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Abstract

We consider the problem of influence maximization in networks, maximizing the
number of people that become aware of a product by finding the ‘best’ set of
‘seed’ users to expose the product to. Most prior work on this topic assumes that
we know the probability of each user influencing each other user, or we have data
that lets us estimate these influences. However, this information is typically not
available or is difficult to obtain. To avoid this assumption, we adopt a combi-
natorial multi-armed bandit paradigm that estimates the influence probabilities as
we sequentially try different seed sets. We establish bounds on the performance
of this procedure under the existing edge-level feedback mechanism as well as a
novel and more realistic node-level feedback mechanism. Beyond our theoretical
results, we describe a practical implementation and experimentally demonstrate
its efficiency and effectiveness on four real datasets.

1 Introduction
Viral marketing uses social networks to spread awareness about a specific product in the market
through ‘word-of-mouth’ influence propagation. Specifically, the marketer aims to select a fixed
number of ‘influential’ users (called seeds) to give free products or discounts to. The marketer as-
sumes that these users will influence their neighbours and, by transitivity, other users in the social
network. This will result in information propagating through the network as an increasing number
of users adopt or become aware of the product. The marketer typically has a budget on the number
of free samples or discounts that can be given, so she must strategically choose seeds so that the
maximum number of people in the network become aware of the product. The goal is to maximize
the spread of this influence, and this is referred to as influence maximization (IM) [10]. In their sem-
inal paper, Kempe et al. [10] studied the IM problem under well-known probabilistic information
diffusion models including the independent cascade (IC) and linear threshold (LT) models. While
the problem is NP-hard under these models, there have been numerous papers on efficient approxi-
mations and heuristic algorithms (see Section 2). But prior work on IM assumes that in addition to
the network structure, we either know the pairwise user influence probabilities or that we have past
propagation data from which these probabilities can be learned. However, in practice the influence
probabilities are often not available or are hard to obtain. To overcome this, the initial series of pa-
pers following [10] simply assigned influence probabilities using some heuristic means. However,
Goyal et al. [9] showed empirically that learning the influence probabilities from propagation data
is critical to achieving high-quality seeds and subsequently to maximizing the spread.

In this work, we consider the common situation where propagation data is not initially available. We
adopt a combinatorial multi-armed bandit (CMAB) paradigm and consider an IM campaign consist-
ing of multiple rounds (as in another recent work [5]). Each round amounts to an IM attempt and
incurs a regret in the influence spread because of the lack of knowledge of the influence probabil-
ities. We seek to minimize the accumulated regret incurred by choosing suboptimal seed sets over
multiple rounds. A new marketer may begin with no knowledge (other than the graph structure) and
at each round we can choose seeds that improve our knowledge and/or that lead to a large spread,
leading to a classic exploration-exploitation trade-off. As in prior work, we first consider “edge-
level” feedback where we assume that we can observe whether influence propagated via each edge
in the network (Section 3). We also propose a novel “node-level” feedback mechanism which is
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more realistic (Section 4): it only assumes we can observe whether each node became active (e.g.,
adopted a product) or not, as opposed to knowing who influenced that user. We establish bounds on
the regret achieved by the algorithms under both kinds of feedback mechanisms. We further present
regret minimization algorithms (Section 5) and conduct extensive experiments on four real datasets
to evaluate the effectiveness of the proposed algorithms (Section 6).

2 Motivation and Related Work
We model a social network as a probabilistic directed graph G = (V,E, P ) with nodes V repre-
senting users, edges E representing connections, and edge weights P : E → [0, 1]. The influence
probability P (u, v) represents the probability with which user v will perform an action given that
it is performed by u. A stochastic diffusion model D governs how information spreads from nodes
to their neighbours in the network. Given a seed set S, the expected number of nodes influenced
by S under the model D, denoted σD(S) (just σ(S) when D is obvious from context), is called the
(expected) influence spread of S. Given G and a budget k on the number of seeds to be selected, IM
aims to find the seed set S of size k which will maximize σD(S)

S∗ = argmax
|S|≤k

σ(S). (1)

Although IM is NP-hard under standard diffusion models, the expected spread function σD(S) is
monotone and submodular. Solving Eq. (1) thus reduces to maximizing a submodular function under
a cardinality constraint, a problem that can be solved to within a (1 − 1/e)-approximation using a
greedy algorithm [13]. Most work on IM assumes knowledge of the influence probabilities, but there
is a growing body of work on learning the influence probabilities from data. Typically, the data is
a set of diffusions (also called cascades) that happened in the past, specified in the form of a log of
actions by network users. Learning influence probabilities from available cascades has been used in
discrete-time models [15, 8, 14]. However, in many real datasets the cascades are not available and
we can’t use these existing approaches.

In the traditional stochastic multi-armed framework [11], there are m arms each of which has an
unknown reward distribution. The bandit game proceeds in rounds and in every round s, an arm is
played and a corresponding reward is generated by sampling the reward distribution for that arm.
This game continues for a fixed number of rounds T . The goal is to minimize the regret resulting
from playing suboptimal arms across rounds.The combinatorial multiarmed bandit paradigm is an
extension where we can pull a set of arms (a ‘superarm’) together [7, 4, 6]. Chen et al. [5] introduce
the notion that triggering superarms can also probabilistically trigger other arms. They target both ad
placement on web pages and viral marketing applications under semi-bandit feedback. They propose
an algorithm based on the upper confidence bound (UCB) called combinatorial UCB (CUCB) for
obtaining an optimal regret ofO(log(T )). However, they assume the often- unrealistic “edge-level”
feedback and did not experimentally test their algorithm. More recently, Lei et al. [12] studied the
related, but very different, problem of maximizing the distinct number of nodes activated across
rounds. They assume edge-level feedback and do not theoretically compare performance of their
approach with that achievable when influence probabilities are known.

3 CMAB Framework for IM
3.1 Review of CMAB
The CMAB framework consists of m base arms. Each arm i is associated with a random variable
Xi,s which denotes the outcome (or ‘reward’) of triggering arm i arm on trial s. The reward Xi,s

is bounded on the support [0, 1] and is independently and identically distributed according to some
unknown distribution with mean µi. In each of the T rounds, a superarm A (a set of base arms) is
played, which triggers all arms in A. In addition, some of the other arms may get probabilistically
triggered. Let piA denote the triggering probability of arm i if the superarmA is played (observe that
piA = 1 for i ∈ A). The reward obtained in each round s can be a (possibly non-linear) function of
the rewards Xi,s for each arm i that gets triggered in that round. Let Ti,s denote the total number
of times an arm i has been triggered at round s. For the special case of s = T , we use the notation
Ti := Ti,T . Each time an arm i is triggered, we use the observed reward to update its mean estimate
µ̂i. The superarm that is expected to give the highest reward is selected in each round by an oracleO.
This oracle takes as input the current mean estimates ~̂µ = (µ̂1, ..., µ̂m), and outputs an appropriate
superarmA. In order to accommodate intractable problems, the framework of [4, 5] assumes that the

2



CMAB Symbol Mapping to IM
Base arm i Edge (u, v)
Reward for arm i in round s Xi,s Status (live / dead) for edge (u, v)
Mean of distribution for arm i µi Influence probability p(u,v)
Superarm A Union of outgoing edges ES from nodes in seed set S
No. of times i is triggered in s rounds Ti,s No. of times u becomes active in s diffusions
Reward in round s rs Spread σ̄ in the sth IM attempt

Table 1: Mapping of the CMAB framework to IM
oracle provides an (α, β)-approximation to the optimal solution; the oracle outputs with probability
β a superarm A such that it attains an α approximation to the optimal solution.

3.2 Adaptation to IM
Though our framework is valid for any discrete time diffusion model, we will assume the IC diffu-
sion model [10] in our discussion. At timestep t = 0, only the seed nodes are active. Each active
node u gets one attempt to influence/activate each of its inactive out-neighbours v in the next time
step. This activation attempt succeeds with influence probability pu,v := P (u, v). An edge along
which an activation attempt succeeded is said to be live, and other edges are said to be dead. At a
given time t, an inactive node v may have multiple parents which activated at time (t− 1). This set
of parents are capable of activating v at time t and we refer to them as the active parents of v at time
t. The actual spread is the number of nodes reachable from the selected seed nodes in the real world
and we denote it by σ̄. Table 1 gives our mapping of the various components of the CMAB frame-
work to IM. Note that since each edge can be either live or dead in the true diffusion, Xi,s ∈ {0, 1}
and we can assume a Bernoulli distribution on these values. We describe the CMAB framework for
IM in Algorithm 1. In each round, the regret minimization algorithm A selects a seed set S with
|S| = k and plays the corresponding superarm ES . S can be selected either randomly (EXPLORE)
or by solving the IM problem with the current influence probability estimates ~̂µ (EXPLOIT). The
details for solving Eq. (1) are encapsulated in the oracle O which takes as input the graph G and
~̂µ, and outputs a seed set S under the cardinality constraint k. For the case of IM, O constitutes a
(1 − 1

e , 1 −
1
|E| )-approximation oracle [5]. Notice that the well-known greedy algorithm used for

IM can serve as such an oracle. Once the superarm is played, information diffuses in the network
and a subset of network edges become live which leads to a subset of nodes becoming active. The
reward Xi,s for these edges is 1. Note that the reward σ̄(S) is the number of active nodes at the
end of the diffusion process and is thus a non-linear function of the rewards of the triggered arms
(edges). After observing a diffusion, the mean estimate ~̂µ vector needs to updated. In this context,
the notion of a feedback mechanism M plays an important role. It characterizes the information
available after a superarm is played. This information is used to update the model to improve the
mean estimates (UPDATE in Algorithm 1). Let S∗ be the solution to Eq. (1) and let σ∗ = σ(S∗), the
optimal expected spread. Since IM is NP-hard, even if the true influence probabilities are known,
we can only hope to achieve an expected spread of αβσ∗, where α = 1 − 1

e and β = 1 − 1
|E| . We

let Ss be the seed set chosen by A in round s. The regret incurred by A is then defined by

Reg(µ, α, β) = Tαβσ∗ − ES

[ T∑
s=1

σ̄(Ss)
]
, (2)

where the expectation is over the randomness in the seed sets output by the oracle. The usual
feedback mechanism is the edge-level feedback proposed by [4], where we assume that we know the
status (‘live’ or ‘dead’) of each triggered edge in the “true” possible world. The mean estimates of
the arms distributions can then be updated using µ̂i =

∑t
s=1 Xi,s

Ti,t
.

4 Node-Level Feedback
Edge-level feedback is often not realistic because success/failure of activation attempts is not gener-
ally observable. Unlike the status of edges, it is quite realistic and intuitive that we can observe the
status of each node: did the user buy or adopt the marketed product? While this is a more realistic
assumption, the disadvantage of node-level feedback is that updating the mean estimate for each
edge is more challenging. This is because we do not know which parent activated the node. This
leads to a credit assignment problem, and below we describe a simple and scalable way to address
it.
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Algorithm 1: CMAB FRAMEWORK FOR IM(Graph G = (V,E), budget k, Feedback mechanism
M , Algorithm A)

1 Initialize ~̂µ ;
2 ∀i initialize Ti = 0 ;

3 for s = 1→ T do
4 IS-EXPLOIT is a boolean set by algorithm A ;
5 if IS-EXPLOIT then
6 ES = EXPLOIT(G,~̂µ,O,k)
7 else
8 ES = EXPLORE(G,k)
9 Play the superarm ES and observe the diffusion cascade c ;

10 ~̂µ = UPDATE(c,M ) ;

In typical social networks, the influence probabilities are very small. Low influence probabilities
cause the number of active parents to be small. We propose a scheme whereby we choose one of
the active neighbours of v, say ui, uniformly at random, and assign the credit of activating v to ui.
The probability of assigning credit to any one of K active parents is thus 1

K . That is, edge (ui, v)
is given a reward of 1 whereas edges (uj , v) corresponding to other active parents uj , j 6= i, are
assigned a zero reward. We then follow the same update formula as described for the edge-level
feedback model. Owing to the inherent uncertainty in node-level feedback, note that we may make
mistakes in credit assignment: we may infer an edge to be live while it is dead in the true world or
vice versa. We call the probability of such a faulty inference the failure probability ρ under node-
level feedback. An important question is whether we can bound this probability. This is important
since failures could ultimately affect the achievable regret and the error in the learned probabilities.
The result below bounds both the failure probability ρ and the difference between estimates obtained
using edge-level and node-level feedback mechanisms.

Theorem 1. Let pmin and pmax be the minimum and maximum true influence probabilities in the
network. Consider a particular cascade c and any active node v with Kc active parents. The failure
probability ρ under our node-level feedback credit assignment scheme for node v satsifies

ρ ≤ 1

Kc
(1− pmin)

(
1−

Kc∏
k=1,k 6=i

[1− pmax]

)
+

(
1− 1

Kc

)
pmax. (3)

Suppose µ̂E
i and µ̂N

i are the inferred influence probabilities for the edge corresponding to arm i us-
ing edge-level and node-level feedback respectively. Then the relative error in the learned influence
probability is given by: ∣∣∣∣ µ̂N

i − µ̂E
i

µ̂E
i

∣∣∣∣ = ρ

∣∣∣∣ 1

µ̂E
i

− 2

∣∣∣∣ (4)

We observe from Eq. 4 the error in the mean estimates increases as Kc increases, but that the
heuristic will be accurate when Kc is small. In Section 6, we empirically find typical values of
pmax, pmin, and Kc on real datasets and verify that the failure probability is indeed small.

5 Regret Minimization Algorithms
As can be seen from Algorithm 1, the basic components in the framework are the EXPLORE,
EXPLOIT and UPDATE subroutines. EXPLORE outputs a random subset S of size k as the seed set,
whereas EXPLOIT consults the oracle O and outputs the seed set that (approximately) maximizes
the spread according to current mean estimates ~̂µ. UPDATE examines the latest cascade c and
updates the parameters using the desired feedback mechanism M (either edge-level or node-level).
Upper Confidence Bound: The Combinatorial Upper Confidence Bound (CUCB) [4] maintains an
overestimate µi of the mean estimates µ̂i and was theoretically shown to achieve logarithmic regret
under edge-level feedback. ε-Greedy: This strategy performs exploration with probability εs and
exploitation with probability 1−εs and can achieve logarithmic regret under edge-level feedback [4].
We obtain node-level feedback mean estimates in terms of edge-level estimates (Theorem 1) and can
use these to characterize regret. Pure Exploitation: This strategy performs exploitation in every
round.
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6 Experiments

We use 4 real datasets – Flixster, NetHEPT, Epinions and Flickr, with Flickr having the largest
network (with 105K nodes and 2.3M edges). Of these, true probabilities are available for the Flixster
dataset, as learned by the topic-aware IC (TIC) model [1]. Since true probabilities are not available
for the other datasets, we synthetically assign them according to the weighted cascade model [10, 12,
3]: for an edge (u, v), the influence probability is set to pu,v = 1

|Nin(v)| . The probability estimates of
our algorithms are initialized to 0. A ‘run’ of consists of playing the CMAB game for T rounds. We
simulate the diffusion in the network by sampling a deterministic graph from the probabilistic graph
G on each round: for the purpose of our experiments, we assume that the diffusion in the real world
happened according to this sample. For our oracle, as well as for batch-mode seed selection, we use
the TIM algorithm [17]. We use a maximum of T = 1000 rounds and use k = 50 (a standard choice
in the IM literature). We verified that we obtain similar results for other reasonable values of k. All
our results are obtained by averaging across 3 runs. We compare CUCB, ε-greedy (EG) and pure
exploitation (PE).1 For CUCB, if the update results in any µi exceeding pmax, as in previous works
we reset it back to pmax [4]. We set pmax = 0.2 in our experiments, based on the fact that influence
probabilities in practice tend to be small [8]. For ε-Greedy, we found that ε0 = 5 works well, and we
set the exploration parameter on round s to εs = ε0/s. Like in [3], we use random selection (RAND)
and highest degree selection (HIGH-DEGREE) as baselines. We use ‘A-M’ to refer to algorithm A
with feedback mechanism M. For example, EG-EL means ε-greedy with edge-level feedback.

We plot the average regret, Regret(T )/T , as the number of rounds increases. As can be seen from
Figure 1(a), the average regret for both PE and EG decreases quickly with the number of rounds.
This implies that at the end of 1000 rounds, the probabilities are estimated by the bandits approaches
well enough that they give a comparable spread to using the seeds selected in batch mode given the
true probabilities. Pure exploitation achieves the best average regret at the end of 1000 rounds. This
is not uncommon for cases where the rewards are noisy [2]. Initially, with unknown probabilities,
rewards are noisy in our case, so exploiting and greedily choosing the best superarm often leads to
very good results. Random seed selection has the worst regret, which is constant. For the initial
rounds, selecting seeds according to the high degree has a lower regret than other methods. With
increasing number of rounds, the influence probabilities become more accurate and the IM oracle
O outputs seed sets leading to higher spread than HIGH-DEGREE. We also observe that the regret
for CUCB decreases very slowly. CUCB is biased towards exploring edges which have not been
triggered often. Since typical networks contain numerous edges, CUCB ends up exploring much
more than necessary and results in a slow rate of decrease in regret. We observe this behaviour for
other datasets as well. We omit CUCB and RAND from further plots. We also observe the regret
decreases quickly under node-level feedback and is close to that obtained with edge-level feedback.
For NetHEPT with k = 50, the average number of active parents for a node is 1.175. Previous work
has shown that the probabilities learned from diffusion cascades are generally small [16, 8, 14].
For example, if pmin = 0 and pmax varies from 0.01 to 0.2, the failure probability ρ (calculated
according to the equation 3) varies from 0.0115 to 0.2261. This is true for all our datasets. For other

(a) NetHEPT (b) Flixster (c) Flickr

Figure 1: Regret vs number of rounds for different algorithms

datasets too, the regret using node-level feedback is close to that obtained using edge-level feedback
mechanism. For Flixster (similar results are obtained for Epinions), NL is effective for all regret
minimization algorithms with PE obtaining the lowest regret. For Flickr, because of the large size

1Abbreviations used in plots are in parentheses.
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of the graph, it is challenging to find a good seed set with partially learned probabilities. As a result,
the average regret after 1000 rounds is higher than for other datasets. We observe that while PE finds
a locally optimal seed set. EG is able to find a much better seed set and consequently converges to a
much lower because of its exploration phase.

7 Conclusion

We studied the problem of influence maximization when no influence probabilities or diffusion cas-
cades are available. We adopted a combinatorial multi-armed bandit paradigm and used algorithms
from the bandits literature to minimize the loss in spread due to lack of knowledge of influence
probabilities. We also evaluated their empirical performance on four real datasets.
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