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Abstract

The collection of true and complete measurements for social network analysis
is often limited and costly. Indirect measurements from electronic data sources
have opened new avenues for extracting valuable information on social patterns.
While the analysis of proximity data and email communication are a few data
sources that have been heavily studied, the analysis of computer network logs and
their robustness in capturing latent social behavior is an under-explored area. In
this paper, we investigate the richness of network logs in identifying latent social
networks of users within an enterprise. Specifically, we model the observable
network artifacts on a per-user basis, and embed each user in graphs representing
the enterprise. We analyze the structural properties of these graphs and discover
that the latent social network shares many of the distinguishing characteristics of
those observed in the real-world.

1 Introduction

Analysis of social networks has become a thriving area of research for identifying and characterizing
social structures and behaviors of interest like homophily, self-organizing communities, and prop-
agation of information. Often the data used to construct such networks comes from indirect, noisy
measurements, with email communications [1], physical proximity [2] and web links [3] being a
few examples. Therefore, it is of great interest to understand and quantify the robustness of these
indirect measurements in capturing the true social relationships.

We focus on the extraction of social networks from computer network logs for the purposes of
inferring information about an enterprise network. A truthful characterization of user behaviors
and activities within a computer network is important with implications to network efficiency and
cyber security [4, 5]. One may view the network as an overlay of the users’ social network and
the supporting computer network. Each layer imposes non-trivial constraints on the other, with
the resultant model being more than the sum of the two. For example, different access privileges
affect which physical edges are available for communication, while social relationships affect the
intensity or traffic between computers. While recent work has demonstrated the use of network logs
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to characterize individual users and their local relationships [6], there has yet to be an analysis of
how robust computer network logs are in capturing global characteristics of some unobserved social
network.

In this paper, we address the robustness question by analyzing the properties of the latent networks
constructed from computer network logs. We show that these latent social networks manifest many
of the characteristics observed in real social networks such as sparsity, skewed degree distribution,
high clustering coefficient, small world properties, and community structure [7]. This further implies
that computer network logs can serve as reliable data proxies for capturing complex social patterns
of users. This assessment has great implications to network efficiency and vulnerability [4], where
the overlay of the human behavioral topology on the logical and/or physical computer networks
presents a richer and more realistic view of the cyber network.

1.1 Related Work

Prior work has shown the ability to infer community structure within an enterprise from computer
network logs [6]. We take a similar approach by considering topic similarity networks where topics
arise from electronic footprints users leave as they utilize the computer network in their daily ac-
tivities. While [6] took a metric-space approach, we model users as a social network and study the
topological properties of the induced graph.

We leverage Latent Dirichlet Allocation (LDA) [8] to model our enterprise users. LDA has effec-
tively been used to model user-created microtext [9, 10] and is a natural representation of computer
network artifacts [11]. We extend that work by analyzing additional network artifacts, rather than
just user search queries.

Our work is similar to that shown in [12], where the authors studied the topological properties of
the Twitter network graph and contrasted them with information and social network traits. That
work, however, leveraged observed relationships within an explicit social network – users directly
tweeting each other – while our work focuses on latent relationships based on computer utilization.

2 Modeling Network Users

2.1 Data

We experiment on three different types of network artifacts: web search queries, web domains
visited, and Kerberos resource authentications. We collected web proxy and Kerberos authentication
logs indicating the activity of 3,715 users of a mid-sized enterprise network from September 1, 2011
to May 15, 2012, anonymizing the logs to protect user privacy. For ease of referral, we now use the
term ‘token’ to represent an observation of a unique network artifact (e.g. search term, domain, or
IP address).

To obtain the search query terms, we parsed the proxy HTTP request lines to derive a dictionary
of 34,621 tokens. We parsed web domains from the proxy HTTP GET request lines to derive a
dictionary of second-level domain name tokens. After filtering those domains which were visited
by more than 50% of the user base – google.com, twitter.com, and disqus.com – or less
than ten users (9,254 domains), the resultant dictionary contained 1,889 tokens. Kerberos resource
authentication tickets are keyed by the IP address of the server hosting the resource in question.
Hence, the 2,436 resultant tokens are IP addresses representing the host of the resource requested by
a user.

We considered only those users with a minimum number of tokens, Nmin, to remove inactive users.
This value was Nmin = {10, 50, 50} resulting in {2654, 2782, 3052} users for Kerberos, search
query, and web domain respectively.

2.2 Topic Modeling of Network Artifacts

Latent Dirichlet Allocation (LDA), first proposed by in [8], is a generative Bayesian topic model
where observations are conditioned on latent multinomial variables with Dirichlet priors. For each
choice of token type there are U users and W unique tokens, where each user u is associated with
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Figure 1: Size of the largest connected component – as a proportion of the total graph – over varying
size ε-balls

a bag of Nu tokens of the specified type. Furthermore, we assume each u has a multinomial dis-
tribution Θu over K topics, and each topic k has a multinomial distribution φk over the W tokens;
these distributions have Dirichlet priors with fixed hyper-parameters that are defined a priori. For
each user u, LDA asserts u’s bag of tokens is generated by sampling topic z(u)i from Θu, and in turn
sampling a token w(u)

i from φz(u) for each i = 1, . . . , Nu.

Training an LDA model to data entails estimating both the user-topic Θu and topic-token φk dis-
tributions from the observed users, given the fixed hyper-parameters of the Dirichlet priors and the
number of topics K. We parameterize in order to optimize the perplexity, a measure of how well
a trained model fits a held-out test set [8]. We select K at the point that increasing K produces
diminishing returns. These values were K = {50, 100, 100} for Kerberos, Query, and Domain
respectively.

2.3 Defining Graph Structure

For each of our data sets, we infer an LDA model which implicitly projects each user u into a K-
dimensional feature space, where u is represented by its vector of topic weights from its multinomial
distribution over topics. A natural means of computing (dis)similarity between users is the cosine
distance, which measures the length of the path between two points on the unit-sphere. Specifically,
let us define the distance d(ui, uj) between two users ui and uj as:

d(ui, uj) = 1− xi · xj
‖xi‖‖xj‖

, (1)

where xi is the mapping of user ui to the topic model and A · B is the dot product, noting that
0 ≤ d(·, ·) ≤ 1.

To study the structure of latent relationships within the network, we embed users into a graph G =
(V,E) where v ∈ V is the one-to-one mapping of users to graph vertices (vi := ui), and E is
the set edges between vertices. For our purposes, we use undirected and unweighted graphs. We
defineG such that users are neighbors if they share usage patterns, or are ‘close’ in our metric space.
Formally,

eij =

{
1 d(ui, uj) ≤ ε
0 d(ui, uj) > ε

, (2)

for some value ε. Simply, we create an ε-ball around each user and draw edges between any users
within the ball. Small values of ε require users to be highly similar in order to be neighbors, while
larger values of ε relaxes this constraint. In Fig. 1 we plot the size of the largest connected component
(LCC) within the resultant graph for various values of ε.
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In many observed social networks, the largest connected component is a good representative of the
whole graph. In all subsequent analyses, we define our graphs under analysis as those for which the
LCC contains at least 90% of the graph. This results in a threshold of ε = {0.25, 0.35, 0.45} for
Kerberos, Domain, and Query data sets, respectively.

3 Measures of Network Structure

Numerous metrics have been identified to capture distinguishing properties of social networks [7],
and we detail several of them here.

Sparsity

The density pG of graphGmeasures the portion of existing edges in the graph relative to the number
of potential edges. Many empirical networks, but social networks in particular, are very sparse. That
is, on average, vertices in the graph are only connected to a small constant number of other vertices.

Degree Distribution

The frequency distribution of vertex degrees of graph G – or simply its degree distribution – is
another fundamental measure that has unique behavior when it comes to social networks. It is
commonly characterized by most vertices having small degree and a few vertices with high degree,
giving it a right-skewed shape.

Clustering Coefficient

The local clustering coefficient Ci is the proportional number of pairs in the neighborhoodNi of vi,
which are also neighbors themselves:

Ci =
2|{eij : vj , vk ∈ Ni, ejk ∈ E}|

|Ni|(|Ni| − 1)
(3)

The global clustering coefficient CG is defined as the average local clustering coefficient over all
the vertices in graph G. The clustering coefficient measures the local cohesiveness of graph. Social
networks are known to have high values of clustering coefficient relative to networks generated by
random graph models such as Erdös-Rényi [13].

Average Shortest Path Length

The average shortest path LG captures one notion of distance within graph G:

LG =
1

n(n− 1)

∑
i,j

l(vi, vj), , (4)

where l(vi, vj) is the shortest path between any two vertices vi, vj and n = |V |.

Small-World-ness

The small-world property was first defined by Watts and Strogatz [14]. A graph is considered “small-
world” if it has a high clustering coefficient relative to the Erdös-Rényi graph, yet comparable aver-
age path length. We quantify the “small-world-ness” of G using the measure SG defined in [15]:

SG =
CG
Crand

/
LG
Lrand

, (5)

where Lrand and Crand is the average path length and the clustering coefficient for the Erdös-Rényi
graph. If SG > 1, the graph is said be small-world.
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Data Set pG CG Crand LG Lrand SG AUC
Query 0.014 0.52 0.014 4.00 2.64 23.74 0.982

Domain 0.012 0.76 0.012 5.58 2.71 31.19 0.993
Kerberos 0.104 0.89 0.104 3.29 1.90 4.93 0.998

Table 1: Measurements of topological properties within graphs constructed by user network artifacts

Edge Predictability

Social networks are known to exhibit transitive properties where nodes with common neighbors are
likely neighbors themselves. The predictive power of the graph topology can be measured using the
Adamic-Adar score, which computes the similarity between two vertices as the sum of the inverse
log frequency of their common neighbors [3]. Higher scores suggest higher likelihood of an edge
between those vertices. We measure the predictability of edges in graph G by randomly removing
10% of existing edges, resulting in G = Gtrain +Gtest. We classify all missing edges in Gtrain by
thresholding the Adamic-Adar score and usingGtest as ground truth, and compute the area under the
ROC curve (AUC) as done in [16]. This is then averaged over 10 trials. Higher values for this score
suggests that G exhibits strong predictive power typically observed in real-world social networks.

4 Results

In Table 1, we present for each of our latent social graphs the values of the metrics defined in Section
3. For comparison, we also show the corresponding values for the reference Erdös-Rényi graph with
the same density. The latent social graphs exhibit density values representative of those observed in
other social networks. In addition, there is significant predictive power of the graph topology, as the
AUC when predicting edges was greater than 0.98 for all data sources. This is in line with results
presented in [16].

Each of the studied graphs are characterized by high clustering coefficients and short path lengths,
which lead to strong small-world properties as indicated by the high SG values. It is important to
note that while a larger value of SG increases the confidence in the existence of the small-world phe-
nomenon, this is not a metric. Hence, we make no claims that Query or Domain data exhibit stronger
small-world effects than Kerberos, even though their SG values are 5-7 times larger. What we do
claim, however, is that each data set clearly exhibits small-world properties, which has implications
to cyber security. In the case of Kerberos data, small-world properties have been associated with
network efficiency and malware propagation [4, 5]. For the search query and web domain artifacts,
small-world effects suggest collaborative environments but also broad attack surfaces for certain
users. Understanding the interplay between the high degree nodes and the presence of small-world
properties can help network operators with both planning and defense; optimizing load-balancing
and identifying those users that are more prone to adversarial targeting.

In Fig. 2 we plot the degree distributions for the defined graphs. The degree distributions are skewed,
more noticeably in the Query graph (Fig. 2a), but partially so in the Domain graph as well (Fig. 2b).
Although the Kerberos dataset exhibits high clustering coefficient values and small-world proper-
ties, it has many more high degree vertices, representing those computer systems that are part of a
common infrastructure across the user base.

Overall, our measurements imply that the inherent structure in the graphs defined by network arti-
facts is similar to that identified in real-world social networks, with the Query and Domain graphs
being most similar. These results make sense as search and browsing are closely correlated with
user interests, and social network forming mechanisms such as homophily and organization into
communities are better captured through this type of network log [6]. The results demonstrate that
network logs are robust in capturing the social layer in addition to their traditional use for charac-
terizing computer traffic patterns. Therefore, they offer a versatile and unobtrusive data source that
allows the simultaneous modeling and characterization of different layers that form the network.
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Figure 2: Degree distributions of Gε derived from each network artifact (log-log scale)

5 Conclusion

In this paper, we presented a study of the latent social network structure of enterprise computer
networks. Modeling users based on their observable network artifacts, we defined a graph for which
users with similar utilization of the network were linked together. Our findings suggest that the
structural properties of these graphs resemble those commonly found in observed social networks.

In future work, we wish to investigate how the joint analysis of such networks might reveal more
robust social structures, as some network logs may be more reliable in capturing intrinsic behaviors
of subsets of users. More representative latent social networks may be discovered by fusing informa-
tion across different network logs. Network logs contain a wealth of information that is currently not
being exploited, and this paper is just one step in learning the human aspect of computer networks.
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