 3.6, we see that in fact the three graph types do not decrease uniformly,

with the average edge density of neighborhoods decreasing more slowly than groups
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or events. Thus, small groups are denser than neighborhoods while large groups are

sparser, with the transition occurring at around 400 nodes. Similarly, small event graphs

are denser than neighborhoods while large events are much sparser, with the transition

occurring already at around 75 nodes.

The two crossing points in Figure 6 suggest a curious challenge: are their struc-

tural features of audience graphs that distinguish them from each other even when they

exhibit the same edge density? Here we use the language of subgraph frequencies to

formulate a classification task for classifying audience graphs based on subgraph fre-

quencies. We compare our classification accuracy to the accuracy achieved when also

considering a generous vector of much more sophisticated graph features. We approach

this classification task using a simple logistic regression model. While more advanced

machine learning models capable of learning richer relationships would likely produce

better classification accuracies, our goal here is to establish that this vocabulary of fea-

tures based on subgraph frequencies can produce non-trivial classification results even in

conjunction with simple techniques such as logistic regression. Evaluating our features

in other contexts such as graph matching [84, 98, 156], where frequencies of connected

subgraphs have been used previously [136], would be interesting future work.

When considering neighborhood graphs, recall that we are not including the ego of

the neighborhoods as part of the graph, while for groups and events the administrators

as members of their graphs. As such, neighborhoods without their ego deviate systemat-

icallly from analogous audience graphs created as groups or as events. In Figure 3.6 we

also show the average edge density of neighborhoods with their ego, adding one node

and n− 1 edges, noting that the difference is small for larger graphs.

Classification features Subgraph frequencies has been the motivating coordinate sys-

tem for the present work, and will serve as our main feature set. Employing the Edge

Formation Random Walk model from Section 3.3, we additionally describe each graph
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Figure 3.6: Edge densities of neighborhoods, groups, and events as a function of size,
n. When n < 400, groups are denser then neighborhoods. When n < 75, events are
denser then neighborhoods.

by its residuals with respect to a backbone — described by the parameter λ — fit to the

complete unclassified training set.

Features based on subgraph frequencies are local features, computable by examining

only a few local nodes of the graph at a time. Note that the subgraph frequencies of

arbitrarily large graphs can be accurately approximated by sampling a small number of

induced graphs. Comparatively, it is relevant to ask: can these simple local features do

as well as more sophisticated global graph features? Perhaps the number of connected

components, the size of the largest component, or other global features provide highly

informative features for graph classification.

To answer this question, we compare our classification accuracy using subgraph

frequencies with the accuracy we are able to achieve using a set of global graph features.

We consider:

• Size of the k largest components, for k = 1, 2.

• Size of the k-core, for k = 0, 1, 2, 3.

• Number of components in the k-core, for k = 0, 1, 2.
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• Degeneracy, the largest k for which the k-core is non-empty.

• Size of the k-brace (See Chapter 2), for k = 1, 2, 3.

• Number of components in the k-brace, for k = 1, 2, 3.

These features combine linearly to produce a rich set of graph properties. For ex-

ample, the number of components in the 1-core minus the number of components in the

0-core yields the number of singletons in the graph.

Classification results The results of the classification model are shown in Table 3.1,

reported in terms of classification accuracy — the fraction of correct classifications on

the test data – measured using five-fold cross-validation on a balanced set of 10,000

instances. The classification tasks were chosen to be thwart classification based solely

on edge density, which indeed performs poorly. Using only 4-node subgraph frequencies

and residuals, an accuracy of 77% is achieved in both tasks.

In comparison, classification based on a set of global graph features performed

worse, achieving just 69% and 76% accuracy for the two tasks. Meanwhile, combin-

ing global and subgraph frequency features performed best of all, with a classification

accuracy of 81−82%. In each case we also report the accuracy with and without residu-

als as features. Incorporating residuals with respect to either a Gn,p or Edge Formation

Random Walk baseline consistently improved classification, and examining residuals

with respect to either baseline clearly provides a useful orientation of the subgraph co-

ordinate system for empirical graphs.

3.6 Conclusion

The modern study of social graphs has primarily focused on the examination of the

sparse large-scale structure of human relationships. This global perspective has led to
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Model Features N vs. E, n = 75 N vs. G, n = 400

Edges 0.487 0.482
Triads 0.719 0.647
Triads + RG 0.737 0.673
Triads + Rλ 0.736 0.668
Quads 0.751 0.755
Quads + RG 0.765 0.769
Quads + Rλ 0.765 0.769
Global + Edges 0.694 0.763
Global + Triads 0.785 0.766
Global + Triads + RG 0.784 0.766
Global + Triads + Rλ 0.789 0.767
Global + Quads 0.797 0.812
Global + Quads + RG 0.807 0.815
Global + Quads + Rλ 0.809 0.820

Table 3.1: Classification accuracy for Neighborhoods (N), Groups (G), and Events (E)
on different sets of features. RG and Rλ denote the residuals with respect to a Gn,p and
stochastic graph model baseline, as described in the text.

fruitful theoretical frameworks for the study of many networked domains, notably the

world wide web, computer networks, and biological ecosystems [121]. However, in

this work we argue that the locally dense structure of social graphs admit an additional

framework for analyzing the structure of social graphs.

In this work, we examine the structure of social graphs through the coordinate sys-

tem of subgraph frequencies, developing two complementary frameworks that allow us

to identify both ‘social’ structure and ‘graph’ structure. The framework developed in

Section 3.3 enables us to characterize the apparent social forces guiding graph forma-

tion, while the framework developed in Section 3.4 characterizes fundamental limits

of all graphs, delivered through combinatorial constraints. Our coordinate system and

frameworks are not only useful for developing intuition, but we also demonstrate how

they can be used to accurately classify graph types using only these simple descriptions

in terms of subgraph frequency.
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3.7 Code

Implementations of the Edge Formation Random Walk equilibrium solver and the sub-

graph frequency bounds optimization program are available from my academic home-

page.
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CHAPTER 4

BALANCED LABEL PROPAGATION FOR PARTITIONING MASSIVE

GRAPHS

Partitioning graphs at scale is a key challenge for any application that involves dis-

tributing a graph across disks, machines, or data centers. Graph partitioning is a very

well studied problem with a rich literature, but existing algorithms typically can not

scale to billions of edges, or can not provide guarantees about partition sizes.

In this work we introduce an efficient algorithm, balanced label propagation, for

precisely partitioning massive graphs while greedily maximizing edge locality, the num-

ber of edges that are assigned to the same shard of a partition. By combining the com-

putational efficiency of label propagation — where nodes are iteratively relabeled to the

same ‘label’ as the plurality of their graph neighbors — with the guarantees of con-

strained optimization — guiding the propagation by a linear program constraining the

partition sizes — our algorithm makes it practically possible to partition graphs with

billions of edges.

Our algorithm is motivated by the challenge of performing graph predictions in a

distributed system. Because this requires assigning each node in a graph to a physi-

cal machine with memory limitations, it is critically necessary to ensure the resulting

partition shards do not overload any single machine.

We evaluate our algorithm for its partitioning performance on the Facebook social

graph, and also study its performance when partitioning Facebook’s ‘People You May

Know’ service (PYMK), the distributed system responsible for the feature extraction

and ranking of the friends-of-friends of all active Facebook users. In a live deployment,

we observed average query times and average network traffic levels that were 50.5% and

37.1% (respectively) when compared to the previous naive random sharding.
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4.1 Introduction

In Plato’s Phaedrus, Socrates tells us that a key principle of rhetoric is the ability to

divide ideas “where the natural joints are, and not trying to break any part, after the

manner of a bad carver” [56]. This, too, is the goal of graph partitioning: breaking a

graph at its natural joints.

In this work, we present an algorithm for finding ‘joints’ in graphs of particularly

massive proportions, with an emphasis on the Facebook social graph consisting of over

800 million nodes and over 68 billion edges [151]. The algorithm we present uses

label propagation to relocate inefficiently assigned nodes while respecting strict shard

balancing constraints. We show how this balanced label propagation algorithm can

be formulated as a convex optimization problem that reduces to a manageable linear

programming problem. The algorithm is fundamentally iterative, where each iteration

entails solving a linear program.

While we find that our algorithm performs well under random initialization, by ini-

tializing the algorithm with a greedy geographic assignment, we find that it is possible

to effectively achieve convergence within a single step of the update algorithm, while

random initialization requires many iterations to slowly converges to a less performative

solution.

Our algorithm has the ability to follow arbitrary partition size specifications, a gen-

eralization of the more common goal of symmetric partitioning [78]. This functionality

makes it possible to use the greedy efficiency of label propagation when considering par-

titions that are not symmetric by creation, but might still benefit from label propagation.

Specifically, the geographic initialization we consider is not symmetric, yet balanced

label propagation can still be used to considerably improve the partitioning.

Label propagation unfortunately offers no formal performance guarantees with re-

spect to the graph partitioning objective, and neither does our modification. It is worth
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remarking that the basic problem of constrained graph partitioning, bisecting a graph

into two equal parts with as few crossing edges as possible, is the well known NP-hard

minimum bisection problem [58], with the best known approximation algorithm being

a O(
√
n log n)-factor approximation [52]. Knowing this, our goal has been to develop

a highly scalable algorithm that can deliver precise partition size guarantees while per-

forming well at maximizing edge locality in practice.

People You May Know. After presenting our algorithm and analyzing its perfor-

mance on both the Facebook social graph and a LiveJournal graph, we then present

the results of a full deployment of the partitioning scheme for the Facebook friend rec-

ommendation system, ‘People You May Know’ (PYMK). This system computes, for

a given user u, and each friend-of-friend (FoF) w of u a feature vector xu,w of graph

metrics based on the local structure between u and w. The system then uses machine

learning to rank all the suggestions w for u, based on the feature vector xu,w, as well as

demographic features of u and w.

Due to the size of the graph and high query volume, Facebook has built a customized

system for performing this task. Each user u is assigned to a specific machine mu (this

assignment is what we are optimizing). When a FoF query is issued for a user u, it

must be sent to machine mu. Then, for each v ∈ N(u), a query must be issued to the

machine mv, to retrieve the nodes two hops from u. The results of these queries are then

aggregated to compute the features that are input to the machine learning phase, which

outputs the final ranked list of FoFs.

Our goal is to perform our graph sharding such that, as often as possible, mv = mu

for v ∈ N(u). By doing this well, we can reduce the number of other machines that we

need to query, and also reduce the total amount of data that needs to be transferred over

the network, increasing overall system throughput and latency. We are constrained by

the fact that machines have a limited amount of memory, which puts a hard cap on the
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size of each shard.

At the outset, it is important to note that it is not actually clear that a sophisticated

sharding will be a performance win in this application. When naively sharding a graph,

one typical approach is to assign nodes to machines by simply taking the modulus of the

user ID; see Figure 4.1. The advantage of this approach is that the machine location of a

node is directly encoded in the user ID. Using a non-trivial sharding requires extensive

additional lookups in a shard map, as well as an additional network operation at the start

of the query where the initial request is forwarded to the appropriate machine hosting

the subject of the query. The shard map for all 800 million nodes must also be mirrored

in memory across all machines.

As we will see in our ultimate demonstration, the cost of this additional complexity is

greatly overshadowed by the improvements in locality that can be had. The novel graph

sharding algorithm we introduce, combined with the intelligent initialization based on

geographic metadata, is able to produce a sharding across 78 machines where 75.2% of

edges are local to individual machines. In the conclusion to this work, we deploy the

resulting sharding on Facebook’s ‘People You May Know’ realtime service, and observe

dramatic performance gains in a realtime environment.

The main distinction when designing an algorithm applicable at Facebook’s scale

is that the full graph can not be easily stored in memory. Realistically, this means that

the only admissible algorithms are those that examine the graph in streaming iterations.

One iteration of our balanced label propagation algorithm takes a single aggregating

pass over the edge list, executable in MapReduce, and then solves a linear program with

complexity dependent on the number of machines, not the size of the graph. A final

assignment step takes a single streaming pass over the nodes, again in MapReduce, to

redefine their assignments. Recent work on streaming graph partitioning [142] produced

notable performance using a single greedy iteration, but the results were obtained within

78



a

b

ID%N == 0 ID%N == 1 ID%N == 2 ID%N == 3

ID%N == N-4 ID%N == N-3 ID%N == N-2 ID%N == N-1

  

f(ID) == 0 f(ID) == 1 f(ID) == 2 f(ID) == 3

f(ID) == N-4 f(ID) == N-3 f(ID) == N-2 f(ID) == N-1

  

...

...

Figure 4.1: Sharding the neighbors of a node across N machines. (a) Aggregating prop-
erties of the neighbors when the edge list is sharded according to node ID mod N. (b)
Aggregating when the edge list is sharded according to a shardmap f . The goal of an
efficient shard map is to greatly increase the likelihood that a node is located on the
same shard as its neighbors.

a framework that did not naturally lend itself to additional iteration.

Organization of the chapter. Section 2 presents the details of the balanced la-

bel propagation algorithm. Section 3 discusses a geographic initialization that, when

possible, greatly improves performance. In Section 4, we evaluate the algorithm and

its ability to shard the Facebook social graph and a publicly availably LiveJournal graph

dataset. In Section 5, we study a deployment of the sharding to load-balance Facebook’s

PYMK service. We conclude with Section 6 by discussing future directions for work on

this problem.

4.2 Balanced label propagation

Label propagation was first proposed as an efficient method for learning missing labels

for graph data in a semi-supervised setting [162]. In such a setting, unlabeled nodes

iteratively adopt the label of the plurality of their neighbors until convergence, making
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it possible to infer a broad range of traits that are fundamentally assortative along the

edges of a graph.

In a context very similar to graph partitioning, label propagation has been found to

be a very efficient technique for network community detection [127], the challenge of

finding naturally dense network clusters in an unlabeled graph [55]. In this context, each

node of a graph is initialized with an individual label, and label propagation is iterated

where nodes again update their labels to the plurality of their neighbor’s labels.

Network community detection and graph partitioning are very similar challenges,

with two key differences. First, community detection algorithms need not and should

not require a priori specification of the number or size of graph communities to find.

Second, community detection algorithms ought to support overlapping communities,

while graph partitions seek explicitly disjoint structure. While some partitioning ap-

plications may benefit from assigning nodes to multiple partitions, the Facebook social

graph we aim to partition has a modest maximum degree of 5, 000, and so we restrict

our investigation to creating true partitions.

Label propagation fails to detect overlapping communities [55], though an adapta-

tion does exist [65]. But this failure of the ordinary label propagation algorithm in fact

makes it a strong candidate for graph partitioning. The remaining difficulty is therefore

that label propagation provides no way of constraining the sizes of any of the resulting

community partitions. Our contribution address precisely this difficulty.

A previous attempt to ‘constrain’ label propagation utilizes an optimization frame-

work with a cost penalty to encourage balanced partitions [18], but this approach does

not offer constraints in a formal sense. The constraint-based algorithm we introduce

in this work offers the possibility of precisely constraining the size of all the resulting

shards – it is in fact not limited to constraints that produce balanced partitions. It is

also worth noting that the previous cost penalty approach lacks the computational effi-
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ciency of label propagation, and the largest graph that framework was originally tested

on contained just 120,000 edges.

4.2.1 Partition constraints

The goal of our balanced label propagation algorithm is to take a graph G = (V,E) and

produce a partition {V1, . . . , Vn} of V , subject to explicitly defined size constraints. The

algorithm is capable of enforcing arbitrary size constraints in the form of lower bounds

Si and upper bounds Ti, such that Si ≤ |Vi| ≤ Ti, ∀i. These constraints can easily

take the form of balanced constraints, targeting exact balance Si = b|V |/nc and Ti =

d|V |/ne, ∀i, or operating with leniency, Si = b(1−f)|V |/nc and Ti = d(1 +f)|V |/ne,

for some fraction f > 0.

To initialize the algorithm, we begin by randomly assigning nodes to shards, in pro-

portions that are feasible with respect to these sizing constraints.

4.2.2 The constrained relocation problem

Given an initial feasible sharding, we wish to maintain the specified balance of nodes

across shards between iterations. The key challenge is however that some shards will

be more popular than others. In fact, under ordinary label propagation without any

balance constraints, labelling all nodes with the same single label is a trivial equilibrium.

Because we won’t be able to move all nodes, our greedy approach is to sychronously

move those nodes that stand to increase their colocation count (the number of graph

neighbors they are co-located with) the most.

Given a constraint specification, we now formalize our greedy relocation strategy

as a maximization problem subject to the above constraints. Consider therefore the

nodes that are assigned to shard i but would prefer to be on shard j. Order these nodes
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according to the number of additional neighbors they would be co-located with if they

moved, from greatest increase to least increase, labeling them k = 1, . . . , K. Let uij(k)

be the change in utility (co-location count) from moving the kth node from shard i to j.

Let fij(x) =
∑x

k=1 uij(k) be the relocation utility function between shard i and

j, the total utility gained from moving the leading x nodes from i to j. Observe that

because uij(k) ≥ 0 and uij(k) ≥ uij(k + 1) for all k (since they are ordered), all fij(x)

are increasing and concave.

Our goal can then be formulated as a concave utility maximization problem with

linear constraints.

Problem 4.2.1 (Constrained relocation). Given a graph G = (V,E) with the node set

partitioned into n shards V1, . . . , Vn, and size constraints Si ≤ |Vi| ≤ Ti, ∀i, the con-

strained relocation problem is to maximize:

maxX
∑

i,j fij(xij) s.t. (4.1)

Si − |Vi| ≤
∑

j 6=i(xij − xji) ≤ Ti − |Vi|, ∀i

0 ≤ xij ≤ Pij, ∀i, j.
(4.2)

Here Pij is the number of nodes that desire to move from shard i to j, and fij(x) is the

relocation utility function between shard i and j, both derivable from the graph and the

partition.

For an illustration of the constraints, see Figure 4.2.

When the above problem is considered under continuous values of xij , we will now

show that it reduces to a fully tractable optimization problem. Note that relaxing these

integrality constraints on all xij is a fully reasonable approximation as long as the num-

ber of nodes seeking to be moved between each pair of shards is large.

We aim to rewrite the above optimization problem as a linear program. Notice that

all fij are piecewise-linear concave functions. To see this, notice that the slope of fij is
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Figure 4.2: Illustration of the constraints for balanced label propagation applied to five
shards. Each shard has a two-sided balance constraint, while each pair of shards has a
population constraint.

constant across all intervals where the ordered users have the same derived utility. As a

consequence of this, we obtain the following straight-forward lemma.

Lemma 4.2.2. Assuming a bounded degree graph G, the objective function in Problem

1, f(x) =
∑

i,j fij(xij), is a piecewise-linear concave function, seperable in xij .

Proof. The separability is clear from the fact that the fij depend on different variables.

Since users are atomic and the graph is of bounded degree, there are a finite number of

utilities, and the sum is therefore also piecewise linear. Since the nodes are sorted in

order of decreasing utility, the function is concave.

Recall that any piecewise linear concave function f(x) : Rn → R can be written as

f(x) = mink=1,...,`(a
T
k x + bk), for some choices of ak’s and bk’s. For our problem, all

the ak’s and bk’s are scalar. Now, also recall the following [26].

Lemma 4.2.3. Let x ∈ Rn and f(x) = mink=1,...,`(a
T
k x + bk) be a piecewise linear

concave function. Maximizing f(x) subject to Ax ≤ b is then equivalent to:

max z s.t. (4.3)



Ax ≤ b

aTk x+ bk ≥ z, ∀k.
(4.4)
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able. The utilty approximation shown allows for a significant reduction in the number of
constraints in the LP. The red line indicates the threshold found in the optimal solution
for balanced propagation: here 8,424 of the 22,728 nodes that wanted to move were
moved.

Utilizing these two lemmas, we can thus solve the concave maximization problem

in Problem 1 using a linear program.

Theorem 4.2.4. Consider a bounded degree graph G = (V,E). Under continuous xij ,

the constrained relocation problem can be written as

maxX,Z
∑

i,j zij s.t. (4.5)

Si − |Vi| ≤
∑

j 6=i(xij − xji) ≤ Ti − |Vi|, ∀i

0 ≤ xij ≤ Pij, ∀i, j

−aijkxij + zij ≤ bijk, ∀i, j, k,

(4.6)

where all aijk and bijk derive directly from the relocation utility functions fij . Assuming

n shards and at most K unique utility gains achieved by nodes that would like to move,

this constitutes a linear program with 2n(n−1) variables and at most 2n2 +Kn(n−1)

sparse constraints.

Since the most utility a node can gain is its degree, and furthermore only a small

set of nodes in real world graphs have high degree, it becomes unlikely that all pairs

84



of shards will observe nodes seeking large utility gains. Thus, in practice the number

of constraints is typically small. For m = 78 and K = 100, this would imply a linear

program with 12,012 variables and 612,768 constraints, which is fully manageable by a

basic LP solver owing to the extensive sparsity of the matrix of constraints.

4.2.3 Iteration

Procedurally, an iteration of this algorithm differs very little from an iteration of ordinary

label propagation. First, determine where every node would prefer to move, and how

much each node would gain from its preferred relocation. Second, sort the node gains

for each shard pair and construct the Constrained Relocation linear program. Third,

solve the linear program, which determines how many nodes should be moved, in order,

between each shard pair. Fourth, move these nodes. This constitutes one iteration.

When compared to ordinary label propagation, the only difference is that rather than

moving every node that asks to move, our algorithm pauses, solves a linear program,

and then proceeds to move as many nodes as possible without breaking the balance. As

with ordinary label propagation, the bulk of the work lies in determining where every

node would prefer to move (which requires examining every edge in the graph). The

entire balancing procedure has a complexity that depends principally on the number of

shards and is nearly independent of the graph size (the number of constraints per shard

pair, K, can depend weakly on the graph size in practice).

4.2.4 Approximating utility gain

If the number of constraints becomes limiting, we note that it is possible to greatly re-

duce the number of constraints by a very slight approximation of the objective function.

We emphasize that constraint satisfaction is still guaranteed under this approximation,

85



it is merely the utility gain of the iteration that is approximated.

Observe that for each shard pair, the handful of nodes that stand to gain the most

are likely to be contribute relatively unique utility levels, and so contribute many of

the constraints in the problem. This is rather unnecessary, since those nodes are highly

likely to move. Thus, by disregarding the unique utility levels of the first C nodes, all

very likely to move, and approximating them by the mean gain of this population, we can

greatly reduce the number of constraints. To exemplify this approximation, in Figure 4.3

we show one of the piecewise linear concave utility functions from a problem instance,

corresponding to movement between two shards, and the threshold on the number of

users that were allowed to be moved in the optimal solution.

4.3 Geographic initialization

When applying greedy algorithms to intricate objective functions, initialization can dra-

matically impact performance. For the balanced label propagation algorithm presented

in the previous section, random initialization — in proportions that are feasible with re-

spect to the sizing constraints — might be considered an adequate initialization. How-

ever, by using node data to initialize our assignment, we find that we can improve on

both the number of iterations and the final sharding quality. How well one can do in

this initial assignment depends on what auxiliary node information is available. For

example, on the web one might use domain, or in a computer network one might use

IP-address. In the case of the Facebook social network, we find that geographical in-

formation gives us good initial conditions. Thus, in this section we will examine an

initial graph partitioning based on a geographic partitioning in the absence of any graph

structure.

Facebook’s geolocation services assign all 800 million users to one of approximately

750,000 cities wordwide. The idea behind our geographic partitioning is to harness the
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intuitive and well-studied properties of geography as a strong basis for graph assortativ-

ity in social networks: individuals have an elevated tendency to be friends with people

geographically close to them [11].

A key challenge, however, when partitioning a realtime service based on geographic

information, is the heterogeneity of traffic between geographies. When balanced propa-

gation is run under random initialization, it is our experience that the local improvements

made by the algorithm tend to not discover any large-scale geographic structure. Yet

some parts of the world are much more active on Facebook than others, and as a result,

they have more friends and their friend-of-friend calculations are much more expensive.

As a result, it is desirable to configure the geographic initialization so that shards with

higher than average degree contain fewer nodes, and shards with a lower than average

degree contain more.

To achieve this, instead of cutting up the geographic space to form shards of ex-

actly equal population, we consider a more general cost model, based on the number

of users in each city and also on the average degree of users in that city. Note that in

this particular sharding challenge we are most concerned with sharding node attributes,

and the distribution of the graph (as an edge list) is not as central a concern, but instead

we are considering average degree as a means of distributing computational load. For

each city c with population nc and average degree dc, the cost of the city is given by

Cost(c) = nc(1 + λdc), where λ is a weight parameter determined by the proportion of

node attribute data to edge attribute data to be sharded. For our applications we used

λ = 1/davg, the reciprocal of the average degree across the graph.

4.3.1 Balloon partitioning algorithm

The partitioning algorithm we will present here constructs shards centered at the most

populated cities in the data set, beginning with the most populated city not yet assigned
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Figure 4.4: Geometric illustration of the greedy geographic initialization of a shard,
with cities as circles with radii indicating cost. The algorithm centers itself at the most
costly remaining city, C, and then fills a shard with the cities closest to that city, with a
penalty for crossing national borders. When the shard is full, fractional assignments are
made.

to a shard, and grows circular ‘balloons’ around these cities.

This balloon algorithm, illustrated in Figure 4.4, consists of a single iterated

loop. For each of the i = 1, . . . , n shards, the goal is to obtain shards each with

(
∑

cCost(c))/n in cost assigned to them. The algorithm first finds the city C with the

largest unassigned cost. The city C is selected as the center-point of a new shard, and

all cities with a non-zero remaining cost are sorted according to their geodesic distance

from C. Since edges in the social network are overwhelmingly internal to countries,

a negative distance reward is introduced to all cities in the same country as C. This

ensures that the algorithm finishes assigning each country completely before moving on

to another country. Beginning with C, the algorithm progresses down the sorted list

of cities, and while there is capacity, it assigns each city to the shard currently being
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Figure 4.5: User traffic differences between countries. Comparing traffic for New
Zealand, Italy, and Chile to that of Facebook as a whole, the intraday variability in
users accessing the site from a single country far exceeds the variability of the site as
whole.

constructed. When the algorithm does change countries, a new negative distance reward

is given to cities in that country. Eventually, when there is not enough capacity in the

current shard to accommodate an entire city, a fractional assignment is noted, and the

cost is subtracted from the remaining cost of that city.

The result is n shards, centered over population centers, each containing all nodes

within a certain radius of the central city, adaptively configured such that each shard

is of equal burden under the cost model. A handful of cities are assigned to multiple

shards according to a fractional division. The map of cities to shards is used to assign

nodes to shards, and for those cities with distributed fractional assignments (at most n

of the 750,000 cities), simple randomization is used, distributing nodes in such cities

proportional to the fraction of the cost mapped to each shard. A map of the Facebook

social graph partitioned into 234 partitions is shown in Figure 4.6.

After performing an initial aggregation of the social graph, this assignment algorithm

operates only on the set of cities and not on the social graph itself, making it possible to

quickly run this complete assignment on a single machine in a single processor thread

in seconds, with no actual graph analysis being necessary.
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Figure 4.6: Output of the greedy geographic initialization algorithm for the ∼ 750, 000
known cities, obtaining 234 shards of equal cost, with each shard’s most costly city
marked. As described in the text, the algorithm is aware of national borders.

It should be noted that the geographic sharding performed here is ultimately static,

and as new users register to join the site, these users can be assigned in accordance with

the map from cities to shards. We note that as the geographic distribution of Facebook

users slowly changes over time, re-sharding may be useful.

4.3.2 Oversharding

Selecting shards for a real-time graph computation service from a geographic initial-

ization has another serious practical challenge that we have not yet discussed. For the

purposes of load-balancing a service that handles real-time requests, it is important to

mitigate potentially problematic peak loads that result from assigning geographically

concentrated regions to the same shard. A three day window of user traffic is shown in

Figure 4.5, where we see that local geographic regions experience much more volatile

peak loads than the full site on average. Our solution to this problem was to create 3

times more shards than there are machines, and then sort shards by the longitude of their
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most populated city. The shards are then distributed cyclically across the n machines so

that, e.g., shard 1, (n + 1), and (2n + 1) in longitudinal order are assigned to the same

machine.

4.4 Evaluating Performance

In this section we discuss the performance of our balanced label propagation algorithm

as a graph cutting procedure applied to the Facebook social graph, under both random

and geographic initialization. In Section 5 we evaluate shardings of this graph when

deployed for a realtime graph computation service. To align the discussion between the

two sections, we evaluate the algorithm by sharding the graph into 78 shards, where

the service we evaluate later will consist of 78 machines, evenly split across two server

racks. We also provide a comparison to performance on a publicly available social graph

collected from LiveJournal [10].

4.4.1 Sharding the Facebook social graph

For the random initialization, all shards of the partition were constrained to symmetri-

cally balanced node counts. Meanwhile, for the geographic initialization, partition size

constraints were inherited from the output of the geographic balloon algorithm initial-

ization, where partition node counts were tuned to mitigate the differences in average

degree between different parts of the globe, as discussed in the previous section. All

iterations were allowed a five percent leniency, f = 0.05, and utility approximation was

used within the constrained relocation problem for the leading 5, 000 nodes between

each shard pair.

The matrix of shard-shard edge counts resulting from both geographic and random

initialization are shown in Figure 4.7, while the convergence properties observed when
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iterating the algorithm are shown in Figure 4.8. We observe that initializing the algo-

rithm with a greedy geographic assignment greatly accelerates the convergence of the

algorithm. Using geographic initialization, before even beginning the propagation we

see that 52.7% of edges are locally confined. After a single propagation, fully 71.5% of

edges are local, and after four iterations this rises to 75.2%.

For the geographic initialization instance, we overshard by a factor of 3, meaning

that 234 virtual shards were distributed to 78 actual shards. When oversharding for

distributed computation, it is useful to distribute closely related shards across machines

located on the same physical rack. While this does not effect the fraction of edges

that are local to individual machines, the order in which the shards are assigned does

effect the cross-rack traffic. Machines within the same rack have relatively fast high-

bandwidth connections compared with machine in different racks, where all traffic must

pass through a switch. Since the service we study later is split across two racks, we

distribute our 234 geographic shards across the 78 machine shards by splitting them

into two block groups. The first block was set to contain all shards centered in countries

in North America, Africa and Oceania, and the second block contains all shards centered

in South America, Europe and Asia, with shards centered in the Middle East balancing

between the two sets. The two-block structure is clearly visible in Figure 4.7, but we

reiterate that it does not effect the local edge fraction.

For comparison, we investigate the performance of the algorithm when initialized

with a random distribution, also shown in Figure 4.8. After 8 iterations, this random

initialization achieved a local fraction of 44.8%.

When nodes are initially distributed at random, it implies that a node’s neighbors are

initially distributed uniformly across all shards. For graphs where nodes possess many

neighbors, as in the Facebook social graph, this implies that it can take many iterations

until the initial symmetry of the random initialization is broken. In an important demon-
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Figure 4.8: Iterating the balanced label propagation algorithm with 78 shards, from a
geographic and random initialization. Left: the fraction of edges that are local as the
balanced propagation is iterated. Right: the fraction of nodes that are moved in each
iteration.

stration of how label propagation functions, we observed that applying our balanced

label propagation algorithm from a random initial condition meant that 96.7% of nodes

were relocated during the first iteration, a chaotic shuffling that slows the algorithm’s

ability to converge. To address this, in the random initialization shown here, the linear

program constraints were modified to only move nodes that claimed to gain 2 or more

additional neighbors post-propagation. This ‘restrained’ modification meant that only

67.0% of nodes were relocated during the first iteration. This ‘restraint’ was used during
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the first two steps of the random initialization algorithm, as denoted in the Figure 4.8,

after which it was removed and ordinary balanced label propagation was performed.

Why should one bother to move nodes that only stand to gain one additional neigh-

bor co-location? As another instructive highlight of how balanced label propagation

operates, nodes that are mostly indifferent to moving offer very useful ‘slack’ for the

linear program: by moving them, it is possible to balance the constraints while still

moving many nodes who stand to make larger gains.

The Facebook social graph is enormous, and these computations do not come

cheaply. The graph aggregations required for a single iteration utilizes approximately

100 CPU days (2395 CPU hours) on Facebook’s Hadoop cluster. For comparison, a sim-

ple two-sided join aggregation of the graph edge list (such as computing a shard-shard

matrix in Figure 4.7) uses 72 CPU days. Once the aggregations have been performed,

the linear program is solved in a matter of minutes on a single machine using lpsolve

[20].

While the randomly initialized algorithm only achieves 44.8% locality compared to

75.2% locality for the geographic initialization, the random initialization produces an

impressively homogenous sharding free of ‘hot’ shard-shard connections. It would be

interesting to iterate the random initial algorithm further, but running the random initial-

ization for 8 iteration utilized approximately 800 CPU days. Examining the properties

of balanced label propagation more throughly on modest graphs would be important

future work.

4.4.2 LiveJournal comparison

Because the Facebook social graph is not publicly available, we also report the per-

formance of our algorithm when attempting to partition a large publicly available so-

cial network dataset, LiveJournal [10]. The LiveJournal graph, collected in 2006, is a
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Figure 4.9: Balanced label propagation applied to the LiveJournal social graph, parti-
tioning the graph into 20, 40, 60, 80, and 100 shards. Left: the fraction of edges that are
local as the balanced propagation is iterated. Right: the fraction of nodes that are moved
in each iteration.

directed graph consisting of of 4.8 million nodes and 69.0 million arcs. Because we

are principally interested in partitioning undirected graphs, we consider the undirected

graph consisting of 4.8 million nodes and the 42.9 million unique edges that remain and

disregarding directionality.

The resulting graph is more than 20 times smaller than the Facebook graph by node

count and more than 1000 times smaller by edge count. The average degree is only 8.8,

making partitioning much less challenging. Because the public LiveJournal graph lacks

complete geographic information, we consider only random initialization. We consider

the performance of cutting the graph into 20, 40, 60, 80, and 100 symmetric shards, with

five percent leniency (f = 0.05) and no approximation of the utility gain. Splitting into

20 shards took less than 3 minutes using a single threaded C++ implementation, while

splitting into 40 shards took 8 minutes, and splitting into 100 shards took 88 minutes.

The results from partitioning the LiveJournal graph are shown in Figure 4.9, where

we see that when partitioning the LiveJournal graph into 20 parts, 63% of edges are

local to a single partition. Impressively, when the algorithm is scaled up to 100 shards,
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fully 51% of edges are local to a single partition. Overall, we observe that the fraction

of edges that are local is nearly unchanged when increasing the number of shards from

40 to 100. We interpret this performance to be a consequence of the greedy nature

of the algorithm, as the algorithm principally exploits local graph relocations that are

significantly below the scale of any of the shard sizes, while global improvements are

less possible. A further investigation of this scaling behavior in relation to studies of

natural social network cluster sizes [97] would make for interesting future work.

4.5 Realtime Deployment

In this section, we present the results of a large-scale experiment where the sharding

algorithm we develop is evaluated in a realtime distributed graph computation service:

Facebook’s ‘People You May Know’ (PYMK) service for suggesting friend recommen-

dations.

Many pages on Facebook occasionally feature a small module presenting users with

‘People You May Know’. The PYMK service has contributed significantly to the growth

of Facebook, accounting for around 40% of all friending on Facebook. The friend sug-

gestions that populate this module are mostly (but not exclusively) generated by the

system described in this work.

4.5.1 People You May Know

The PYMK system computes, for a given user u, and each friend-of-friend (FoF) of u,

w, a feature vector xu,w of graph metrics based on the local structure between u and w.

The system then uses machine learning to rank all the suggestions w for u, based on

the graph-based feature vector xu,w, as well as demographic features of u and w. The

system described here returns the top 100 suggestions for each user (out of a potential of
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many thousands of FoFs). Regeneration of suggestions is performed when a user logs

in to Facebook and no recent suggestions for the user are found in the cache.

The PYMK service consists of 78 machines split across two racks (there are 40

machines to a rack, but one machine per rack is reserved as a backup). All 78 machines

feature 72 GB of memory, which is used to store two in-memory indexes. First, a

mirrored data structure containing basic demographic data of all 800 million users (19

GB). Second, a sharded index containing the friendlist data of those users assigned to

the individual machine (∼40 GB). All in-memory indexes are stored as open-addressed

hash tables. To handle the full query volume, a number of identical copies of this 78

machine system run in parallel.

Prior to the optimizations presented in this work, users were assigned to machines

based on their user ID mod 78, see Figure 4.1. This naive sharding has a direct advan-

tage over any sophisticated sharding in that the shard ID is encoded directly in the user

ID. Introducing the more sophisticated shardings used in this work requires adding an

additional data structure serving as a shard map, mirrored on all machines, to map the

800 million user IDs to shard IDs.

The evaluation we perform examined three separate instances of the PYMK service

operating in parallel, receiving identical and evenly balanced shares of the service load,

differing only with regard to their sharding configuration. The three systems were:

• Baseline sharding: assigning users by the modulus sharding, ‘user ID % 78’.

• Geographic sharding: assigning users using 234 geographic shards, with no la-

bel propagation.

• Propagated sharding: one step of balanced label propagation after geographic

initialization.

Because of resource constraints we were only able to test three parallel systems, and did

not deploy a propagated sharding featuring random initialization, which required much
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more iteration and achieved worse edge localization than the unpropogated geographic

initialization.

First, we characterize the impact of our sharding by evaluating our algorithm’s

ability to concentrate requests to few machines, reporting on the number of machines

queried across requests. Next, because intelligent sharding disadvantages the PYMK

service by requiring an additional round of requests (as described in the introduction),

we evaluate the algorithm’s ability to reduce to total query time of FoF requests, with

particular attention to the slowest machine, as well as the ability to reduce the total

cross-machine network traffic within the full system.

The evaluation was performed during the three day period September 20-22, 2011.

Because the evaluation required the dedication of considerable hardware resources (6

racks of machines, in total 240 machines), testing on exactly identical hardware config-

urations was not possible (it was important to test the three systems in parallel so that

no external events could impact the results). All machines featured 72GB of memory,

while the machines in the baseline system and the geographic system featured 12 CPUs

and the machines in the propagated system featured 24 CPUs, all 2.67 GHz Intel Xeon

processors. This difference of CPU resources is one of the main reasons we focus our

analysis on hardware invariant performance evaluations such as request concentration

and network traffic measurements.

4.5.2 Request concentration

Here we consider the concentration of requests in a realtime setting, recording the num-

ber of machines accessed per query. Because the PYMK system has to wait for the

slowest query response before performing ranking, the number of machines queried is

an important performance characteristic. By waiting for fewer machines, the expected

time needed to wait until the slowest machine has returned data can be significantly
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decreased.

Baseline performance. In the baseline system, users are sharded by their Facebook

user ID modulus 78. Prior to the sharding optimizations in this work, the distribution

of requests on each machine was not instrumented, and because there were significant

architectural changes to the service when the sharding optimization was introduced, the

baseline system was not upgraded to include instrumentation.

Fortunately, the trailing digits of a user’s ID are uncorrelated from the trailing dig-

its of the user IDs of their friends, and thus the question of how many machines are

queried during an average aggregation can be computed directly given only the degree

distribution of the graph.

Consider a graph sharded across m machines. Let Xi, i = 1, . . . ,m be the Bernoulli

random variables indicating whether a given user has a friend on machine i. Let Y =
∑m

i=1Xi be the total number of machines that are queried when this user’s friends data

is aggregated. By the law of total probability,

Pr(Y = k) =

∑

d

Pr(Y = k| deg(u) = d) · Pr(deg(u) = d),

where deg(u) is the degree of the user, and Pr(deg(u) = d) is the empirical Facebook

degree distribution. Focusing on the term Pr(Y = k| deg(u) = d),

Pr(Y = k| deg(u) = d) =

Pr

(
m∑

i=1

Xi = k| deg(u) = d

)
,

where Xi are Bernoulli distributed random variables. To derive the distribution of Xi,

notice that, ∀i,

Pr(Xi = 1| deg(u) = d) =

= 1− Pr(Xi = 0| deg(u) = d)

= 1− (1− 1/m)d .
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Figure 4.10: Number of non-local machines queried per request during friend-of-friend
calculations in PYMK. The median number of machines queried for the baseline, geo-
graphic, and once-propagated shardings were 59, 12, and 9 machines, respectively.
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Figure 4.11: Query time and network traffic for the three different shardings applied to
the PYMK service. Because network traffic is instrumented on a machine level, the data
also captures daily traffic bursts which correspond to loading data into the service. For
this reason, momentary outliers should be considered benign.

Thus, we see that Xi ∼ Bernoulli(1 − (1 − 1/m)d), ∀i. While these m variables are

identically distributed, they are unfortunately not independent.

Since the variables Xi are not independent, we resort to a simple Monte Carlo sim-

ulation of the distribution Pr(Y = k| deg(u) = d) for a uniformly sharded system.

Combing this distribution with the empirical degree distribution from PYMK queries,

Pr(deg(u) = d), gives us the theoretical request concentration distribution for the base-

line system.
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Results. In Figure 4.10, we compare the distribution of requests as measured for

the two algorithms and computed for the baseline system. Note that our measurement

of request concentration is not affected by differences in hardware or traffic volumes

between the three systems.

The median number of non-local machines queried for the baseline, geographic,

and once-propagated shardings were 59, 12, and 9 machines, respectively. Notice that

under the old naive system, the most common occurrence was that friend lists had to

be aggregated from all 77 non-local machines, while the modes for the new shardings

are 6 non-local machines for the geographic sharding and 3 non-local machines for the

once-propagated sharding.

4.5.3 Query time and network traffic

Here we report on the relative performance of the three systems with regard to query

time and network traffic. While the hardware specifications of the three PYMK services

were not identical, with the propagated sharding operating with twice as many CPUs

per machine, we still report the query times, noting that each query was run in a single

thread, and that for the most part, the number of cores per machine did not come into

play. The baseline and geographic systems were run on identical hardware, and in any

event the bandwidth comparisons are independent of the machine specifications and can

thus be taken at face value.

The time-averages of the average machine query times for the baseline, geographic,

and once-propagated shardings were 109ms, 68ms, and 55ms, respectively. The time-

averages of the maximum machine query times were 122ms, 106ms, and 100ms, re-

spectively (not plotted). Notice that the geographic system, which operated on hardware

identical to the baseline system, featured an average query time only 62.3% of the base-

line system. The total improvement when comparing to the propagated system was an
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average query time only 50.5% of the baseline system.

Recall that the two optimized systems being tested are disadvantaged compared to

the baseline system because they must perform an additional query redirection, since

the web tier does not possess a copy of the shard map and doesn’t know which of the 78

machines the user lives on.

Meanwhile, when we turn to network traffic, the time-averages of the average ma-

chine traffic for the baseline, geographic, and once-propagated shardings were 35.3

MB/s, 21.8 MB/s, and 13.1 MB/s, respectively. The time-averages of the maximum

machine traffic (not plotted) were 103.6 MB/s, 68.0 MB/s, and 51.0 MB/s, respectively.

The systems were configured to be equally load-balanced, each handling equal thirds of

the total traffic. Thus, the machines in the propagated system saw network traffic levels

only 37.1% of the baseline system machines.

4.6 Discussion

The problem of clustering a graph for community detection is a widely studied active

area of research within computer science and physics [115, 119]. In this work, we

approach the rather different challenge of graph partitioning. We develop and evaluate

a novel algorithm, balanced label propagation, for partitioning a graph while managing

these challenges.

We show that by using intelligent partitioning in the context of load-balancing a

realtime graph computation service, we are able to dramatically outperform a baseline

configuration. While a random initialization of our balanced label propagation algo-

rithm produces an impressive sharding, we show that by using user metadata we can

derive a sharding that is greatly superior to a random initialization while still maintain-

ing uniformity in shard sizes. These techniques were applied to a single system in this

work, but we believe that they are broadly applicable to any graph computation system
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that distributes graphs across many machines.
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CHAPTER 5

RESTREAMING GRAPH PARTITIONING: SIMPLE VERSATILE

ALGORITHMS FOR ADVANCED BALANCING

Partitioning large graphs is difficult, especially when performed in the limited mod-

els of computation afforded to modern large scale computing systems. In this work we

introduce restreaming graph partitioning and develop algorithms that scale similarly to

streaming partitioning algorithms yet empirically perform as well as fully offline algo-

rithms. In streaming partitioning, graphs are partitioned serially in a single pass. Re-

streaming partitioning is motivated by scenarios where approximately the same dataset

is routinely streamed, making it possible to transform streaming partitioning algorithms

into an iterative procedure.

This combination of simplicity and powerful performance allows restreaming algo-

rithms to be easily adapted to efficiently tackle more challenging partitioning objectives.

In particular, we consider the problem of stratified graph partitioning, where each of

many node attribute strata are balanced simultaneously. As such, stratified partitioning

is well suited for the study of network effects on social networks, where it is desirable

to isolate disjoint dense subgraphs with representative user demographics. To demon-

strate, we partition a large social network such that each partition exhibits the same

degree distribution in the original graph — a novel achievement for non-regular graphs.

As part of our results, we also observe a fundamental difference in the ease with

which social graphs are partitioned when compared to web graphs. Namely, the modular

structure of web graphs appears to motivate full offline optimization, whereas the locally

dense structure of social graphs precludes significant gains from global manipulations.
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5.1 Introduction

The tremendous scale of modern graph datasets has rapidly increased the demand for

efficient algorithms for graph analysis. With the World Wide Web featuring over a

trillion URLs and online social networks such as Facebook featuring more than a billion

active users, it is becoming increasingly difficult to perform even the simplest graph

computations.

The tractability of large-scale graph computations often hinges upon the ability to

efficiently partition a graph for distributed computation. The scale of this partitioning

varies depending on the domain, but the lesson is the same: partitioning massive graphs

for distributed computation can greatly decrease both network communication and run-

time (see Chapter 4), while even in-memory computations can benefit from partitioned

graph arrangements [92].

But partitioning large graphs is difficult, especially within modern limited models of

large-scale computation. Responding to this, the goal of streaming graph partitioning is

to partition the node set of a graph into k balanced disjoint subsets by serially examining

only individual nodes and their local adjacency list. Importantly, a streaming graph

partition algorithm is forced to make a permanent partition assignment the very first (and

only) time it examines each node, as opposed to allowing the partitioning to come from

post-processing, as in the semi-streaming model of computation [4]. The motivation for

streaming graph partitioning is that often times the distributed systems performing graph

computations are ‘anyways’ required to load a graph from a datastore, and one might as

well execute this loading process – streaming the graph to the computation system – in

an intelligent manner.

We introduce restreaming graph partitioning, which is motivated by situations

where the same graph – or approximately the same graph – can be expected to be re-

peatedly streamed on a regular basis. After all, if a graph is going to be reloaded from
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a datastore with any regularity, streaming graph partitioning is making it unnecessarily

difficult for itself by starting over from scratch with each stream. Instead, restream-

ing graph partitioning retains node assignments across streams, allowing subsequent

streams to produce partitionings with fewer cut edges.

In fact restreaming can produce partitions of such quality and with such modest

memory requirement that restreaming graph partitioning merits serious consideration as

an efficient iterative streaming algorithm well outside the motivating ‘data loading’ con-

text. Surprisingly, we find that after only a handful of restreams, our restreaming graph

partition algorithms converge upon graph partitions competitive with or even superior to

a fully offline partitioning algorithms, METIS [79], in a number of important instances.

In particular, restreaming graph partition algorithms cut fewer edges than METIS in

social graphs, though they cut more edges in web graphs. Indeed, it is well understood

that social graphs and web graphs are quite different in structure [151, 37]. We posit

that there is also a fundamental difference in the partitioning of web and social graphs.

While the local dense structure of social graphs precludes very high quality partition-

ings, it rewards the local greedy moves of restreaming graph partitioning. Meanwhile,

the fully offline optimization of METIS is able to discover the extremely high quality

partitions of web graphs through multi-level coarsening and non-greedy Kernighan-Lin

refinement [83]. Given the increasing size and importance of social graphs, it is impor-

tant to develop new lightweight algorithms specially designed with these in mind.

Towards this goal, we construct restreaming versions of the streaming partitioning

algorithms Linear Deterministic Greedy (LDG) and FENNEL, algorithms developed

in [142] and [149, 150] respectively, both greedy heuristic approaches to partitioning.

Where Linear Deterministic Greedy uses multiplicative weights to guarantee balance,

FENNEL mimics modularity maximization [19, 120] by using regularization to direct a

greedy assignment strategy towards balance. This regularization approach does not it-
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self guarantee balanced partitions, and as part of this work, we show how one can ‘tem-

per’ such a regularization over the course of restreams to obtain a restreaming variation

on FENNEL that can ultimately guarantee balance in a way that ordinary modularity

maximization can not.

Given that restreaming these highly scalable algorithms can bring them into competi-

tion with fully offline methods, we show how their scalability makes it possible to adapt

towards much more sophisticated objectives. Indeed, for certain types of distributed

graph computation it can be desirable to obtain more sophisticated notions of balance

than just the number of nodes [79]. It is straight forward to modify any of the streaming

and restreaming algorithms we consider to balance any cumulative node attribute, for

example the total degree of each partition, (or as in [149], the number of internal edges

on each partition).

But beyond simply balancing one attribute, we show that significantly more sophis-

ticated notions of balance, similar to multi-constraint balance from high-performance

computing [79], are obtainable. First, we show how the multiplicative weights in LDG

can be modified to balance both node count and edge count at once. Moreover, we show

how restreaming LDG and FENNEL can be adapted to efficiently perform stratified

graph partitioning, a constrained graph partitioning problem we introduce that aims not

just to balance nodes across partitions, but also ensure that each partition of the graph

exhibits a balanced proportion of nodes from an arbitrary number of strata. This offers

an important contribution for the study of social networks, making it possible to create

dense balanced clusters, where each cluster contains an equal proportion of users from

several age strata, countries, activity levels, and friend counts. As an important demon-

stration, we study degree-stratified graph partitioning, where each balanced cluster is

required to exhibit the same degree distribution.

The social network example above addresses an important problem in online so-
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cial network experimentation [53]. In such experiments, one wishes to select treatment

and control groups that are structurally isolated from each other in order to minimize

spillover effects. Without stratified balance constraints, it is natural to partition a social

graph either geographically or according to some other basis of assortativity. As a result,

ordinary graph partitioning, without stratified balance, risks producing graph partitions

that are highly heterogenous, none of the partitions being representative. In introduc-

ing stratified graph partitioning, we hope to contribute a highly scalable partitioning

methodology useful as a stratification technique for variance reduction in network ex-

perimentation (see Chapter 6), and also cross validation on graphs [116].

Lastly, we discuss parallelization. A notable drawback of single-shot streaming par-

titioning is that it is fundamentally serial, making parallelization difficult without contin-

uous communication between parallel workers [149]. These algorithms are specifically

intended for partitioning extremely large graphs, and we show how restreamed graph

partitioning can be easily parallelized – communicating only between stream iterations

– at only a small cost in the final partition quality.

5.2 Streaming partitioning

Multi-way graph partitioning is a classical NP-hard problem. Even the two-way parti-

tioning problem minimum graph bisection is NP-hard [59], with the best known polyno-

mial time approximation algorithm achieving only a O(
√
n log(n))-factor approxima-

tion [52] for general graphs. Similarly, semi-streaming algorithms can guarantee weak

approximation bounds for graph cuts while utilizing only O(npolylog(n)) memory [4].

Meanwhile, a robust community of research has emerged to develop efficient algorithms

that achieve good performance on real world graphs. Among existing offline algorithms,

we focus on the METIS package [79] for graph partitioning, and use METIS as our run-

ning basis for comparison when comparing online to offline methods.
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In this section, we review streaming graph partitioning and introduce restreaming

graph partitioning. We show how FENNEL, a streaming algorithm previously without

balance guarantees, can be ‘tempered’ to guarantee balance. We then discuss how our

restreaming framework is capable of both managing dynamic graph partitioning and

efficient parallelization.

5.2.1 The streaming model

We now review the basic details of the streaming partitioning model. Let P t =

{P t
1, . . . , P

t
k} denote a k-way partitioning of the node set at time t, where P t

i is the

set of nodes in partition i at time t and P t(u) denotes the partition that contains node u.

A streaming algorithm is sequentially presented a node u and its neighbors N(u), and it

must assign u to a partition i utilizing no more information than contained in the current

partitioning P t. Over the course of a stream, the time counter advances by one for each

node it examines.

Since streaming graph partition algorithms make decisions based on an incomplete

but increasing amount of information, the order in which data is streamed can affect

performance, and worst-case orders can easily undermine the streaming approach [142,

149]. However, it has generally been observed that presenting the data in either a breadth

first, depth first, or in a random order does not greatly alter performance [142, 149]. Of

these orders, a random ordering is the simplest to guarantee in large-scale streaming

data scenarios, and so we restrict our analysis to only consider random node orders for

simplicity. When considering restreams later on, we focus on persistent random orders.

Finding partitions that are strictly balanced, where |Pi| = |Pj| for all i and j, is

rarely necessary. As a result, many partitioning algorithms [80, 149] include a ‘slack-

ness’ parameter, explicitly or implicitly allowing deviations from exact balance, often

in exchange for superior cuts. As part of this work, we present algorithms for exact
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balance and also modifications for ‘slacked’ balance.

Stanton and Kliot [142] considered a broad range of heuristics for performing

streaming node assignment. Of these heuristics, the method with the best performance

was ‘Linear Deterministic Greedy’ (LDG), where each node u is assigned to the parti-

tion

argmax
i∈{1,...,k}

|P t
i ∩N(u)|

(
1− |P

t
i |
Ci

)
, (5.1)

where Ci is the maximum capacity of partition i. Notice that since this examines each

node but once, |P t
i ∩ N(u)| will be exactly 0 for many nodes at the start of the stream,

and |P t
i ∩ N(u)| is only likely to reflect the actual number of neighbors a node shares

with a partition near the end of the stream. Single shot LDG exhibits impressive per-

formance despite this handicap. While the original investigation of LDG was merely

heuristic, subsequent work has shown that an algorithm inspired by LDG is capable of

recovering a planted partitioning from a basic infinite random graph model, and also that

no streaming algorithm can obtain an o(n) approximation with a worst-case or random

stream ordering on an arbitrary graph [143].

Meanwhile, FENNEL [149], a streaming generalization of modularity maximiza-

tion, attempts to maximize the following objective function:

H =
∑

u∈V

|P t(u) ∩N(u)| − α

2

k∑

i=1

|P t
i |γ. (5.2)

Notice that when γ = 2, the regularization becomes functionally equivalent to

α
∑

i

(|P t
i |

2

)
, which is equivalent to modularity maximization with an Erdős-Rényi base-

line with probability α. As a streaming greedy maximization, maximizing this objec-

tive function corresponds to assigning u to the partition that maximizes the change

∆H t
i (u) = |P t

i ∩ N(u)| − α
2
[(|P t

i | + 1)γ − (|P t
i |)γ]. To first order, this corresponds

to maximizing |P t
i ∩N(u)| − αγ

2
(|P t

i |)γ−1, where the first order approximation is exact
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for γ = 2. Thus the FENNEL assignment rule is:

argmax
i∈{1,...,k}

|P t
i ∩N(u)| − αγ

2
(|P t

i |)γ−1. (5.3)

In this work we focus our analysis of FENNEL on the special case of γ = 2, namely

streaming modularity maximization.

While the multiplicative weights of LDG enforce exact balance, the additive regular-

ization used by FENNEL only ensures approximate balance. While it is straightforward

to show that this assignment mechanism must produce exact balance for α > dn
k
e, such

a large α focuses almost entirely on balancing and leads to a very poor partitioning.

Nonetheless, when run at appropriately chosen values of α, FENNEL performs very

well on a number of real world networks, producing very nearly balanced partitions

[149].

The first phase of many common multiphase modularity maximization algorithms,

including the Louvain method [19] and modularity-specialized label propagation [102],

bear a clear similarity to FENNEL. The connection between regularizing label propa-

gation and modularity maximization was also outlined by Barber and Clark [18]. By

restreaming FENNEL, we show how modularity maximization also fits well within a

restreaming framework.

5.3 Restreaming Partitioning

For the distribution of very large graphs, the utility of streaming graph partitioning de-

rives from the routine need to stream graph datasets, and when performing this streaming

it can be worthwhile to attempt to partition the dataset with some intelligent assignment

mechanism. It is equally routine, however, that the streaming process is repeated peri-

odically, and often frequently.

For example, a social networking service might be interested in a streaming parti-
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tioning algorithm because it loads a graph from memory to dedicated ranking servers on

a daily basis (see Chapter 4). However, if a streaming algorithm sees nearly the same

data routinely, it is clearly worth considering what information can be retained between

streams so as to improve performance.

We thus introduce the concept of restreaming graph partitioning, and in particular we

present restreaming versions of LDG and FENNEL, the two single-shot streaming graph

partitioning algorithms presented earlier. In our restreaming framework, subsequent

streams of LDG and FENNEL have access to the result of previous streams. We consider

a graph as being streamed in a random but persistent order each time it is restreamed,

and we use persistent (de-randomized) tie breaking across restreams.

5.3.1 Restreaming LDG

In the case of restreaming LDG, P t
i records the most recent partition assignment, either

from the previous stream or, when present, from the current stream. Additionally, let xti

record the number of nodes assigned to i during the current stream. The assignment rule

for restreaming LDG remains functionally similar to (5.1),

argmax
i∈{1,...,k}

|P t
i ∩N(u)|

(
1− xti

Ci

)
. (5.4)

Since each xti increases over each stream from 0 to Ci, the partitioning achieves exact

balance at the end of each stream. Conceptually, restreaming LDG resembles a repeated

shooting method, where each time the partitions are built up anew, with the benefit of the

probable assignments for nodes not yet seen in the current stream. Since LDG matches

the constraints Ci after each restream, it is ideal for applications with hard constraints,

otherwise these hard constraints can be loosened by setting ΣiCi > n.
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5.3.2 Restreaming FENNEL

FENNEL can be restreamed without any change to its objective function. Whereas re-

streaming LDG rebuilds the partitioning each time, and thus involves implicit notions

of the beginning and end of a stream, FENNEL’s objective function can be computed

without knowing its location in the stream. On the other hand, this property of FEN-

NEL prevents it from reaching exact balance after a single stream. In the restreaming

scenario, however, we show that it is possible to achieve exact balance using FENNEL

by ‘tempering’ the solution towards increasingly balanced partitions over repeated re-

streams. Namely, with each restream we run FENNEL with a larger value of parameter

α, denoting the value of α during stream s as αs. In this way tempering increasingly

emphasizes balance, while granting time in the earlier streams to finding high quality

partitions. Alternatively, had FENNEL been run with too high an initial α, the algorithm

would have resorted to placing nodes in partitions based solely on balance and without

regard to the quality of the partitions. As noted earlier, once each node is reconsidered

by a stream of FENNEL for which αs > dnk e, the assignment mechanism will neces-

sarily return a balanced partition. We formalize this observation through the following

proposition.

Proposition 5.3.1. If αs > dnk e then at the completion of restream s, |P t
i | ∈ {bnk c, dnk e}

for all i.

Proof. Suppose not: then at some time τ ≤ t a node u was assigned to a partition i

where |P τ
i | − |P τ

j | ≥ 1 for j being the smallest partition. Since |P τ
i ∩N(u)| ≤ |P τ

i |:
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∆Hτ
i (u) = |P τ

i ∩N(u)| − αs|P τ
i |

≤ |P τ
i | − αs|P τ

i |

= −|P τ
i |(αs − 1),

∆Hτ
j (u) = |P τ

j ∩N(u)| − αs|P τ
j | ≥ 0− αs|P τ

j |.

Then:

∆Hτ
i (u)−∆Hτ

j (u) = αs|P τ
j | − |P τ

i |(αs − 1)

≤ αs|P τ
j | − (|P τ

j |+ 1)(αs − 1)

= |P τ
j |+ 1− αs.

As P τ
j is the smallest partition, |P τ

j | ≤ dnk e − 1, meaning that ∆Hτ
i (u)−∆Hτ

j (u) < 0

— a contradiction as u would have then been assigned to partition j.

When the maximum degree d < dn
k
e it can be shown the requirement is relaxed to

αs > d. It’s also clear that if restreaming FENNEL finds a balanced partition for some

α < dn
k
e then further tempering will not change that partition.

Proposition 5.3.2. If at some time t0, P t0+j = P t0 for all j = 1, . . . , n (one complete

stream), |P t0
i | ∈ {bnk c, dnk e} for all i, and αs+1 ≥ αs for all s then P t = P t0 for all

t > t0.

Proof. We prove this by induction. Suppose no node has moved from time t0 to some

t > t0 + n, and node u in partition j is the next node in the stream at time t + 1. Since

no nodes have moved for time n, |P t+1−n
i ∩N(u)| = |P t+1

i ∩N(u)| and thus:

∆H t+1
j −∆H t+1−n

j = −(αs+1 − αs)(|P t+1
j | − 1),

∆H t+1
i −∆H t+1−n

i = −(αs+1 − αs)|P t+1
i | u 6∈ i.
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Since α is increasing and |P t+1
j − 1| ≤ |P t+1

i | then ∆H t+1
j − ∆H t+1−n

j ≥ ∆H t+1
i −

∆H t+1−n
i . Thus, as uwas assigned to j at time t+1−n, and ties are broken consistently,

u will also be assigned to j at time t+ 1.

As we discuss later, when using tempered FENNEL to partition real world graphs we

observe that the quality of the final partitioning is relatively insensitive to the initial value

of α0. This is a somewhat surprising observation that has the added benefit of removing

the α0 selection problem present in single stream FENNEL. Meanwhile, there remains a

trade off between computation and performance in choosing how fast to temper, though

our empirical results suggest that moderate numbers of restreams are typically sufficient.

5.3.3 Convergence over restreams

Every node allocation/relocation in FENNEL increases its objective function. As there

are only a finite number of different possible partitions, FENNEL will converge to a

final partitioning at any fixed α given enough restreams, even if α is not tempered all

the way to the bound established in Proposition 1. But since α is in theory a continu-

ous parameter, we may be concerned that the solutions differ at exponentially different

values of α. While it is not of practical importance — since it is always possible to

make large changes in α when tempering — we establish a resolution limit of α, the

granularity below which the partitioning solution can not change. We show that there

are only polynomially many unique values of α for which any changes in partitioning

can occur. We emphasize that this resolution limit is much finer than the amount that we

choose to increase α by in practice, but this investigation illustrates important structures

of the tempering framework.

Proposition 5.3.3. For some αs > 0, and a partitioning P t, then for any increasing

sequence of L values αs < αs+1 < . . . < αs+L ≤ αs + 1
n2 on which FENNEL is
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repeatedly restreamed to convergence, there is at most one value of αs+`, 0 ≤ ` ≤ L,

such that the converged partitioning at αs+` is different from the converged partitioning

at αs+`+1.

Proof. Suppose there are two distinct pivotal αs+`, denoted, αa and αb > αa, such that

at αa+1 and αb+1 FENNEL converges to a different partition than at αa and αb. Let

δaij(u) = |P ta
i ∩N(u)|−|P ta

j ∩N(u)|, and xaij = |P ta
i |−|P ta

j |. It must then be that there

are partitions i, j, p and q and nodes u and v such that for these different α values, nodes

would switch between partitions implying a change in sign of ∆H ta
i (u)−∆H ta

j (u) and

of ∆H tb
p (v)−∆H tb

q (v) giving:

δaij(u)− αaxaij ≥ 0 δaij(u)− αa+1x
a
ij < 0

δbpq(v)− αbxbpq ≥ 0 δbpq(v)− αb+1x
b
pq < 0.

Notice that it must be that xaij 6= 0 and xbpq 6= 0. Without loss of generality assume that

each xaij > 0 and xbpq > 0, then for u or v to be assigned to i and p respectively, it must be

that δaij(u) ≥ 0 and δbpq(v) ≥ 0 as well. Thus it can be shown that: (αb+1 − αa)xaijxbpq >

δbpq(v)xaij − δaij(u)xbpq > 0. Notice then that c = δbpq(v)xaij − δaij(u)xbpq is both positive

and an integer, yielding that αb+1 − αa > c
xaijx

b
pq
> 1

n2 , a contradiction.

Note that this convergence is in theory incredibly slow. In practice it is vastly more

efficient to increase α in larger steps, and without waiting for convergence at each value

of α. Indeed, the tempering results we present later correspond to increasing α at an

exponential rate, from an initial α0 to the critical α for which FENNEL is guaranteed to

be balanced.

When restreaming FENNEL, tempered or untempered, it ultimately converges only

to one of many local maxima of its modularity-like objective function. As discussed in

[62], modularity typically has many high quality local maxima, which is of great practi-
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cality if one merely needs to find high quality partitions, but also of grave concern when

using modularity to discern ‘community structure’, something we are not attempting.

LDG does not have any of the same convergence guarantees. Indeed, restreaming

LDG does not necessarily converge. Furthermore, should it converge, the resulting par-

titioning would depend upon the specific node ordering: if the graph was restreamed in

a different order then nodes would be very likely to move. By comparison, the conver-

gence of FENNEL and tempered FENNEL outlined above do not depend on any per-

sistence in the node order. Despite the lack of convergence guarantees, LDG performs

well, returning a balanced set after each restream. This lack of convergence guarantee

is also one of LDG’s strengths, enabling it to handle dynamic graphs very well.

5.3.4 Dynamic graphs

In real world settings, large empirical graph datasets are typically not static graphs, but

rather they are slowly varying in time, with their edges sets evolving gradually relative to

their immense size. In such cases, the graph may be expected to change slightly between

streams, and it is important to consider the ability of both restreaming algorithms to

accommodate dynamic graphs. One advantage of restreaming LDG is that it doesn’t

require any modification: since LDG rebuilds the graph each stream there aren’t any

restrictions on how the graph changes each time.

On the other hand, restreaming FENNEL is able to accommodate dynamic graphs

only when α is held fixed in a manner similar to ordinary single stream FENNEL. When

FENNEL is tempered across restreams, the resulting partitioning becomes increasingly

rigid, unable to adjust to dynamic changes in a graph. In this way, FENNEL is only

appropriate for dynamic graphs in its untempered form, precluding situations where

exact balance is important.
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5.3.5 Parallelization

Despite the simple computations and manageable memory footprint involved in LDG

and FENNEL, in some settings the sheer size of the dataset being streamed may make

parallelization highly desirable. Indeed, parallelizing single stream LDG and FENNEL

is possible, but requires that a list of size O(n) on each parallel thread is kept con-

current. In contrast, restreaming LDG and FENNEL can be parallelized without any

communication during a stream, instead relying purely on inter-stream communication;

thus speeding the streaming process by a factor equal to the number of machines used.

Namely, forW workers, each of which will see a unique random 1
W

fraction of a stream,

we parallelize restreaming LDG and FENNEL in the following way. Each worker par-

titions their own n
W

nodes by utilizing the previous streams partitioning for nodes not in

their stream, and the most recent destination of those n
W

nodes in their stream. Between

restreams, each worker reports on their share of the partitioning and this compiled list

is distributed to all workers for the next restream. For the first stream, we can initialize

the partitioning utilizing a hash function applied to the node indices. Notice that this

puts the first stream of LDG and FENNEL at significant performance disadvantage, but

interestingly, this is largely overcome by additional restream iterations.

Thus these algorithms can be parallelized without communication for only a small

partition quality tradeoff. Note that the parallelized implementation of the offline parti-

tioning package METIS [80] also requires a similarly small quality tradeoff.

5.4 Generalized types of balance

In many situations the true objective function may depend not on balancing nodes, but

on balancing edges, a combination of nodes and edges or some other more complicated

function. In this section, we show how our restreaming algorithms can be modified
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to guarantee more general types of balance. In particular, we present a new balancing

objective we call stratified graph partitioning, where an arbitrary number of node strata

are each required to be balanced.

5.4.1 Balancing other quantities

The simplicity and directness of LDG and modularity maximization allow for straight-

forward generalizations. Indeed, notice that we can modify restreaming LDG’s objective

function, Equation 5.4, to balance the sum of the degrees of each partition. The objective

function can be modified as:

argmax
i∈{1,...,k}

|P t
i ∩N(u)|

(
1− xti

Ci

)
, (5.5)

where xti = Σu∈P t
i
|N(u)| is the sum of the degrees in P t

i and Ci is set to be dm
k
e. More

generally, xti can be the sum of any positive node weights cu, and each Ci = 1
k

∑
u cu,

is simply the total possible sum split k ways. In this framework cu = 1 corresponds to

node balance, cu = |N(u)| corresponds to balancing degrees, and cu = 1 + n
2m
|N(u)|

treats node balance and degree balance as equally important. Here cu can in fact be any

arbitrary positive attribute calculated for each u a priori, such as the number of friends

of friends on a social network, or the number of log records each node produced in the

past month.

Note that when running this more general version of LDG, exact balance of the

node attribute is no longer precisely guaranteed due to granularity. For example, when

balancing degree and assigning a very high degree node late in a stream, that node will

invariably push the sum term xti in Equation 5.5 over the threshold Ci. Thus LDG will

only balance partitions to within the maximum value of cu.

Similarly to LDG, FENNEL can be reinterpreted as a function on the total weights

of each partition, rather than just the number of nodes. The general assignment rule can
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then be stated simply as

argmax
i∈{1,...,k}

|P t
i ∩N(u)| − αxti. (5.6)

The above modifications make it possible to address alternative notions of balance,

which raises the important question of whether multiple balancing objectives can be

obtained simultaneously. For LDG, we note that it is possible to adjust the multiplicative

weights to attempt to balance multiple objectives simultaneously. Consider adjusting

LDG such that u is assigned to:

argmax
i∈{1,...,k}

|P t
i ∩N(u)|

(
1− xti

Ci

)∏

`

f`((ȳ
t
`,i − ȳ`)(ȳ` − y`,u)) (5.7)

where ȳ` is the average value of objective ` on G, ȳt`,i is the average value of ` in P t
i at

time t, y`,u is the value of ` at u and f`(x) are positive increasing functions. For example,

if the argument of f` is (di− 2m
n

)(2m
n
−du) where di is the average degree of nodes in P t

i ,

and du is the degree of u, then notice that the quantity is positive if and only if adding

u to P t
i moves the average degree of P t

i towards the average degree of the graph. Thus,

the strict LDG multiplicative forcing term forces this assignment rule to exactly balance

nodes, while the second multiplicative forcing term biases the algorithm towards edge

balance. While this algorithm does not guarantee strict balance on both edges and nodes

simultaneously, it does balance these well empirically.

5.4.2 Stratified balance

Optimizing against multiple constraints rapidly increases the difficulty of the partition-

ing problem. In contrast, we introduce a restricted problem whose goal is to balance the

counts of nodes from several distinct strata. This problem arises when it is important

that each individual partition resembles the demographics of a full graph. For exam-

ple, in social network experiments it can be important that test groups have an equal

number of men and women, or have similar levels of educational attainment. If the net-
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work is assortative under these demographic traits then a good partitioning algorithm

risks producing slices that are very different demographically. A particularly interesting

instance of this problem is creating graph partitions that share the same degree distribu-

tions (up to integer divisibility). A node’s degree in the full graph G is always available

to the partitioning algorithm, and it commonly relates to important demographic node

attributes such as age or geography, making balancing degree distributions a good proxy

for demographic balance.

While in many situations producing miniaturized, representative partitions is a nat-

ural goal, it is quite different from the goal, or output, of many graph partitioning algo-

rithms. For example, spectral partitioning tends to produce bisections with very differ-

ent degree distributions, usually with one dense connected partition containing nodes of

high degree and the other with low degree nodes that were successively ‘trimmed’ away

from the first partition [140]. Colloquially this tendency of spectral partitioning can be

described as partitioning a graph into a ‘hairball’ and ‘whiskers’ [96]. For graphs that

have a pronounced core-periphery structure [24], algorithms that minimize the edge cut

of a partition frequently (and rightfully so) split the graph between the core and the pe-

riphery. This results in a high quality cut between partitions with very different degree

distributions, and typically, very different types of nodes.

Similarly, algorithms that aim to perform community detection are frequently tested

for their ability to take graphs and produce communities whose nodes are fundamentally

different. Indeed, community detection algorithms frequently demonstrate their effec-

tiveness by revealing hidden node information utilizing only network information. In

this way, community detection algorithms are frequently calibrated to create the worst

possible test groups, and the partitions that least resemble the graph as a whole.

In contrast, the goal of stratified graph partitioning is to produce partitions where

a node’s membership in a partition reveals no information of that node’s strata. We
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formalize the problem as:

Problem 5.4.1 (Stratified Graph Partitioning). For a graph G = (V,E), where nodes

belong to L disjoint strata Vi such that ∪Li=1Vi = V , partition the graph into k dis-

joint partitions Pj such that ∪kj=1Pj = V , maximizing the number of uncut edges

1
2

∑
u |P (u) ∩ N(u)|, subject to the constraints that |Pi ∩ Vj| ≤ Cij for all i, j, and

constraints Cij .

Setting each Cij = d |Vj |
k
e requires that each partition proportionally represent the

distribution of the strata in the original graph.

Despite the daunting increase in constraints, it is easy to adjust both of our simple

restreaming algorithms to address this problem. For LDG this simply requires keeping

additional indexing, such that a node u ∈ V` is assigned to:

argmax
i∈{1,...,k}

|P t
i ∩N(u)|

(
1−

xti,`
Ci,`

)
. (5.8)

Likewise, one can adjust FENNEL’s additive regularization, Equation 5.6, so that when

assigning node u ∈ V`, each xi is also dependent on `, becoming xi,`.

Stratified graph partitioning has an interesting intersection with METIS in the high

performance computing literature. Namely, in multi-constraint graph partitioning each

node has an associated weight vector wu, and the partitioning aims to balance the sum

of these weights for each partition [80]. The primary aim of multi-constraint graph

partitioning in the context of high performance computing is to enable efficient paral-

lelization of large computations by dividing meshes into partitions with similar number

of nodes and other attributes that affect either memory or computational requirements.

The multi-constraint graph partitioning approach can apply to the stratified graph parti-

tioning problem as well: simply consider a vertex of strata j as having weight wu[j] = 1

and wu[i] = 0 otherwise.

However, the added generality of multi-constraint partitioning leads the METIS im-

plementation to have a memory footprint of Õ(m+Ln), as it stores each node’s weight
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vector in memory. Meanwhile, the modified restreaming version of LDG requires only

memory Õ(n + Lk). While in the high performance computing literature, it may not

be necessary to have large L, if the goal is to match degree distributions it is frequently

desirable to have L on the order of Θ(m
n

), at which point L has a large impact on the

runtime of METIS. For example, whereas METIS was able to partition the LiveJournal

graph with 9GB of RAM, when doing 100 degree strata the memory footprint rises to

23GB. Meanwhile, the memory footprint of LDG barely changes as the number of strata

are increased.

Finally, there is an important difference in emphasis between multi-constraint graph

partitioning and stratified graph partitioning. While multi-constraint graph partitioning

can perform stratified graph partitioning, it does so by balancing marginalized traits and

not joint constraints. One must be careful of this distinction lest one may balance gender

and degree by stacking one partition with high degree women and low degree men, and

the other with high degree men and low degree women. This would not produce slices

with comparable composition. Instead, one should make a Cartesian product of the

features so that each combination of features belongs to a distinct strata.

When it is important to do streaming or restreaming multi-constraint partitioning

instead of stratified partitioning, we note that the framework of Equation 5.7 in Section

4.1 can be adjusted to allow multiple constraints, though we do not examine this in our

results.

5.5 Results

We now examine the performance of our restreaming partitioning algorithms on ten em-

pirical graphs: six social graphs and four web graphs, listed in Table 1. All our graphs

were obtained from the SNAP repository [139] except for the Orkut graph [110]. Graphs

were made undirected by reciprocating all arcs. Self-loops and nodes with degree zero
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Graph |V | |E| avg deg LDG reLDG reFENNEL reFENNEL parallel METIS(1.001) METIS(1.03)
wikivote 7115 100762 28.32 0.867 0.775 0.685 0.775 0.822 0.764
astro-ph 18771 198050 21.10 0.623 0.439 0.413 0.438 0.535 0.372
enron 36692 183831 10.02 0.664 0.490 0.471 0.482 0.855 0.411
slashdot 77360 469180 12.12 0.821 0.730 0.673 0.686 0.711 0.693
livejournal 4846609 42851237 17.68 0.561 0.390 0.328 0.351 0.309 0.301
orkut 3072441 117185083 76.28 0.645 0.428 0.421 0.585 0.376 0.353
web-nd 325729 1090108 6.69 0.313 0.128 0.121 0.181 0.036 0.036
web-stanford 281903 1992636 14.13 0.378 0.207 0.176 0.237 0.123 0.114
web-berkstan 685230 6649470 19.41 0.341 0.203 0.188 0.283 0.117 0.111
web-google 875713 8644106 19.74 0.290 0.163 0.160 0.206 0.009 0.008

Table 5.1: The percentage of edges cut (lower is better) for the basic methods studied in
this work applied to a diverse collection of graphs partitioned into 40 different partitions.
The restreamed methods were run for 10 restreaming iterations while the parallel ver-
sions were split across 30 workers and run for 30 restreaming iterations. METIS(1.03)
is run with 3% slack, while METIS(1.001) is run with slack 0.1% slack. For each graph
the best score excluding METIS(1.03) is bolded.

were removed in order to aid the interpretability of the fraction of edges cut by a parti-

tioning algorithm.

The densest graph we analyze here was the Orkut graph, with 3.1 million nodes and

117 million edges. The algorithms we discuss scale effortlessly beyond this size, but we

are not able to analyze graphs larger than this in comparison to METIS — performing

ordinary node balanced graph partitioning on Orkut in METIS already requires 18 GB

of RAM, making larger graphs intractable. For the Orkut graph our restreaming LDG

algorithm utilizes just 200 MB of RAM for the same graph. Since the average degree

of the Orkut graph is 76, this is very nearly the expected factor of 76 times smaller. In

order to compare our results to METIS we focus our analysis on graphs up to this size.

5.5.1 Node balance results

We begin by discussing our performance for the standard node balanced partitioning

problem. When evaluating single-shot streaming graph partitioning algorithms, it is un-

clear if the gap in quality between streaming and offline algorithms should be attributed

to the limitations of the single-shot view of the graph or attributed to the limited local

means of the algorithm. After examining the performance of our restreaming algo-
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Figure 5.1: Iterating the restreaming partitioning process for static LiveJournal and
Orkut graphs. The left column reports results for restreaming LDG, the right column
for restreaming FENNEL. Dashed lines are METIS. Iteration zero corresponds to single-
shot streaming implementations, though note that FENNEL does not guarantee balance
until its final iteration due to ongoing tempering.

rithms, it is clear that much of the gap can be attributed to the limits of the single-shot

view, not to a fundamental limitation of local algorithms.

Both restreaming LDG and tempered FENNEL were effective on all the graphs.

However, in examining our results, it is important to distinguish between ‘web’ graphs,

whose structure derives from the structure of hyperlinks on the internet, and ‘social’

graphs, whose structures represent relationships people create between each other. In-

deed, there are well known differences between the structure of web and social graphs,

both in their degree distribution, effective diameter, their clustering coefficients [151]

and in their compressibility [37]. Social graphs are known to have significantly higher
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average local clustering coefficient, indicating that the structure around individual nodes

is far from divisible, while web graphs are known to compress much better than social

graphs.

Consistent with these observations, web graphs have extremely high quality cuts,

as seen in Table 5.1, with METIS dividing web-google into 40 partitions cutting fewer

than 1% of the edges. Indeed, the multiple stages of METIS are very well suited to

discovering the extremely high quality cuts of such modular graphs. Meanwhile, the

highly local nature of the restreaming graphs prevents them from discovering the same

high quality partitioning on web graphs that METIS is able to find. On the other hand,

the dense local structure of social graphs coupled with the apparent lack of the same

modular organization inherent in the web is better suited to the restreaming graphs. As

such, all the restreaming algorithms are competitive with METIS on the social graphs,

see Figure 5.1. In particular, restreaming FENNEL performs the best of the restreaming

algorithms, out-competing METIS with 0.1% slack on four graphs and even METIS

with 3% slack on two graphs. We emphasize that restreaming tempered FENNEL is

finding exactly balanced partitions and using only O(n) memory.

Furthermore, over the course of iterating restreams, we observe that both restreaming

LDG and FENNEL converge rapidly, and at times exponentially, as seen in Figure 5.1.

This provides an advantageous tradeoff between computational work and the quality of

the cut. An exponential convergence rate towards the local optima is consistent with the

view that during each streaming pass of the algorithm, nodes are placed permanently

in their final position with independent probability p and in a transient position with

probability (1− p). Thus, after r restreams only (1− p)r edges remain in a transient as-

signment. The details of this view are not reflected in the actual microstructure of any of

the resteaming results we observe, but we believe that this observation provides a help-

ful intuition for how restreaming algorithms attempt to correct mistakes from previous
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Figure 5.2: The quality of partitions as a function of the number of nodes per shard,
for the LiveJournal and Orkut graphs. Notice how the restreamed algorithms essentially
match METIS.

iterations.

Note that all the results for FENNEL in this section are for tempered FENNEL, and

as such, node balance is only guaranteed at the end of the final iteration, so the flat

performance of tempered FENNEL over the course of the many iterations in Figure 5.1

hides the fact that the algorithm is maintaining the quality of the partitioning while mov-

ing towards balance. Indeed, for some graphs, in order to achieve balance, restreaming

FENNEL must decrease the quality of the partitioning during the tempering process.

As a last look at node balance, we report the results of partitioning two large graphs,

LiveJournal and Orkut, into many many partitions. In Figure 5.2 we observe that our

restreaming algorithms match METIS in performance across the full range of partition

counts. In fact, when METIS is run with 0.1% slack and k ≥ 200, the quality of the

partitioning deteriorates rapidly, making it significantly worse than the quality of LDG

and FENNEL. Since tight slack was not the intended use case for METIS, we report our

results for METIS using 1% slack. Still, we see in Figure 5.2 that when Orkut is divided
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Figure 5.3: The effect of varying α0 when tempering, where α0 is the initial value of α
and α is increased to the critical αc over 20 restreams. For k = 2, 4, 20, 40 shards, we
see that for sufficiently small α0 the quality of the edge cut does not depend much on
the initial α0 from which the tempering begins.

into 4000 partitions (of roughly 1000 nodes each), the quality decreases markedly. This

deterioration in quality does not occur at 4000 partitions if the slack setting for METIS

is further increased.

5.5.2 Tempering

The FENNEL algorithm is only able to achieve high quality cuts with exact balance

because restreaming allows for tempering. Figure 5.3 displays the effect that the initial

choice of α0 has when tempering FENNEL over 20 restreams to the critically stable

α, αc discussed in Proposition 1. Figure 5.3 shows that when tempering FENNEL, the

final quality of the ultimate tempered partitioning is only sensitive to the choice of the

initial α0 when it is very large, but almost entirely insensitive to the choice as long as

α0 is small enough. Note that during a single stream, the choice of α can have a very

large impact on both the quality of the partition and the departure from balance, but

this importance disappears when tempering. Notice also that this observation appears

to apply independently over the number of partitions being sought. This fortunately
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removes some of the parameter complexity inherent in a single stream of FENNEL

while also allowing FENNEL to achieve exact balance.

5.5.3 Other types of balance

In Section 4 we developed a range of different balance constraints that restreaming par-

titioning could be adopted towards. Here we report on the quality of the graph cuts ob-

tained when restreaming algorithms are applied towards balance constraints other than

node count. A discussion of stratified graph partitioning follows.

In Figure 5.4, we observe the differences in edge balance and degree counts when

running LDG under different constraints: balancing nodes, balancing edges, balancing a

sum of the two, or balancing both via the multi-balance multiplicative weights developed

in Section 4.1. When either the degree counts or the node counts are left unconstrained,

the algorithms clearly utilize the unconstrained flexibility. Thus, in situations where

balancing degrees is important, using a method designed to balance nodes would be a

poor proxy for the original problem. Indeed, even balancing based on a linear function

of nodes and degree fails to balance both. Alternatively, when LDG (and FENNEL,

though the results are not shown) are altered to handle multiple constraints, they are

able to balance both nodes and degrees for only a small cost in partition quality. The

quality of the partitions is seen in Figure 5.4. It is clear from this figure that stronger

notions of balance than just node balance are within reach using simple restreaming

algorithms. We now turn our attention to stratified partitioning.

5.5.4 Stratified balance results

The primary goal in stratified balance is to produce partitions representative of the orig-

inal degree distribution, such that the nodes of degree di in the original graph are split
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Figure 5.4: The tradeoffs between node balance and degree balance when LiveJournal
is partitioned into 40 different partitions utilizing several different objectives. We see
that stronger notions of balance cost very little in partition quality.
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LiveJournal from restreaming stratified LDG where portions of the degree distribution
are explicitly balanced across 1, 2, 10 and 100 different stratified strata. As the number
of strata increases the degree distributions become increasingly similar, though at a small
cost in the quality of the edge cut.

equally between all the partitions. As seen in Figure 5.5, stratified LDG is able to pro-

duce partitions of increasing similarity at a small cost in quality. Since the strata in

Figure 5.5 correspond to separately balancing separate contiguous degree strata, strati-

fied graph partitioning requires that the cumulative degree distributions (CDFs) for all

partitions intersect at all strata boundaries. While exactly matching the degree distribu-
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tions of a graph would require as many strata as there are unique degrees, using only

100 strata produces very similar degree distributions, and even only 10 strata corrects

for the majority of the difference.

Increasing the number of constraints reduces the quality of the partitioning slightly,

in a manner similar to multi-constraint METIS. For a large number of strata, multi-

constraint METIS and LDG produce partitionings of increasingly similar quality, such

that by 100 strata on LiveJournal, METIS and LDG produce edge cuts within 1.5%

of each other. Meanwhile, multi-constraints trials executed in METIS required signif-

icantly more memory than the corresponding single constraint trials, while stratified

LDG only required mildly more time and memory than unstratified LDG.

5.5.5 Parallel results

Finally we consider the results of parallelizing LDG and FENNEL as discussed in Sec-

tion 3.5. Figure 5.6 shows the effect of parallelizing LDG and FENNEL on the Live-

Journal graph, partitioning it into 40 different partitions. Note that the first stream of the

parallelized version cuts a large percentage of the graph’s edges, and it takes longer for

these parallelized versions to approach their final quality. However, within less than 20

restreams both algorithms, whether run on 2, 10 and 100 workers, produce partitions of

quality comparable to the single thread versions of LDG and FENNEL while only re-

quiring that 1
2
, 1

10
and 1

100
of the graph be streamed to each worker respectively. Thus, for

a small price in partition quality and an increase in the number of restreams, LDG and

FENNEL can be effectively parallelized to many machines. The poor partition quality

after the first stream shows that this parallelization strategy can not be applied to single

shot streaming partitioning, and that restreaming plays an important role in enabling

parallelization.
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Figure 5.6: The percentage of edges cut for parallelized versions of FENNEL and LDG
when partitioning LiveJournal into 40 partitions while parallelized across 2, 10 and 100
machines. Notice that while there is a small cost associated with increasing the number
of machines, it is small compared to the gains of restreaming.

5.6 Conclusion

Given the enormous sizes of social and web graphs it is increasingly important to care-

fully navigate the fundamental tradeoff between the quality of a graph partition and the

memory and computational requirements to compute it. To address this tradeoff, we in-

troduce the problem of restreaming graph partitioning and develop two algorithms that

iteratively partition graphs using only the same O(n) memory required in single pass

streaming graph partitioning. Surprisingly, our results demonstrate that these restream-

ing algorithms are able to close much of the distance between streaming graph partition

algorithms and full offline graph partitioning optimization suites—at times even outper-

forming them. The competitiveness of these streaming graph partitions is particularly

noticeable on social graphs. Furthermore, while restreaming graph partitioning pre-

serves the same small memory footprint as single shot streaming algorithms, restream-

ing allows for true parallelization, with communication between workers only between

streams.

The simplicity and effectiveness of these algorithms allows for their easy modifica-

tion to a number of more complex objectives. In particular we introduce the problem
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of stratified graph partitioning as a way of creating partitionings where the composi-

tion of each partition resembles the composition of the graph as a whole. Despite the

significant increase in constraints in stratified graph partitioning, simple modifications

to a restreaming algorithm allows for the partitioning of a large social graph such that

each partition has the same degree distribution. This particular application addresses a

fundamental question in the design of test groups on social graphs.
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CHAPTER 6

GRAPH CLUSTER RANDOMIZATION: NETWORK EXPOSURE TO

MULTIPLE UNIVERSES

A/B testing is a standard approach for evaluating the effect of online experiments;

the goal is to estimate the ‘average treatment effect’ of a new feature or condition by

exposing a sample of the overall population to it. A drawback with A/B testing is that

it is poorly suited for experiments involving social interference, when the treatment of

individuals spills over to neighboring individuals along an underlying social network. In

this work, we propose a novel methodology using graph clustering to analyze average

treatment effects under social interference. To begin, we characterize graph-theoretic

conditions under which individuals can be considered to be ‘network exposed’ to an

experiment. We then show how graph cluster randomization admits an efficient exact

algorithm to compute the probabilities for each vertex being network exposed under

several of these exposure conditions. Using these probabilities as inverse weights, a

Horvitz-Thompson estimator can then provide an effect estimate that is unbiased, pro-

vided that the exposure model has been properly specified.

Given an estimator that is unbiased, we focus on minimizing the variance. First, we

develop simple sufficient conditions for the variance of the estimator to be asymptot-

ically small in n, the size of the graph. However, for general randomization schemes,

this variance can be lower bounded by an exponential function of the degrees of a graph.

In contrast, we show that if a graph satisfies a restricted-growth condition on the growth

rate of neighborhoods, then there exists a natural clustering algorithm, based on ver-

tex neighborhoods, for which the variance of the estimator can be upper bounded by

a linear function of the degrees. Thus we show that proper cluster randomization can

lead to exponentially lower estimator variance when experimentally measuring average

treatment effects under interference.
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6.1 Introduction

Social products and services – from fax machines and cell phones to online social net-

works – inherently exhibit ‘network effects’ with regard to their value to users. The

value of these products to a user is inherently non-local, since it typically grows as

members of the user’s social neighborhood use the product as well. Yet randomized ex-

periments (or ‘A/B tests’), the standard machinery of testing frameworks including the

Rubin causal model [133], critically assume what is known as the ‘stable unit treatment

value assumption’ (SUTVA), that each individual’s response is affected only by their

own treatment and not by the treatment of any other individual. Addressing this tension

between the formalism of A/B testing and the non-local effects of network interaction

has emerged as a key open question in the analysis of on-line behavior and the design of

network experiments [53].

Under ordinary randomized trials where the stable unit treatment value assumption is

a reasonable approximation — for example when a search engine A/B tests the effect of

their color scheme upon the visitation time of their users — the population is divided into

two groups: those in the ‘treatment’ group who see the new color scheme A and those

in the control group who see the default color scheme B. Assuming there are negligible

interference effects between users, each individual in the treated group responds just as

he or she would if the entire population were treated, and each individual in the control

group responds just as he or she would if the entire population were in control. In

this manner, we can imagine that we are observing results from samples of two distinct

‘parallel universes’ at the same time — ‘Universe A’ in which color scheme A is used

for everyone, and ‘Universe B’ in which color scheme B is used for everyone — and we

can make inferences about the properties of user behavior in each of these universes.

This tractable structure changes dramatically when the behavior of one user i can

have a non-trivial effect on the behavior of another user j — as is the case when the
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feature or product being tested has any kind of social component. Now, if i is placed

in Universe A and j is placed in Universe B, then our analysis of i’s behavior in A is

contaminated by properties of j’s behavior in B, and vice versa; we no longer have two

parallel universes.

Average Treatment and Network Exposure Our goal is to develop techniques for

analyzing the average effect of a treatment on a population when such interaction is

present. As our basic scenario, we imagine testing a service by providing it to a subset

of an underlying population; the service has a ‘social’ component in that i’s reaction to

the service depends on whether a neighbor j in the social network also has the service.

We say that an individual is in the treatment group if the individual is provided with the

service for the test, and in the control group otherwise. There is an underlying numerical

response variable of interest (for example, the user’s time-on-site in each condition), and

we want to estimate the average of this response in both the universe where everyone

has the service, and the universe where no one has the service, despite the fact that —

since the population is divided between treatment and control — we don’t have direct

access to either universe.

We express this question using a formalism introduced by Aronow and Samii for

causal inference without this stable unit treatment value assumption [9], with strong

similarities to similar formalism introduce by Manski [105], and adapt it to the problem

of interference on social networks. Let ~z ∈ {0, 1}n be the treatment assignment vector,

where zi = 1 means that user i is in the treatment group and zi = 0 means the user is in

the control. Let Yi(~z) ∈ R be the potential outcome of user i under the treatment assign-

ment vector ~z. The fundamental quantity we are interested in is the average treatment

effect, τ , between the two diametrically opposite universes ~z = ~1 and ~z′ = ~0,

τ(~z = ~1, ~z′ = ~0) =
1

n

n∑

i=1

[
Yi(~z = ~1)− Yi(~z′ = ~0)

]
. (6.1)
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This formulation contains the core problem discussed in informal terms above: unlike

ordinary A/B testing, no two users can ever truly be in opposing universes at the same

time.

A key notion that we introduce for evaluating (6.1) is the notion of network expo-

sure. We say that i is ‘network exposed’ to the treatment under a particular assignment

~z′ if i’s response under ~z′ is the same as i’s response in the assignment ~1, where ev-

eryone receives the treatment.1 We define network exposure to the control condition

analogously.

With this definition in place, we can investigate several possible conditions that con-

stitute network exposure. For example, one basic condition would be to say that i is

network exposed to the treatment if i and all of i’s neighbors are treated. Another would

be to fix a fraction q > 0 and say that i is network exposed if i and at least a q frac-

tion of i’s neighbors are treated. The definition of network exposure is fundamentally a

modeling decision by the experimenter, and in this work we introduce several families

of exposure conditions, each specifying the sets of assignment vectors in which a user is

assumed to be ‘network exposed’ to the treatment and control universes, providing sev-

eral characterizations of the continuum between the two universes. Choosing network

exposure conditions is crucial because they specify when we can observe the potential

outcome of a user as if they were in the treatment or control universe, without actually

placing all users into the treatment or control universe.

Graph Cluster Randomization Following the formulation of network exposure, a

second key notion that we introduce is a generic graph randomization scheme based on

graph clustering, which we call graph cluster randomization. At a high level, graph

cluster randomization is a technique in which the graph is partitioned into a set of clus-

1We also discuss adaptations to the case where the responses in these two cases differ only by a small
parameter ε.
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ters, and then randomization between treatment and control is performed at the cluster

level. The probability that a vertex is network exposed to treatment or control will then

typically involve a graph-theoretic question about the intersection of the set of clusters

with the local graph structure near the vertex. We show how it is possible to precisely

determine the non-uniform probabilities of entering network exposure conditions under

such randomization. Using inverse probability weighting [72], we are then able to de-

rive an unbiased estimator of the average treatment effect τ under any network exposure

for which we can explicitly compute probabilities.

We motivate the power of graph cluster randomization by furnishing conditions un-

der which graph cluster randomization will produce an estimator with asymptotically

small variance. First, we observe that if the graph has bounded degree and the sizes

of all the clusters remain bounded independent of the number of vertices n, then the

estimator variance is O(1/n), a simple but illustrative sufficient condition for small-

ness. The key challenge is the dependence on the degrees — in general, a collection of

bounded-size clusters can produce a variance that grows exponentially in the vertex de-

grees. More precisely, when performing graph cluster randomization with single-vertex

clusters, the variance of the estimator admits a lower bound that depends exponentially

on the degrees. This raises the important algorithmic question of how to choose the

clustering: bounded-size clusters provide asymptotically small variance in the number

of vertices n, but if the clusters are not chosen carefully then we get an exponential

dependence on the vertex degrees which could cause the variance to be very large in

practice.

Cluster Randomization in Restricted-Growth Graphs We identify an important

class of graphs, which we call restricted-growth graphs, on which a non-trivial clus-

tering algorithm admits an upper bound on the estimator variance that is linear in the

degrees of the graph. The restricted-growth condition that we introduce for graphs is an
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expansion of the bounded-growth condition previously introduced for studying nearest-

neighbor algorithms in metric spaces [77], designed to include low-diameter graphs in

which neighborhoods can grow exponentially. Formally, let Br(v) be the set of ver-

tices within r hops of a vertex v; our restricted-growth condition says that there exists a

constant κ, independent of the degrees of the graph, such that for all vertices v and all

r > 0, we have |Br+1(v)| ≤ κ|Br(v)|. Note the comparison to the standard bounded-

growth definition, which requires |B2r(v)| ≤ κ|Br(v)|, a much stronger condition and

not necessary for our results to hold.

For restricted-growth graphs, we provide a clustering algorithm for which the es-

timator variance grows only linearly in the degree. The challenge is that the variance

can grow exponentially with the number of clusters that intersect a vertex’s neighbor-

hood; our approach is to form clusters from balls of fixed radius grown around a set of

well-separated vertices. The restricted growth condition prevents balls from packing too

closely around any one vertex, thus preventing vertex neighborhoods from meeting too

many clusters. We note that for the special case of restricted-growth graphs that come

with a uniform-density embedding in Euclidean space, one can use the locations of ver-

tices in the embedding to carve up the space into clusters directly; the point, as in work

on the nearest-neighbor problem [77], is to control this carving-up at a graph-theoretic

level rather than a geometric one, and this is what our technique does.

Our class of restricted-growth graphs provides an attractive model for certain types

of real-world graphs. Restricted-growth graphs include graphs for which there exists an

embedding of the vertices with approximately uniform density in a Euclidean space of

bounded dimension, such as lattices or random geometric graphs, where edges connect

neighbors within some maximal metric distance.

Summary Our work thus occupies a mediating perch between recent work from the

statistical literature on causal inference under interference [147, 9, 146], as well as recent
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work from the computer science literature on network bucket testing [12, 81]. Our con-

tribution extends upon the ordinary inference literature by developing exposure models

and randomization schemes particularly suited for experiments on large social graphs,

also showing how previous approaches are intractable. Meanwhile, we show that re-

ducing estimator variance involves non-trivial graph-theoretic considerations, and we

introduce a clustering algorithm that improves exponentially on baseline randomization

schemes. Our contribution also connects to existing work on network bucket testing

by contributing an exposure framework for the full graph and a randomization scheme

that is capable of considering multiple exposure conditions at once, a necessity for true

concurrent causal experimentation.

In Section 2 we describe our models of network exposure. In Section 3 we present

our graph cluster randomization scheme, an algorithm for efficiently computing expo-

sure probabilities, and an unbiased estimator of average treatment effects under graph

cluster randomization. In Section 4 we introduce restricted-growth graphs, and show

how the estimator has a variance that is linearly bounded in degree for such graphs.

Section 5 concludes.

6.2 Network exposure models

For A/B randomized experiments, the treatment condition of an individual decides

whether or not they are subject to an intervention. This typically takes two values:

‘treatment’ or ‘control’. In most randomized experiments, the experimenter has explicit

control over how to randomize the treatment conditions, and generally individuals are

assigned independently. Meanwhile, the exposure condition of an individual determines

how they experience the intervention in full conjunction with how the world experiences

the intervention. Without the stable unit treatment value assumption, at worst each of the

2n possible values of ~z define a distinct exposure condition for each user. Aronow and
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Samii call this “arbitrary exposure” [9], and there would be no tractable way to analyze

experiments under arbitrary exposure.

Consider the potential outcomes for user i. In the “arbitrary exposure” case, Yi(~z)

is completely different for every possible ~z. This means that we will never be able to

observe Yi(~z) for either ~z = ~1 or ~z = ~0 without putting all users into the treatment

or control universes. Thus, to make progress on estimating the average treatment effect

under any other conditions, we require further assumptions. We do this here by assuming

that multiple treatment vectors ~z can map to the same potential outcomes: essentially, as

long as treatment vectors ~z and ~z′ are “similar enough” from the perspective of a vertex

i, in a sense to be made precise below, then i will have the same response under ~z and

~z′.

Specifically, let σxi be the set of all assignment vectors ~z for which i experiences

outcome x. We refer to σxi as an exposure condition for i; essentially, σxi consists of a

set of assignment vectors that are “indistinguishble” from i’s point of view, in that their

effects on i are the same. Our interest is in the particular exposure conditions σ1
i and σ0

i ,

which we define to be the sets that contain ~z = ~1 and ~z = ~0 respectively. In this way, we

are assuming that for all ~z1 ∈ σ1
i , we have Yi(~z = ~z1) = Yi(~z = ~1), and for all ~z0 ∈ σ0

i ,

we have Yi(~z = ~z0) = Yi(~z = ~0).2 Note that it is possible that ~z = ~1 and ~z = ~0 belong

to the same exposure condition and that σ1
i = σ0

i , which corresponds to a treatment that

has no effects.

We define an exposure model for user i as a set of exposure conditions that com-

pletely partition the possible assignment vectors ~z. The set of all models, across all

users, is the exposure model for an experiment. For our purposes though, it is unnec-

essary to entirely specify an exposure model, since we are only trying to determine the

2If this strikes the reader as too restrictive a definition of “exposure condition”, consider instead par-
titioning the space of potential outcomes (rather that partitioning the space of assignment vectors) using
small ε-sized bins, and define the “exposure conditions” as all assignment vectors that produce a potential
outcome in that ε bin. In cases where no other potential outcomes correspond to the outcomes for ~z = ~0
or ~z = ~1, it may be more appropriate to manage bias using ε distances on potential outcomes this way.
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average treatment effect between the extreme universes. We only care about the expo-

sure conditions σ1
i and σ0

i for which each user i experiences exposure to the treatment

or control universe3.

Of course, the true exposure conditions σ1
i and σ0

i for each user are not known to

the experimenter a priori, and analyzing the results of an experiment requires choosing

such conditions in our framework. If the wrong exposure conditions are chosen by the

experimenter, what happens to the estimate of the average treatment effect? If users are

responding in ways that do not correspond to ~z = ~1 and ~z = ~0, we will be introducing

bias into the average treatment effect. The magnitude of this bias depends on how close

the outcomes actually observed are to the outcomes at ~z = ~1 and ~z = ~0 that we wanted

to observe. It may even be favorable to allow such bias in order to lower variance in the

results of the experiment.

Neighborhood Exposure We now describe some general exposure conditions that

we use in what follows. In particular, we focus primarily on local exposure conditions,

where two assignments are indistinguishable to i if they agree in the immediate graph

neighborhood of i. We consider absolute and fractional conditions on the number of

treated neighbors. Note we are not asserting that these possible exposure conditions are

the actual exposure conditions with respect to the actual potential outcomes in an exper-

iment, but rather that they provide useful abstractions for the analysis of an experiment,

where again the degree of bias introduced depends on how well the exposure conditions

approximate belonging to the counterfactual universes.

• Full neighborhood exposure: Vertex i experiences full neighborhood exposure to

a treatment condition if i and all i’s neighbors receive that treatment condition.

3If one was to assume functional relationships between the potential outcomes in different exposure
conditions then other exposure conditions besides σ1

i and σ0
i could become relevant.
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• Absolute k-neighborhood exposure: Vertex i of degree d, where d ≥ k, expe-

riences absolute k-neighborhood exposure to a treatment condition if i and ≥ k

neighbors of i receive that treatment condition.

• Fractional q-neighborhood exposure: Vertex i of degree d experiences fractional

q-neighborhood exposure to a treatment condition if i and ≥ qd neighbors of i

receive that treatment condition.

The k-absolute and q-fractional neighborhood exposures can be considered relaxations

of the full neighborhood exposure for vertex i in that they require fewer neighbors of

i to have a fixed treatment condition for i to be considered as belonging to that expo-

sure condition. In fact, the set of assignment vectors that correspond to k-absolute and

q-fractional neighborhood exposures are each nested under the parameters k and q re-

spectively. Increasing k or q decreases the set of assignment vectors until reaching full

neighborhood exposure for vertex i.

It is natural to consider heterogeneous values k or q — values that differ for each

user – but we limit our discussion to exposure conditions that are homogeneous across

users as much as possible. We do incorporate a mild heterogeneity in the definition

of k-neighborhood exposure when vertices have degree d < k: for these vertices we

consider full neighborhood exposure instead. Fractional exposure does not require this

adjustment.

Core Exposure Full neighborhood exposure is clearly only an approximation of full

immersion in a universe. Beyond local exposure conditions, we also consider exposure

condition with global dependence. As one approach, consider individuals as exposed to

a treatment only if they are sufficiently surrounded by sufficiently many treated neigh-

bors who are in turn also surrounded by sufficiently many treated neighbors, and so on.

This recursive definition may initially appear intractable, but such recursive exposure
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can in fact be characterized precisely by analyzing the k-core — and more generally the

heterogeneous k-core — on the induced graph of treatment and control individuals.

Recall that the k-core of a graph G = (V,E) is the maximal subgraph of G in which

all vertices have degree at least k [22]. Similarly, the heterogeneous k-core of a graph

G = (V,E), parameterized by a vector k = (k1, . . . , k|V |), is the maximal subgraph

H = (V ′, E ′) of G in which each vertex vi ∈ V ′ has degree at least ki [31]. Using the

definition of heterogeneous k-core, we introduce the following natural fractional analog.

Definition 6.2.1 (Fractional q-core). The fractional q-core is the maximal subgraph

H = (V ′, E ′) of G = (V,E) in which each vertex vi ∈ V ′ is connected to at

least a fraction q of the vertices it was connected to in G. Thus, for all vi ∈ V ′,

degH(vi) ≥ q degG(vi). Equivalently, if di is the degrees of vertex i, the fractional

q-core is the heterogenous k-core of G for k = (qd1, . . . , qd|V |).

Since the heterogeneous k-core is a well-defined object, so is the fractional q-core.

Using this definition, we now define exposure conditions that are all stricter versions of

corresponding earlier neighborhood conditions.

• Component exposure: Vertex i experiences component exposure to a treatment

condition if i and all of the vertices in its connected component receive that treat-

ment condition.

• Absolute k-core exposure: Vertex iwith degree d ≥ k experiences absolute k-core

exposure to a treatment condition if i belongs to the k-core of the graphG[V ′], the

subgraph of G induced on the vertices V ′ that receive that treatment condition.

• Fractional q-core exposure: Vertex i experiences fractional q-core exposure to a

treatment condition if i belongs to the fractional q-core of the graph G[V ′], the

subgraph of G induced on the vertices V ′ that receive that treatment condition.
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Component exposure is perhaps the strongest requirement for network exposure

imaginable, and it is only feasible if the interference graph being studied is comprised

of many disconnected components. We include it here specifically to note that the frac-

tional q-core exposure for q = 1 reduces to component exposure. Again like the neigh-

borhood exposure case, absolute core exposure requires heterogeneity in k across users

for it to be a useful condition for all users. A parsimonious solution analogous to the

solution for k-neighborhood exposure may be to consider heterogeneous max(degree,

k)-core exposure. Fractional q-core exposure, like fractional q-neighborhood exposure,

is again free from these parsimony problems.

Core exposure conditions are strictly stronger than the associated neighborhood ex-

posure conditions above. In fact, every assignment vector in which a vertex i would be

component or core exposed corresponds to neighborhood exposure, but not vice versa.

So the assignment vectors of core and component exposure are entirely contained in

those of the associated neighborhood exposure.

Other Exposure Conditions Other exposure conditions may prove relevant to partic-

ular applications. In particular, we draw attention to the intermediate concept of placing

absolute or fractional conditions on the population of vertices within h hops, where

h = 1 is the neighborhood exposure conditions above. We also note that on social net-

works with very high degree, for many applications it may be more relevant to define

the exposure conditions in terms of a lower degree network that considers only stronger

ties.

6.3 Randomization and estimation

Using the concept of network exposure, we can now consider estimating the average

treatment effect τ between the two counterfactual universes using a randomized experi-
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ment. Recall that ~z is the treatment assignment vector of an experiment. To randomize

the experiment, let ~z be drawn from Z, a random vector that takes values on {0, 1}n, the

range of ~z. The distribution of Z over {0, 1}n given by Pr(Z = ~z) is what defines our

randomization scheme, and it is also exactly what determines the relevant probabilities

of network exposure. For a user i, Pr(Z ∈ σ1
i ) is the probability of network exposure to

treatment and Pr(Z ∈ σ0
i ) is the probability of network exposure to control.

In general, these probabilities will be different for each user and each treatment con-

dition, and knowing these probabilities makes it possible to correct for allocation bias

during randomization. In particular, it becomes possible to use the Horvitz-Thompson

estimator, τ̂ , to obtain an unbiased estimate of τ , here given by

τ̂(Z) =
1

n

n∑

i=1

(
Yi(Z)1[Z ∈ σ1

i ]

Pr(Z ∈ σ1
i )

− Yi(Z)1[Z ∈ σ0
i ]

Pr(Z ∈ σ0
i )

)
, (6.2)

where 1[x] is the indicator function. Assuming the probabilities are positive, the ex-

pectation over Z clearly gives τ , though note that this does assume that the exposure

conditions are not misspecified.

Let us examine the exposure probabilities for the simplest network exposure con-

dition, full neighborhood exposure, and under the simplest randomization scheme —

independent vertex randomization, in which each vertex is independently assigned to

treatment or control. If all vertices are treated independently with probability p ∈ (0, 1)

then the probability of full neighborhood exposure to treatment for a user i of degree

di is simply given by Pr(Z ∈ σ1
i ) = pdi+1, and the probability of full neighborhood

exposure to control is given by Pr(Z ∈ σ0
i ) = (1 − p)di+1. This highlights the main

challenge of network exposure: the chance that a vertex with high degree manages to

reach full neighborhood exposure, or anywhere near it, can be exponentially small in di.

Intuitively, such small exposure probabilities will dramatically increase the variance of

the Horvitz-Thompson estimator, and it indicates the necessity of using more intelligent

randomization.

146



To reduce the variance of this Horvitz-Thompson estimator, we introduce a general

graph cluster randomization approach, creating graph clusters and randomizing assign-

ment at the cluster level rather than at the vertex level, with clusters assigned indepen-

dently. Connected vertices will then be assigned to the same treatment condition more

often than would happen with independent assignment, increasing the expected number

of users who are network exposed to a condition at the cost of increased correlations

between users’ exposure conditions.

For clarity when discussing clustering, we introduce some notation. Let the vertices

be partitioned into nc clusters C1, . . . , Cnc . Let Ni ⊆ V denote the neighbors of i in the

graph G, and let Si = {Cj : (i ∪ Ni) ∩ Cj 6= ∅} denote the set of clusters that contain

i or a neighbor of i; we call Si the set of clusters to which i is connected. Using this

notation, we will now examine the probabilities of different network exposures.

For the general creation of clusters we defer to the literature on algorithms for graph

partitioning (see Chapters 4 and 5) and community detection [55]. In Section 6.4 we

describe a particular algorithm for clustering graphs that satisfy a restricted-growth con-

dition. The remainder of this section, however, describes the behavior of an arbitrary

clustering on an arbitrary graph.

6.3.1 Exposure probabilities

We now examine how the probabilities of network exposure can be computed given

a clustering. As a simple example, for the full neighborhood exposure condition, the

probability of network exposure to treatment simply becomes Pr(Z ∈ σ0
i ) = p|Si| and to

control becomes Pr(Z ∈ σ1
i ) = (1 − p)|Si|. We now show that computing the exposure

probabilities for absolute and fractional neighborhood exposure conditions is tractable

as well.

Consider the challenge of computing the probability that vertex i with degree di is

147



treated and more than k of its neighboring vertices are treated under cluster randomiza-

tion. This applies when considering both absolute and fractional neighborhood expo-

sures. First, let us reindex the clusters such that if i is connected to |Si| = s clusters,

i itself resides on cluster s, and we let j = 1, . . . , s − 1 denote the other connected

clusters. Let wi1, . . . , wis be the number of connections i has to each cluster, and let the

Bernoulli(p) random variables X1, . . . , Xs denote the independent coin tosses associ-

ated with each cluster. Then:

Pr[Z ∈ σ1
i ] =Pr [Xs = 1] · Pr

[∑s−1
j=1wijXj ≥ k − wis

]
,

Pr[Z ∈ σ0
i ] =Pr [Xs = 0] · Pr

[∑s−1
j=1wijXj ≤ di − k

]
.

Here the random quantity
∑

j wijXj obeys a weighted equivalent of a Poisson-binomial

distribution, and the probabilities in question can be computed explicitly using a dy-

namic program defined by the following recursion

Pr
[∑s

j=1wjXj ≥ T
]

= pPr
[∑s−1

j=1wijXj ≥ T − wis
]

+

(1− p)Pr
[∑s−1

j=1wijXj ≥ T
]
.

Note that T is bounded by the maximum vertex degree dmax, making this a polynomial

time dynamic program with runtime O(dmaxs). We formalize this computation into the

following proposition.

Proposition 6.3.1. The probability that vertex i is treated and ≥ k neighboring vertices

are treated under independent cluster randomization is given by

Pr[Z ∈ σ1
i ] = pf(s−1, k−wis; p, ~w)

where

f(1, T ; p, ~wi) = p1[T < wi1],

f(j, T ; p, ~wi) = pf(j − 1, T − wij; p, ~wi)

+(1− p)f(j − 1, T ; p, ~wi).
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Figure 6.1: The probability distribution over the exposure space for a single individual,
where the exposure conditions σ0

i and σ1
i are shown in yellow for both (a) an i.i.d.

vertex randomization and (b) an ideal cluster randomization, where the probability mass
is collected at exposure conditions of interest.

The probability that vertex i is in control and ≥ k neighboring vertices are in control

under independent cluster randomization is given by

Pr[Z ∈ σ0
i ] = (1− p)[1− f(s− 1, di − k + 1; p, ~w)].

Recall that these partial neighborhood exposure conditions (absolute and fractional)

are nested. In fact, for a given vertex i the recursion can be used to derive the probability

for every possible threshold value under consideration in a single O(dmaxs) double for-

loop. Such a computation in fact returns the probability distribution over the exposure

space for each individual. See Figure 6.1 for illustrations of what this distribution can

look like.

The dynamic program above only provides a means of exactly computing exposure

probabilities for absolute and fractional neighborhood exposure conditions. Unfortu-

nately, how to efficiently compute the exact probability of k-core and fractional q-core

exposure conditions is unclear, but recall that these exposure conditions were formally

nested subsets of the corresponding neighborhood exposure conditions. This at least

allows us to upper bound the core exposure probabilities, and we formalize this connec-

tion via the following proposition. Because we are generally concerned about exposure
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probabilities being too small, this upper bound can be useful in identifying vertices with

problematically small probabilities already under neighborhood exposure.

Proposition 6.3.2. The probability vertex i is network exposed to a treatment condi-

tion under core exposure is less than or equal to the probability under the analogous

neighborhood exposure:

Pr(Z ∈ σxi |k-core) ≤ Pr(Z ∈ σxi |k-nhood),

Pr(Z ∈ σxi | frac q-core) ≤ Pr(Z ∈ σxi | frac q-nhood).

It is possible that a useful direct estimate of the core exposure probabilities can be

obtained via Monte Carlo sampling of the randomization, but we do not explore that

possibility here.

6.3.2 Estimator variance

The variance of the Horvitz-Thompson estimator under interference has been studied

by Aronow and Samii [9], where they also present several variance reduction schemes.

Estimating the variance under their approach requires knowledge of joint exposure con-

ditions, the joint probability that vertex i is network exposed to treatment/control and

vertex j is network exposed to treatment/control. This is the probability that the ran-

dom vector Z is in the exposure condition for vertex i and for vertex j simultaneously,

i.e. Pr(Z ∈ (σ1
i ∩ σ1

j )) for joint network exposure to treatment. If one is interested in

computing the variance of the estimator analytically then there is nothing fundamentally

different about this probability computation when compared to the single vertex expo-

sure probability, aside from the fact that the intersection of the two sets can be empty.

Aronow and Samii observe that an empty intersection makes it impossible to derive an

unbiased estimate of the variance (though they show how the variance can still be upper

bounded), but it does not bias the effect estimator itself.
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The variance of the effect estimator where

Ŷ x(Z) =
1

n

∑

i

[Yi(Z)1[Z ∈ σxi ]/Pr(Z ∈ σxi )]

is given by

Var[τ̂(Z)] =
[
Var[Ŷ 1(Z)] + Var[Ŷ 0(Z)] −

2Cov[Ŷ 1(Z), Ŷ 0(Z)]
]
. (6.3)

Assuming the exposure conditions are properly specified, namely assuming that Yi(~z) is

constant for all ~z ∈ σxi , we can introduce the notation Yi(σxi ) := Yi(~z ∈ σxi ). Using the

further notation πxi := Pr[Z ∈ σxi ] and πxyij := Pr[Z ∈ (xi∪σyj )] we obtain

Var[Ŷ x(Z)] =
1

n2

[
n∑

i=1

1− πxi
πxi

Yi(σ
x
i )2 +

n∑

i=1

n∑

j=1
j 6=i

πxxij − πxi πxj
πxi π

x
j

Yi(σ
x
i )Yj(σ

x
j )

]
, (6.4)

and

Cov[Ŷ 1(Z), Ŷ 0(Z)] =
1

n2

[
n∑

i=1

n∑

j=1
j 6=i

π10
ij − π1

i π
0
j

π1
i π

0
j

Yi(σ
1
i )Yj(σ

0
j )−

n∑

i=1

Yi(σ
1
i )Yi(σ

0
i )

]
. (6.5)

The above expressions make it evident that the variance is very tightly controlled by

the probabilities of exposure, and in order to upper bound the variance we will require

lower bounds on the probabilities πxi and also upper bounds on the joint probabilities

πxyij , for all vertex pairs and all combinations of x and y. For neighborhood exposure,

we can now write basic sufficient conditions under which the variance of the estimator

is asymptotically O(1/n) in n for graph cluster randomization.

Proposition 6.3.3. Assume the potential outcomes Yi(·) are all O(1) in n. If G has

maximum degree O(1) and the size of each cluster is O(1), then the variance of the
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Horvitz-Thompson estimator for full, k-neighborhood, and q-fractional neighborhood

exposure under graph cluster randomization is O(1/n).

Proof. AssumeG has maximum degreeO(1) and the size of each cluster isO(1). All of

the single sums are clearly O(n): πxi is O(1) since all vertices have bounded degree. For

the double sums, note that πxxij = πxi π
x
j if and only if i and j have no common cluster

neighbors, |Si∩Sj| = 0. Whenever |Si∩Sj| > 0, πxxij > πxi π
x
j for full, k-neighborhood,

and q-fractional neighborhood exposure. Further, π10
ij < π1

i π
0
j if |Si ∩ Sj| > 0 and

π10
ij = π1

i π
0
j otherwise.

So the terms of the double sums are zero whenever πij = πiπj and when the terms

are not zero (|Si ∩ Sj| > 0), they are all positive and bounded above O(1) due to the

bounded degrees. We now bound the number of vertices j for which |Si ∩ Sj| > 0.

Vertex i at most connects to O(1) clusters and therefore |Si| = O(1). For all C ∈ Si, we

have that |Si ∩ Sj| > 0 for any j ∈ C and for any vertex j that is adjacent to a vertex in

cluster C. Both of these contributions is O(1), giving an O(1) contribution of vertices

for each C ∈ Si. Since there are O(1) such clusters, this is still O(1) vertices j in total

for vertex i such that |Si ∩ Sj| > 0. Thus for each vertex, at most O(1) of the terms in

the double sum are positive, making the total variance O(1/n).

The strength of this general result is that it achieves anO(1/n) bound on the variance

when the maximum degree is bounded. The problem is that the variance can grow

exponentially in the degrees of the graph. In this next section we address this issue,

introducing a condition on a graph that ensures we can find a clustering into sets of size

O(1) — consistent with the above result – for which the variance grows as O(1/n) but

is also linear rather than exponential in the maximum degree.
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Figure 6.2: The cycle graph, (a) where vertices respond Ȳ to treatment and 0 to control,
shown clustered in groups of c = 2 vertices. (b) Asymptotic variance of the estimator
for this graph as a function of the number of vertices per cluster, normalized by estimator
variance for c = 1 vertices per cluster. (c) Simulated variance of the estimator for kth
powers of the cycle graph for k = 1, . . . , 5 as a function of the number of vertices per
cluster. For each k the variance for cluster size c = 2k + 1 grows linearly in k.

6.4 Variance on restricted-growth graphs

In order to measure average treatment effects under interference on large-scale graphs,

it is necessary to design a randomization scheme capable of containing the estimator

variance for high-degree vertices. In this section we show that any graph satisfying

our restricted-growth condition admits a clustering that can produce an unbiased effect

estimate that is both O(1/n) and linear in the degrees of the graph. In contrast, we show

that with less careful clustering, it is easy for the variance to grow exponentially in the

degrees.

Let us first define restricted-growth graphs. Let Br(v) be the set of vertices within r

hops of a vertex v.

Definition 6.4.1. A graph G = (V,E) is a restricted-growth graph if for all vertices

v ∈ V and all r > 0, we have |Br+1(v)| ≤ κ|Br(v)|.

As mentioned in the introduction, graphs derived from a uniform-density embedding

in a Euclidean space of dimensionm exhibit restricted growth, with growth constant κ =

2m independent of degree. To develop intuition for the restricted-growth assumption, we
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first analyze the variance using graph cluster randomization on a family of particularly

tractable restricted-growth graphs, kth powers of the cycle. We follow this analysis by

proving bounds on the variance for general restricted-growth graphs.

6.4.1 Cycle and powers of the cycle examples

First we will consider a simple graph consisting of a single cycle with n vertices. For

this graph, we consider the full neighborhood exposure model, where we are interested

in the average treatment effect between σ1
i , when a vertex is treated and both of their

neighbors are treated, and σ0
i , when a vertex is not treated and neither of their neighbors

are treated. For the fixed responses of the vertices to treatment and control, we assume

that all vertices uniformly respond Yi(σ1
i ) = Ȳ to network exposure to the treatment

and Yi(σ
0
i ) = 0 to network exposure to the control. The cycle graph clearly admits

an intuitively obvious clustering using the cycle structure, with contiguous blocks of

c vertices randomized together. As a last assumption, assume that clusters are selected

under a balanced randomization with p = 1/2. Our goal is to determine how the variance

of the Horvitz-Thompson average treatment effect estimator depends on the size c of

these clusters. For this basic combination of graph, exposure condition, responses, and

clustering, one can derive the asymptotic variance exactly.

Consider the variance presented in (6.3) above. Since all vertices respond zero to

the control condition in our example, as long as the exposure probability for the control

condition is strictly positive then both Var(Ŷ (σ0)) and Cov(Ŷ (σ1), Ŷ (σ0)) are zero.

Since our calculations will rely only on probabilities π1
i for the exposure to treatment

condition, we omit the superscript. The variance is then:

Var[τ̂(Z)] =
Ȳ 2

n2

[
n∑

i=1

(
1

πi
− 1

)
+

n∑

i=1

n∑

j=1
j 6=i

(
πij
πiπj

− 1

)]
. (6.6)

Notice that the terms of the double sum are only non-zero for vertex pairs where πij 6=
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πiπj .

First, consider the case of each vertex being its own cluster. The probability of

being exposed and both of one’s neighbors being exposed is equal to the probability of

seeing three independent coins come up heads. When the randomization is balanced

(e.g. p = 1/2), we obtain πi = 1/8,∀i. Note that the co-assignment probabilities

depend on whether vertices i and j are neighbors or share a neighbor. From this we

derive πij = 1/16 if |i − j| = 1 and πij = 1/32 if |i − j| = 2, and if |i − j| > 2, the

probabilities are independent. We obtain Var(τ̂(Z)) = (15/2)Ȳ 2 1
n

+O(1/n2).

Now, consider randomizing blocks of c ≥ 2 vertices, where c does not depend on n.

The calculations for this case are expansive but straight-forward. We consider a single

one of the equivalent cyclically shifted possibilities. The calculation requires handling

c = 2 and c ≥ 3 separately, but the expression for c ≥ 3 as a function of c holds for

c = 2 as well, so we omit the special case for brevity. The variance calculation depends

on distance ∆ = |i− j| up to ∆ = c+ 1, and for c ≥ 3 this evaluates to:

Var[τ̂(Z)] =
Ȳ 2

n2

[(
n+

4n

c

)
+

2n

c
(c+ 2)

︸ ︷︷ ︸
∆=1

+

2n

c

c−2∑

k=2

(c− k + 2)

︸ ︷︷ ︸
1<∆<c−1

+
2n

c
3

︸︷︷︸
∆=c−1

+
2n

c
2

︸︷︷︸
∆=c

+
2n

c︸︷︷︸
∆=c+1

]
+O

(
1

n2

)
.

This reduces to Var(τ̂(Z)) =
(
c
2

+ 2 + 4
c

)
Ȳ 2 1

n
+O(1/n2), which holds for all c ≥ 2.

Combining these calculations, the asymptotic variance of the estimator for all c is

plotted in Figure 2. Notice that the variance is minimized when randomizing clusters of

size c = 3, which corresponds exactly to the size of neighborhoods on the simple cycle.

To build upon this observation, we now examine the simulated variance for higher

degree extensions of the cycle, the so-called kth power of the cycle, where analytic

derivation is already unwieldy. Thus, we use a simulation of the cluster randomization

procedure to examine how the variance of the effect size estimator depends on the cluster
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size for these higher degree graphs.

The kth power of a cycle graph consists of a cycle where each vertex is connected

to the k nearest neighbors on each side, yielding a regular graph where all vertices

have degree d = 2k. By sampling one million cluster randomizations on graphs with

n = 5000 vertices, we can compute the sample variance of the estimator across these

samples. The results are shown in Figure 2, for k = 1 through k = 5. The simulations

for k = 1 agree precisely with the overlaid asymptotic calculations.

Notice how the optimal cluster size c appears to scale approximately linearly in de-

gree, and also notice how the variance at the optimal clustering size, the minimum value

of each curve as k increases, appears to scale linearly in k. While the exact variance as

a function of cluster size c is unwieldy to derive, we are able to provide the following

upper bound, showing how the variance of the estimator for clusters of size c = d + 1

scales linearly in the degree d of the graph. This suggests that one should treat contigu-

ous blocks of the cycle attuned to the size of the neighborhood of the vertices.

When deriving this upper bound, it is no longer necessary to assume a uniform re-

sponse Yi(σ1
i ) = Ȳ , and instead we simply assume that the responses are upper bounded

by some value Yi(σ1
i ) ≤ YM .

When clusters have size c = d+1, each vertex can be connected to at most 2 clusters,

meaning that 1/πi ≤ 1/p2 for all i. So

Var[τ̂(Z)] ≤ Y 2
M

n2

[
n∑

i=1

(p−2 − 1) +
n∑

i=1

n∑

j=1
j 6=i

(
πij
πiπj

− 1)

]
.

Now each vertex has a non-independent joint assignment probability (such that πij 6=

πiπj) with at most 3d + 1 other vertices: up to 2d + 1 other vertices when they are

adjacent to two clusters, the d/2 to the left of the left cluster, and the d/2 to the right of

the right cluster. The joint assignment probability πij is at most p2, since two vertices

can not both be at the center of a cluster. For each i, the sum indexed by j then can be
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bounded, producing

Var[τ̂(Z)] ≤ Y 2
M(p−2 − 1)(3d+ 2)

1

n
.

This result tells us that it is possible to experimentally measure network effects on a

cycle graph of very high degree d with a variance that is only linear in d, provided that

the vertices are clustered in contiguous blocks of d+ 1 vertices. We now show how this

strategy of bounding the variance applies to a much more general class of graphs, using

a clustering algorithm that does not require knowledge of any geometric structure.

6.4.2 Clustering restricted-growth graphs

We now begin developing the main result of this section, a cluster randomization scheme

for the class of restricted-growth graphs. The first component is a clustering algorithm

for such graphs in which each vertex is connected to at most a constant number of

clusters, independent of the degree of the vertex. This will then imply that the variance

on any restricted-growth graph can be upper bounded by a function linear in the degree.

Our clustering shows that the nice decomposition of the cycle by contiguous regions

can be generalized to arbitrary graphs in our class. In other words, the geometry isn’t

crucial; the restricted-growth property is enough.

Consider a restricted-growth graph G = (V,E); we will present the case in which

G is d-regular, but as we note below, the regularity can be relaxed to arbitrary degree

distributions at the cost of a weaker but still constant bound on the number of connected

clusters.

Recall that the restricted-growth condition says there exists κ so that for all v and

all r > 0, we have |Br+1(v)| ≤ κ|Br(v)|. Importantly, r = 0 is different: B0(v) is

the singleton set {v}, while B1(v) is the neighborhood of v and hence has size d + 1.

Thus |B1(v)|/|B0(v)| = d+ 1, potentially much larger than the bound of κ on the ratio
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|Br+1(v)|/|Br(v)| for r > 0. This is the crux of the restricted-growth condition: from

radius 0 to 1 we have unrestricted growth (a factor of d + 1), but then the growth slows

to factors of κ which can be bounded separately from d.

In the language of metric spaces, we will cluster the graph using a 3-net for the

shortest-path metric of G [66]. Formally, in a metric space X , an r-net Y ⊆ X is

a collection of points that are mutually at distance at least r from each other, but the

union of all their r-balls covers the space, X ⊆ ∪y∈YBr(y). Accordingly, we call

our construction a 3-net clustering of the graph. To build a 3-net clustering, we will

iteratively identify vertices v1, v2, ..., ‘marking’ vertices as we do this. Afterwards we

will identify clusters C1, C2, ... to go with these vertices. More explicitly, we perform

the following procedure consisting of two principle stages:

• Initially all vertices are unmarked.

• While there are unmarked vertices, in step j find an arbitrary unmarked vertex v,

selecting v to be vertex vj and marking all vertices in B2(vj).

• Suppose k such vertices are defined, and let S = {v1, v2, ..., vk}.

• For every vertex w of G, assign w to the closest vertex vi ∈ S, breaking ties

consistently (e.g. in order of lowest index).

• For every vj , let Cj be the set of all vertices assigned to vj .

The sets C1, . . . , Ck are then our 3-net clustering. The key property of this clustering

is the following result, which establishes that each vertex is connected to a number of

clusters that can be bounded by a function of κ, independent of the degree.

Proposition 6.4.2. Consider any 3-net clustering of a graphG = (V,E). For allw ∈ V ,

the neighborhood B1(w) has a non-empty intersection with at most κ3 distinct clusters.

Proof. We first claim that for all vj ∈ S, we have Cj ⊆ B2(vj). Indeed, consider any

vertex w 6= vj in Cj . We have w 6∈ S, since otherwise w would belong to the cluster
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identified with itself. Now, consider the iteration i in which w was marked; we have

w ∈ B2(vi). Since w ∈ Cj and it is assigned to the closest vertex in S, it follows that

w ∈ B2(vj). Thus Cj ⊆ B2(vj).

Next, we claim that for all vi, vj ∈ S, the sets B1(vi) and B1(vj) are disjoint. Sup-

pose by way of contradiction that B1(vi)∩B1(vj) 6= ∅. It would follow that vi ∈ B2(vj)

and vice versa. But then if we consider the vertex among vi and vj that was added to S

first, the other of vi or vj would have been marked in that iteration, and hence it could

not have been added to S as well. This contradiction establishes that B1(vi) and B1(vj)

are disjoint.

To complete the proof, suppose by way of contradiction that B1(w) has a non-empty

intersection with more than κ3 distinct clusters: for some t > κ3, let u1, u2, . . . , ut be

distinct vertices in B1(w) and vi1 , . . . , vit be distinct vertices in S such that uh ∈ Cih for

h = 1, 2, . . . , t.

Since Cih ⊆ B2(vih), and Cih contains a vertex adjacent to w (or contains w

itself), we have vih ∈ B3(w), and hence B1(vih) ⊆ B4(w). The neighborhoods

B1(vi1), B1(vi2), . . . , B1(vit) are all pairwise disjoint as argued above, and they are

all contained in B4(w), which implies that |B4(w)| ≥ t(d + 1) > κ3(d + 1). But

applying the bounded growth inequality |Br+1(w)| ≤ κ|Br(w)| three times we have

|B4(w)| ≤ κ3(d + 1), a contradiction. This establishes that B1(w) can have a non-

empty intersection with at most κ3 distinct clusters.

The above result is formulated for d-regular graphs. But in fact one can show a

weaker bound depending only on κ as in Proposition 6.4.2 even for arbitrary restricted-

growth graphs, without any requirement on the degrees. This weaker bound of κ6 can be

established by observing that any restricted-growth graph exhibits a “bounded gradient”

on the vertex degrees, whereby vertices that are near each other in the graph must have

similar degrees. Combining this fact with proof of Proposition 6.4.2 leads to the desired
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bound.

6.4.3 Variance bounds

We now apply the above results to bound the variance of the effect estimator τ̂ . Through-

out this section we assume that all responses obey upper bounds and positive lower

bounds, Y x
i ∈ [Ym, YM ] for both exposure to treatment and control, x = 0, 1. The

reason for the positive lower bounds is that without them the users could all be respond-

ing zero to all treatments, making the variance zero regardless of the treatment scheme.

We also assume the randomization probability p is not degenerate, i.e. p ∈ (0, 1). We

present the results for d-regular graphs to keep expressions manageable, but analogous

results can be derived for arbitrary degrees.

We first establish an exponential lower bound for the variance under vertex-level

randomization, and then we show a contrasting linear upper bound for the variance

under our 3-net cluster randomization scheme.

Proposition 6.4.3. The variance of the HT estimator under full neighborhood exposure

for vertex randomization of a graph with n vertices is lower bounded by an exponential

function in the degree d of the graph, Var[τ̂(Z)] ≥ O(1/n)(p−(d+1) +(1−p)−(d+1)−1).

PROOF. The joint assignment probabilities for two vertices having the same ex-

posure is at least the product of their individual probabilities, πxxij ≥ πxi π
x
j for x = 0, 1.

Thus the double sum in equation (4) is non-negative. Similarly, for opposing exposure

conditions, we have πxyij ≤ πxi π
y
j for x 6= y, which makes equation (5) a non-negative

contribution to equation (3). We focus our lower bound on the main term of equation

(4). Inputting the probabilities π1
i = pd+1 and π0

i = (1 − p)d+1 and lower bounding
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responses gives us the desired result.

Var[τ̂(Z)] ≥ 1

n2

[
n∑

i=1

(
1

π1
i

− 1)(Y 1
i )2 +

n∑

i=1

(
1

π0
i

− 1)(Y 0
i )2

]

≥ Y 2
m

n
(p−(d+1) + (1− p)−(d+1) − 2). �

For graphs with arbitrary degree distributions, this bound becomes Var[τ̂(Z)] ≥

O(1/n)
∑n

i=1(p−(di+1) + (1− p)−(di+1)− 2), which is exponential in the degree of each

vertex, meaning that even a single high degree vertices can easily explode the variance.

We now turn to our linear upper bound for growth-restricted graphs when using our

3-net clustering.

Proposition 6.4.4. The variance of the HT estimator under full, q-fractional, or k-

absolute neighborhood exposure for a 3-net cluster randomization of a restricted-growth

graph is upper bounded by a function linear in the degree d of the graph.

Proof. Recall that the variance of the estimator is given by: Var(τ̂(Z)) = Var(Ŷ 1) +

Var(Ŷ 0) − 2Cov(Ŷ 1, Ŷ 0). We begin by upper bounding the variance of Ŷ 1(Z), and

the upper bound for Ŷ 0(Z) follows the same principle. We conclude by bounding the

covariance term. By Proposition 6.4.2, each vertex is connected to at most κ3 clusters.

Thus we have the lower bound π1
i ≥ pκ

3 , for both full and fractional neighborhood

exposure.

Var[Ŷ 1(Z)] ≤ Y 2
M

n2

[
n(

1

pκ3
− 1) +

n∑

i=1

n∑

j=1
j 6=i

(
π1
ij

π1
i π

1
j

− 1)

]
.

For each vertex i, the inner of the two sums is only nonzero at those vertices j for which

the assignments are dependent. If the assignments for i and j are dependent, then they

must each have neighbors in the same cluster Ch associated with a vertex vh in the set

of cluster centers. Since the proof of Proposition 6.4.2 established that Ch ⊆ B2(vh), it

follows that i and j are each within distance 3 of vh and hence within distance 6 of each
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other. Thus, any j whose assignment is dependent on i’s must lie within B6(i), and so

by the restricted-growth condition, there can be at most |B6(i)| ≤ κ5|B1(i)| = κ5(d+1)

such vertices j. Thus the sum over such j has at most κ5(d + 1) terms. Also, π1
ij ≤ p

applies, since the two vertices must depend on at least one cluster. We obtain

Var[Ŷ 1(Z)] ≤ Y 2
M [(p−κ

3 − 1) + κ5(d+ 1)(p−2κ3−1 − 1)]
1

n
.

Now, consider the contribution of the covariance term to the variance,

−2Cov(Ŷ 1, Ŷ 0), a positive quantity. Starting from equation (6.5), we apply the upper

bound for the responses Yi to obtain

−2Cov[Ŷ 1(Z), Ŷ 0(Z)] ≤ −2Y 2
M

n2

n∑

i=1

n∑

j=1
j 6=i

(
π10
ij

π1
i π

0
j

− 1

)
+

2Y 2
M

n
.

As with the previous analogous expression, for each i the inner sum is non-zero for at

most κ5(d+1) other vertices j. For the remaining terms, the quantity−(π10
ij /(π

1
i π

0
j )−1)

is trivially upper bounded by 1. Thus we obtain

−2Cov[Ŷ 1(Z), Ŷ 0(Z)] ≤ 2Y 2
M

n
[κ5(d+ 1) + 1].

Combining the upper bounds, we obtain a total upper bound that is linear in degree, as

desired.

The restricted-growth condition we used was derived for regular graphs, but as we

noted earlier, for restricted-growth graphs with arbitrary degree distributions we can

apply a weaker but still constant bound on the cluster dependencies to obtain a variance

bound that is still linear in the degree.

6.5 Conclusion

The design of online experiments is a topic with many open directions (see e.g. [87]);

in this work we have focused on the open question of A/B testing when treatment ef-

fects can spill over along the links of an underlying social network. We introduced a
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basic framework for reasoning about this issue, as well as an algorithmic approach —

graph cluster randomization — for designing A/B randomizations of a population when

network spillover effects are anticipated. Appropriate clustering can lead to reductions

in variance that are exponential in the vertex degrees. We emphasize that beyond the

class of graphs where we prove bounds, graph cluster randomization is a technique that

can be applied to arbitrary graphs using arbitrary community detection or graph parti-

tioning algorithms, though we do not provide any variance bound guarantees for these

scenarios.

There are many further directions for research suggested by the framework devel-

oped here. A first direction is to formulate a computationally tractable objective function

for minimizing the variance of the Horvitz-Thompson estimator. One approach would

be via minimizing an adversarial variance, as in [81]. Another problem that may be

relevant is to find a clustering that minimizes A/A variance for full neighborhood expo-

sure under the assumption of known control potential outcomes. Can good clusterings

for A/A variance lead to good solutions for A/B testing? We note that A/A variance

minimization would not be useful when the treatment is expected to be dominated by

heterogeneous responses.

Adding further structure to the potential treatment responses is another interesting

direction. We currently have a discrete notion of network exposure to treatment and

control, but one could ask about responses that depend continuously on the extent of

exposure. As one simple example, we could consider a response that was linear in k,

when a vertex had k exposed neighbors. How could we properly take advantage of such

structure to get better estimates? Methods for analyzing bias under network exposure

condition misspecification would also be a natural addition to the framework.
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CHAPTER 7

FUTURE WORK

Many of the largest datasets in computing today are social or behavioral, and this

thesis aims to contribute to a new paradigm for understanding and computing with so-

cial data. A natural next step from this thesis is to deploy the graph cluster randomiza-

tion methodology developed in Chapter 6 (using the partitioning algorithms developed

in Chapters 4 and 5) to conduct large-scale network experiments featuring careful ex-

perimental designs that consider peer effects and other social interactions, to rigorously

investigate social decision-making across diverse domains. The challenge of running

such experiments can be viewed as one of the grand challenges of the emerging disci-

pline of computational social science.

Second, the study of Facebook’s growth in Chapter 2 shows that online engagement

can be driven by social networks in surprising ways. As a broad extension of that work,

it would be beneficial to understand much more generally how individuals perceive and

derive value from network effects, both social and non-social. When are network effects

social, and when are they population effects? And when is “stickiness” a network effect

and when does it merely reflect a high-friction user experience? How do the roles of

stickiness and networks effects vary between online social network loyalty and other

forms of customer loyalty?

Third, the algorithms developed in Chapters 4 and 5 can potentially accelerate a

much broader class of machine learning tasks beyond the link prediction task (Face-

book’s “People You May Know” engine) that was demonstrated. For large distributed

data sets, if the structure — e.g. a topic model — were known a priori, the structure

could then be used to greatly improve the computational efficiency of the task itself. As

“big data” keeps getting bigger, escaping this Catch-22 scenario will become increas-

ingly important. It would be beneficial to examine how partial or approximate solutions
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to large-scale machine learning problems seeking structure can be used to make their

own computation more efficient.

The data deluge of online instrumentation and experimentation is providing tremen-

dous opportunities to understand social human behavior. This thesis analyzes the struc-

ture of social data from a computational perspective, while also seeking to “close the

loop,” showing how such structure can be applied to make computation more efficient

and inference more accurate, across a wide range of computational domains.
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