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Abstract

We study scalable algorithms to optimize diffusion processes under the Indepen-
dent Cascade model. We consider a broad class of intervention actions, including
selecting sources, raising the probability that the diffusion propagates from one
node to another and changing the topology of networks to facilitate the diffusion.
Optimizing the selection of such actions with a limited budget tends to be NP-
hard and is neither submodular nor supermodular. We provide scalable algorithms
for three different problem settings that range in terms of the strength of the as-
sumptions we make about the model. The algorithms are very efficient (faster
than a baseline greedy algorithm), producing high-quality solutions in several dif-
fusion maximization problems in the area of computational sustainability and in
some cases also have provable approximation guarantees. These techniques offer
promising results that may be applied to diffusion optimization problems in social
and information networks.

1 Introduction

Dynamic phenomena such as the spread of information, ideas, and opinions [1, 2], and infectious
disease propagation among humans [3] can be described as a diffusion process over an underlying
network. Abstractly, the diffusion process in a network can be described as follows. A set of
nodes called sources are set to be infected or active at the beginning of the process. Recursively,
currently infected nodes can infect their neighbors with some probability. After a certain number
of such cascading cycles, a large number of nodes become infected in the network. An interesting
question is how to shape a given diffusion process so as to accomplish some desired objectives over
infected nodes by taking intervention actions . An example is the source selection problem for viral
marketing. Viral marketing can be modeled as a diffusion process in which people who purchase
a product are considered to be “infected” and can send information or recommendations about the
product to their friends, who may purchase the product as well and continue the cascading process.
To maximize the number of people who eventually purchase the product, a company could pick K
people, for examples ones having a large number of friends, and provide them with free products
with the hope of triggering a large number of purchases. Here, the intervention action is modeled
as adding sources. The question is, if we are allowed to add at most K sources, which ones should
be selected so as to maximize the number of purchases resulting from the diffusion process. This
optimization problem has been shown to have submodular objective function and therefore a natural
greedy algorithm can obtain a solution that is provably within 63% of the optimal value [4].

Besides source selection, other intervention actions may be used to facilitate diffusion processes
in different applications. For example, to maximize the number of purchases in viral marketing, a
company can offer a person a small amount of money, if her friends purchase the product because
of her recommendation [2]. In this case, the offer, which can be considered a type of intervention
action, is in fact an incentive to increase the chance that the person sends a recommendation of the
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product to her friends, particularly recommendations that increase the likelihood of infection. In
this case, the problem is to determine whom to make such offers to and how much money to offer.
Another example is a social media website that recommends to users additional information outlets
to increase the spread of ideas and memes. A third example is a decision maker who may cut off
communication between communities to slow down the spread of rumors. These examples raise
several interesting questions: how to model these intervention actions and whether we can develop
efficient algorithms to select actions so as to optimize the outcome of the diffusion processes subject
to initial constraints.

Some recent works model and study algorithms for problems that go beyond source selection and
consider different diffusion models. Khalil et al. [5] consider two types of actions, adding edges
to or deleting edges from the existing network, under a well-known diffusion model called the
Linear Threshold (LT) model. They show that this network structure modification problem under
the LT model has a supermodular objective and therefore can be solved by algorithms with provable
approximation guarantees. Under the Susceptible Infected Recovered (SIR) model, some positive
network optimization results exist: Tong et al. [6] address the edge deletion (addition) problem
by approximately minimizing (maximizing) the eigenvalue of the adjacency matrix. In addition,
methods have been designed to optimize surrogates for diffusion spread under SIR [7, 8]. Instead
of maximizing (minimizing) the spread of substances directly, some methods typically optimize a
static property of the network, in the hope of optimizing diffusion. For instance, Schneider et al. [8]
proposed betweenness centrality as a heuristic for immunizing nodes or removing edges under the
SIR model, while degree centrality was adopted by Gao et al. [7] to protect against virus propagation
in email networks.

We focus on a well-known diffusion model called the Independent Cascade (IC) model [4]. Be-
sides edge addition, edge deletion and source selection, we also consider other intervention actions,
such as increasing the probability that a node infects its neighbors. To do this, we define a general
decision making problem under the IC model to capture a broad class of intervention actions, includ-
ing source selection and network structure modification. It can be shown that our general decision
making problem is NP-hard and is neither submodular nor supermodular. In the area of social com-
puting, we are particularly interested in finding algorithms that can produce high-quality solutions
for networks with thousands or millions of nodes. To the best of our knowledge, there are no such
efficient general-purpose algorithms for this class of decision problems. Sheldon et al. [9] propose
an algorithm to handle the node addition problem under the IC model using the Sample Average
Approximation (SAA) technique and mixed integer programming (MIP). But, their MIP is based on
the assumption that the network is a directed acyclic graph. Furthermore, their algorithm can only
scale up to networks with thousands of nodes. The greedy algorithm is faster, but can guarantee
high-quality solutions only when the objective function is submodular. Heuristic search is another
option, but it is hard to apply to large-scale networks [10] or when the number of candidate actions is
large. Domain knowledge based methods can be used but they don’t provide theoretical guarantees
on the solution quality. Besides, we are interested in generic algorithms rather than ones that work
well only for a specific application.

In this paper, we give a brief overview of algorithms that we recently created to handle the above
decision problems. These algorithms are very efficient and can produce high-quality solutions, sup-
ported by both theoretical justification and experimental evidence. They are created under three
different settings that become gradually more general. The most restricted setting is based on the
assumption that the underlying network is a directed rooted tree with directed edges spreading out
from a unique root. For this case, we created a fully polynomial-time approximation schema (FP-
TAS) with quadratic runtime complexity. A more general and harder setting is when the underlying
network is a general directed graph, for which we created a very fast algorithm that is in fact faster
than the greedy algorithm. Applying the algorithm to optimize a diffusion process of a species over
fragmented landscape, we compute high-quality solutions compared to existing techniques. For the
previous two settings, we only care whether the node is infected or not and ignore the time at which
a node becomes infected. In the last setting that is the most general and difficult one, we consider the
infection time and use the so-called Continuous-Time Independent Cascade (CTIC) model. Under
this model, the definition of intervention actions is slightly different. We found an algorithm and
successfully applied it to minimize the travel time that ambulances take to reach patients in different
locations. Although all experiments are on problems in the area of computational sustainability,
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the algorithms have nice scalability and are potentially applicable to solving diffusion optimization
problems in social and information networks.

The rest of the paper is organized as follows. Section 2 introduces the IC model and the decision
making problem. Section 3 introduces algorithms for the case that the underlying networks are
directed rooted trees. Section 4 introduces the algorithm for the case that the underlying networks
are general directed graphs. Section 5 briefly introduces the CTIC model, the decision making
problem under the CTIC model and solution methods.

2 Decision Making Under The Independent Cascade Model

Independent Cascade Model: The input is a directed graph G= {V,E} where each node is ei-
ther infected or uninfected. Once a node becomes infected, it has one chance to infect each of its
uninfected neighbors independently with some probability. For example, once a node u becomes
infected, it can infect a node v along an existing directed edge (u, v) with probability puv . We call
puv the infection probability of u to v. If v fails to be infected at this point, u cannot infect v in the
future. Once a node becomes infected, it remains infected forever. The process starts from a set of
initially infected nodes called sources and terminates when no more nodes become infected.

Without loss of generality, we assume that there is a unique source. Otherwise, a dummy source
is created and a directed edge is added from it to each other source with infection probability 1.0.
Currently, we make the assumption that the infection time of any pair of nodes remains a common
constant. Then, we can view the infection time to be 1 so that the diffusion process unfolds in
discrete steps. In section 5, we will relax this assumption.

Intervention Actions: For each edge (u, v), we define a candidate action auv that can change the
infection probability of (u, v) from puv to p′uv . We call puv the initial infection probability and p′uv
the modified infection probability. Each action is associated with a specified cost.

Decision Making Problem: A policy denoted by π is defined as a subset of actions, or equivalently
a subset of edges, for which the associated actions are taken. A policy is feasible if the total cost
of taken actions is no greater than a given budget limit B. For a given directed graph G with a
unique (dummy) source and a specified budget limit B, the decision making problem is to select the
best policy among all feasible policies, with which the diffusion infects the maximum (minimum)
expected number of nodes. Mathematically, the decision making problem is written as:

max(min)π
∑
v∈V

E [v is infected] s.t. Cost(π) ≤ B (1)

This problem is a complex stochastic optimization problem. Specifically, it can be shown that the
problem is in general NP-hard and the objective function is neither submodular nor supermodular.

Extensions: The problem can be extended in two ways: 1) allowing one action to change the
probabilities of multiple edges and 2) allowing multiple candidate actions with different strengths
per edge. Algorithms that we will introduce later can be modified to handle one or both these
extensions.

It is easy to see that the source selection problem is a special case of the above general decision
problem. Given the input graph G, we add an extra node s as the dummy source and create a
directed edge from it to each other node in G with the initial infection probability 0. For each
such edge, we define an action that can raise the infection probability from 0 to 1, each with cost
1. Finally, we set B = K. The objective is to maximize the expected number of nodes that are
eventually infected. It can be shown that taking the action on the edge (s, v) is the same as setting v
to be a source. Since the budget limit is K and each action takes one unit of cost, at most K sources
can be selected. Therefore, the problem becomes a source selection problem.

3 Tree Structured Networks

In this section, we first consider the setting in which the underlying network is a directed rooted tree,
a tree with a unique root (the source) and directed edges spreading out from the root. Let NV be the
number of nodes in the input graph. We make the following claim [11].
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Figure 1: Solution quality and runtime for different budgets

Proposition 1. When the underlying network is a directed rooted tree, the decision making problem
is NP-hard and is neither submodular nor supermodular. For the maximization problem, we can
find a FPTAS, which takes time O(N2

V /ε
2) to find a policy with value at least (1− ε) times optimal

value.

The algorithm and proofs were presented at AAAI’14 [11]. The basic idea is to first build a dynamic
programming algorithm that can calculate the optimal policy but is a pseudo-polynomial time algo-
rithm and then use a rounding strategy to make the algorithm scalable. The resulted algorithm is
called rounded dynamic programming (RDP). In the dynamic programming algorithm, each subtree
is associated with a table, which is indexed by the values that are achievable by any feasible policy.
The policy indexed by a value z gives the least cost among all policies that achieve z. Tables are
computed recursively from small subtrees to large subtrees. The optimal policy is extracted from the
table of the complete tree. However, this algorithm is not efficient because the number of achievable
values or the size of a table can be as large as 2NV . To make the algorithm scalable, we use a round-
ing strategy. For each table, the range of all achievable values is discretized into a small number of
non-overlapping intervals and all values in the same interval are considered to be the same. There-
fore, the number of different values becomes the number of intervals which is much less than before.
The granularity of the discretization is controlled by a paramter ε that affects both the runtime and
the approximation quality.

We applied this algorithm to the barrier removal problem [12] where the goal is to maximize the
spread of fish in a river network by selectively removing instream barriers (equivalently raising the
infection probabilities). The results shown in Fig. 1 compare our algorithm (RDP) with the dynamic
programming algorithm without the rounding strategy (DP), which produces the optimal solution,
on a small network of 18550 nodes and 9354 candidate actions (some edges don’t have actions).
Our algorithm produces the near optimal solution and is much faster than ”DP”. Note that the larger
budget size is, the more values are achievable and the larger the size of the table is. While ”DP”
takes 20 minutes for budget size 5000, ”RDP” only takes 20 seconds. Moreover, we observe that the
runtime of our algorithm in practice is much faster than the theoretical upper bound in Proposition 1.

In previous work [13], we have also presented a FPTAS to solve a more complex problem, for which
each node sends out an influence that spreads separately in the network and the goal is to design the
network to maximize the expected total number of influences received by all nodes.

4 General Directed Graph

In this section, we introduce a fast algorithm for general directed graphs. Although the algorithm
doesn’t have the nice approximation guarantee as RDP, it is very fast and is able to produce solutions
with high qualities empirically. The basic idea is as follows. First, the Sample Average Approxima-
tion (SAA) technique is used to construct a network design problem that approximates the stochastic
optimization problem (1). Then, a fast combinatorial algorithm is built based on the Lagrangian re-
laxation technique and the primal-dual schema to solve the constructed network design problem
approximately. We describe below each part of the algorithm.

Sampling: We use a simple example shown in Fig. 2 to illustrate the idea of sampling. The original
graph G has two nodes with u being the source. The initial infection probability is 0.2. An action a
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Figure 2: An example of sampling procedure.

can raise it into 0.8. We define another graph G′ with two parallel edges e and e′ where e′ is present
if and only if the action a is taken. The infection probabilities of e and e′ are p∗e and p∗e′ respectively.
We want to define p∗e and p∗e′ properly so that the probability that v is infected is the same for both
graphs. The way we define them is as follows.

Define Ue to be a random variable uniformly distributed in range [0, 1]. u infects v via e′ if Ue ≤ p′uv
and via e if Ue ≤ puv . Therefore, for both graphs, if the action a is taken, the probability that v is
infected is 0.8. If the action a is not taken, the probability is 0.2. For the general directed graphs,
we make the following claim.
Lemma 1. Given the original graph G and a constructed graph G′ that has two parallel edges for
each edge in G, we can define the infection probabilities for the parallel edges properly such that
the probability that any node v is infected is the same for both graphs.

For a given constructed graph G′, we sample a sequence of graphs independently of any policy. In
each sampled graph, we determine for each edge, by drawing a sample of Ue, whether the infection
via that edge succeeds. If yes, the edge is present in that sampled graph. Otherwise, the edge is
absent. For example, as shown in the last part of Fig. 2, the sample 1 has Ue = 0.1. Then, the
infections via both edges succeed and both edges are present in the first sample.

Given N graphs sampled using the above procedure, we construct a network design problem, in
which an action is associated with a set of edges and the goal is to purchase edge sets to maximize
the average number of nodes that are connected to sources in sampled graphs. The ratio that a node
is connected to the source is the approximation of the probability that the node is infected. The
network design problem is

max
π

1

N

∑
i=1:N

# of nodes connected to sources in ith sample under π s.t. Cost(π) ≤ B (2)

Solving the Network Design Problem: The problem (2) can be written as a Mixed Integer Pro-
gram (MIP). It is NP-hard and its size increases linearly with the number of samples and the number
of edges, so solving it by a standard MIP solver is inefficient for large-scale networks. In previous
work [14], we provide a fast algorithm to solve it approximately. The idea is to use Lagrangian relax-
ation method to bring the budget constraint into the objective together with a Lagrangian multiplier
β. The relaxation problem is parameterized by the β and can be solved efficiently by a primal-dual
algorithm. A bisection procedure is used to find a β, for which the near optimal solution of the
relaxation problem is also a near optimal solution of the problem (2).

Let NV denote the number of nodes and NE denote the number of edges. Let M be the number
of iterations in bisection procedure and K be the number actions that are selected by the greedy
algorithm. As mentioned in section 2, there are NE candidate actions, one for each edge. Now, we
make the following claim.
Proposition 2. For the general directed graph, we can find an approximate algorithm whose
performace depends on N , the number of samples. With N samples, the algorithm takes time
O (M(NNVNE +NENE)) while a greedy algorithm takes time O(KNNE(NE +NV )).
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For the greedy algorithm, there are K iterations. At each iteration, O(NE) candidate actions are
tested and the one with the maximum marginal gain is selected. For each candidate action, we
calculate the number of nodes that are reachable from the source, which takes time N(NE +NV ).

In experiments, we observe that M is usually very small (e.g. between 10 and 20) and a small
number of samples (e.g. N = 50) are usually enough for convergence. If we assume that
NNV > NE > NV , the runtimes of our algorithm and the greedy algorithm are O(MNNVNE)
and O(KNNENE) respectively. Then, our algorithm is KNE

MNV
times faster.
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Figure 3: Value and runtime comparisons. ”MIP” is the mixed integer solver (Gurobi) that produces the
optimal solution for the discrete problem. The first two figures are for 10 samples. The last two figures are for
300 samples.

We applied our algorithm to the conservation planning problem [9], for which the goal is to max-
imize the spread of birds by selectively adding lands (nodes) into the networks. This problem is a
special case of our general decision making problem. Similar to our method, Sheldon. et. al con-
struct a network design problem using the SAA technique and solve the constructed problem using
a MIP solver. Our sampling procedure degenerates into their sampling method in this node addition
problem. But, we provide a much faster way to solve the constructed problem. The network contains
253 thousands nodes, about 600 millions edges and only 443 candidate actions where one action can
change the probabilities of multiple edges simultaneously. Nodes in the graph are grouped into 100
layers and edges only connected nodes in adjacent layers. This special structure of the network en-
ables us to implement our algorithm much faster than the theoretical bounds. The results of solving
the constructed network design problems are shown in Fig. 3. More results are provided in [14, 9].
With 10 samples, our algorithm and the greedy algorithm are much faster than ”MIP” and produce
near optimal solutions. For 300 samples where ”MIP” fails to finish within a reasonable amount of
time, our algorithm is much faster than the greedy algorithm and produces slightly better solutions.

5 Continuous-Time Independent Cascade Model

Now, we consider the last setting when the infection time is not a constant but randomly distributed.
We use the Continuous-Time Independent Cascade (CTIC) model. In this case, the infection time
is randomly distributed in range [0,∞] where ∞ means the infection never succeeds. Then, the
process unfolds in the following way. Initially, a set of nodes (sources) are infected. Once a node
becomes infected recently, it samples an infection time t randomly and independently for an unin-
fected neighbors v. After time t, v becomes infected. The process terminates when no more nodes
can be infected within a finite amount of time.

Under this model, we define the decision making problem as follows. For an edge (u, v), we define
two different probability distributions of the infection time, one for the action auv being taken and
the other one for the action auv not taken, both over [0,∞]. For example, if auv is not taken,
the infection time follows the exponential distribution Exp(λ1). If auv is taken, the infection time
follows the distribution Exp(λ2) with λ2 > λ1. In this case, we say that the action makes the
infection time stochastic shorter in the sense that after taking the action, the probability that the
infection time is less than t (any value in [0, t]) becomes larger. The objective is to minimize the
expected average time for a node to become infected. However, for some node the infection time
may be∞, so we set a big penalty Mv , as the trade-off parameter, for the node v that has the infinite
infection time. Then, the decision making problem is written as

max
π

1

NV
E[

∑
v infected

infection time of v +
∑

v uninfected

Mv] s.t. Cost(π) ≤ B (3)
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Figure 4: Performance on the pre-disaster preparation problem.

where the objective is the expected average infection time of all nodes. Other objectives, for ex-
ample, maximizing the expected number of nodes being infected before certain time point, are
interesting as well. It is our future work to consider those objectives [15, 16].

To solve the problem (3), we use the same basic idea as in the last section, but the sampling procedure
and the algorithm to solve the constructed network design problem are different. We directly make
the following claim. The details can be found in [17].

Proposition 3. For CTIC model and the general directed graph, we can find an approximate algo-
rithm whose performance depends on N , the number of samples. With N samples, the algorithm
takes time O(M(N2N2

E +N2N2
V )) while a greedy algorithm takes time O(KNN2

ElogNNV ).

The meaning of NV , NE , M and K are the same as in the last section. For the greedy algo-
rithm, there are K iterations and in each iteration, O(NE) candidate actions are tested, for each
of which we run Dijkstra’s algorithm once to calculate the single-source shortest paths by time
O(NNElogNNV ). If NE > NV , our algorithm takes time O(MN2N2

E). So, in terms of the worst
case analysis, our algorithm is faster only if MN < KlogNNV . But, in practice, we observe that
our algorithm runs faster than the worst case time complexity.

We applied our algorithm to solve an instance of the pre-disaster preparation problem introduced
by [18], for which the goal is to minimize the total travel time that ambulances need to reach patients
in different locations during a flood. The travel of ambulances in the road network can be modeled
by the CTIC model. A node represents a specific location in the road network and an edge represents
a piece of road segment. The ambulance center is encoded as the source. The travel time on a road
segment is modeled as the infection time along the correspondent edge. A node is infected by time
t is equivalent that the node can be reached by time t. An action can reinforce one road segment to
make its travel time stochastically shorter during the flood.

In this problem, only a portion of nodes are needed to be reached, so we only minimize the total
travel time to those nodes. With this in mind, we can reduce the runtime of our algorithm dra-
matically. We first tested on a small network (10037 edges) and the results are shown in Fig. 4.
The greedy algorithm performed similarly well as our algorithm in terms of quality, but was much
slower. We also tested our algorithm on a large network (55687 edges) where one iteration of the
greedy algorithm takes more than 10 hours. Our algorithm took about 6 hours and produced much
better solution than other fast algorithms, such as the algorithm that randomly enumerates policies
for 10 hours and picks the best one. Additional results can be found in our AAAI’16 paper [17].

6 Conclusion

In this paper, we formulate the problem of optimizing diffusion processes using a general decision
making problem under the Independent Cascade model. Then, we introduce efficient algorithms
for three different settings 1) the underlying network is a directed rooted tree, 2) the network is a
general directed graph and 3) the infection time is continuous. The details of these algorithms are in
our published papers in which we apply them to solve several problems in the area of computational
sustainability. The results show that our algorithms are much faster than existing algorithms and
produce near optimal solutions. The good scalability of these algorithms make them highly relevant
to other diffusion optimization problems in social and information networks.
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