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Abstract-Current practice in vascular surgery utilizes only 
diagnostic and empirical data to plan treatments, and does not 
enable quantitative a priori prediction of the outcomes of 
interventions.  We have previously described simulation-based 
medical planning methods to model blood flow in arteries and 
plan medical treatments based on physiologic models[1, 2].   
These methods utilize computationally intensive three-
dimensional finite element analysis.  We recently described a 
new method for simulation-based medical planning based on 
solving one-dimensional equations of blood flow [3].  We 
demonstrate herein that these one-dimensional methods can be 
used to simulate blood flow in a porcine thoraco-thoraco bypass 
and further that predicted flow rates compare favorably to in 
vivo data obtained using cine phase-contrast magnetic resonance 
imaging in four pigs.     
Keywords - blood flow, Simulation-Based Medical Planning, one-
dimensional analysis methods 

.I. INTRODUCTION 

At present, vascular surgical planning is based on a 
diagnostic/empirical paradigm.  Surgeons consider each 
patient’s medical condition, expected tolerance to alternate 
procedures and the anticipated benefit of each treatment.  
This approach does not enable the a priori prediction of the 
outcomes of alternate interventions for individual patients.  
The ability to predict changes in blood flow would enable a 
surgeon to evaluate and rank the treatments in order of 
efficacy.  We have previously described a new approach, 
Simulation-Based Medical Planning, whereby a physician 
uses software tools in conjunction with anatomic and 
physiologic data to design and preoperatively evaluate 
treatment outcomes [1].  To date, we have solved the time-
dependent, three-dimensional equations governing blood flow 
to obtain detailed data on blood flow distribution, wall shear 
stress, particle residence time, and flow recirculation.  
However, these methods are computationally expensive, 
requiring hours of computation on parallel computers and are 
not suitable for rapid evaluation of surgical treatments. 

Simpler, zero and one-dimensional methods have been 
used to describe blood flow in arteries and quantify mean 
flow rate and pressure.  These methods include lumped 
parameter models [4, 5], one-dimensional nonlinear pulse 
wave propagation methods solved using both frequency 
domain approaches [6] and numerical methods [7-10].  We 
have developed a one-dimensional nonlinear pulse wave 
propagation method using a finite element method [3].  
Although one-dimensional analysis methods cannot provide 
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the same level of detail as three-dimensional methods, they 
may provide adequate information with which to rank 
treatment outcomes based on mean flow rate and pressure 
distribution. 

A series of animal experiments was performed to test the 
accuracy of the three-dimensional modeling and flow 
analysis compared to in vivo measurements [11].  Using the 
same model geometry and flow boundary conditions, we 
compare the flow waveforms predicted by our one-
dimensional method with in vivo magnetic resonance data. 

II. METHODOLOGY 

A. One-Dimensional Method 

The one-dimensional equations for the flow of a Newtonian 
fluid in an impermeable, deforming, elastic domain consist of 
the continuity equation, a single axial momentum balance 
equation, a constitutive  equation, and suitable initial and 
boundary conditions.  The governing equations are derived in 
general form by Hughes and Lubliner [12].  The partial 
differential equations for mass and momentum balance are 
given by 
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The primary variables are cross-sectional area S, pressure p, 
and volumetric flow rate Q.  The density of the fluid is given 
by ρ, the external force by f, and the kinematic viscosity by ν. 
The variable δ is related to the profile function for the 
velocity over the cross-sectional area and N is a viscous loss 
term.  We assume that the axial velocity is much greater than 
the radial velocity components.  If we specify the vessel to 
have a circular cross-section and assume a quadratic flow 
profile, we obtain 
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For boundary conditions, we specify the flow rate at the inlet 
and prescribe a pressure boundary condition at the outlet(s) 
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We use the constitutive equation described by Olufsen [13].  
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E is the Young’s modulus, h is the wall thickness, and r0 is 
the radius at the reference pressure p0.  In the relationship, k1, 
k2, k3 are derived by a best fit to experimental data and are set 
to default values of k1 = 2x107g⋅s-2⋅cm-1, k2 = -22.53cm-1 , and 
k3 = 8.65x105g⋅s-2⋅cm-1 [13]. 

To solve the system of equations, we employ a space-time 
finite element method including Galerkin Least Squares 
stabilization and the Discontinuous Galerkin method in time. 
We use a modified Newton-Raphson technique to solve the 
resultant nonlinear equations for each time step. 

For the one-dimensional theory, the assumptions made for 
the flow profile are not valid in regions of flow separation 
such as downstream of stenoses or branches, and the one-
dimensional method does not adequately model the pressure 
losses.  The minor loss coefficient, K [14], is defined as a 
relationship between fluid density ρ, vessel flow rate Q, and 
cross-sectional area S, and the change in pressure ∆p. 
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 We can incorporate the experimentally determined, 
dimensionless form, K, into our numerical model through the 
viscous loss term N.  Starting with (2) and assuming a 
constant flow rate and zero external force.  We obtain,  
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If we assume a straight vessel, we can integrate over the 
length of the vessel and solve for N. 
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Combining  (7) and (9) we obtain 
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We implemented the minor loss value for a stenosis model 
(Fig. 1) developed by Seeley and Young [15].  This model 
utilizes the area ratio between the stenosed segment and the 
unobstructed segment prior to the stenosed segment (Fig. 1) 
to obtain 
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where pD is the pressure drop due to the stenosis, Re0 is the 
Reynolds number in the unobstructed section, D0 the 
unobstructed diameter, and S0 and S1 are the cross sectional 
areas of the unobstructed and stenosed sections respectively. 
Further, 
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represent viscous and turbulent factors with L being the 
length of the stenosed segment.  This K is used in (10) for 
segments that have a 75% or more reduction in area 
compared to the distal segment area. 

D1
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L  
Fig. 1. Stenosis model diagram 

We implemented minor loss values for branch junctions of 
arbitrary angles using a model developed by Gardel [16].  For 
each branching case of converging flow (Fig. 2) and 
diverging flow (Fig. 3), minor loss coefficients are computed 
for the through and branching segment with respect to the 
combined segment.  The branch, through, and combined legs 
are labeled 1, 2, and 3 respectively. 
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Fig. 2. Converging flow diagram 
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Fig. 3. Diverging flow diagram 

Minor loss coefficients are computed for each through, 2, and 
branch, 1, segment.  The coefficient K1,3 is the minor loss 
coefficient for the converging flow branch leg.  The subscript 
indicates flow from 1 into 3.  Similarly, K3,2 refers to the 
minor loss coefficient for the through leg of the diverging 
flow, flow from 3 into 2.  The coefficients are expressed in 
terms of the side branch angle θ, flow ratio q=q1/q3, and area 
ratio a=a1/a3  and are given as 
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These K values are used in (10) for the branch and through 
segments near a junction. 
B. Animal Study 

We used data collected from a series of four animal 
studies.  All animal procedures were approved by the 
university’s Institutional Animal Care and Use Committee.   
In each animal, we created an aortic constriction by tying 
polyester (Dacron) umbilical tape around the descending 
thoracic aorta to restrict blood flow and create a diseased 
state.  A polyester (Dacron) graft was attached to the thoracic 
aorta proximal and distal to the constriction to provide an 
alternate path for blood flow.  This model resembles the 
anatomy of patients who have been diagnosed with aorto-iliac 
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disease and have been treated with an aorto-femoral bypass 
with proximal end-to-side anastomosis.  In both cases, blood 
is divided between the native aorta and the bypass graft and 
combines downstream of the stenosis. 

Anatomic and physiologic data was acquired for each 
animal using magnetic resonance imaging (MRI).  Contrast–
enhanced magnetic resonance angiography (CE-MRA) was 
used to acquire three-dimensional anatomic images of blood 
vessels, while phase contrast MRI (PC-MRI) was used to 
collect velocity information at four different locations: the 
proximal aorta (inlet), the mid-aorta (aorta), the graft, and the 
distal aorta (outlet) (Fig. 4).  Pressure catheters were used to 
capture the blood pressure proximal and distal to the bypass 
region [11]. 

 
Fig. 4 In vivo geometry and PC-MRI acquisition locations 

Using a previously described process [17], a geometric 
model of the thoracic aorta and corresponding bypass was 
constructed from the CE-MRA data of each animal.   The 
cross sectional profiles of the vessels were approximated with 
circles for use with the one-dimensional finite element 
method.  A velocity profile was generated from the PC-MRI 
data at the inlet using custom software [18].  The geometric 
model, inlet velocity profile, and a constant pressure outlet 
boundary condition were used to simulate the blood flow for 
each animal using the one-dimensional finite element method 
previously described. 

III. RESULTS 

Flow rate was extracted from both the in vivo PC-MRI 
data and the one-dimensional finite element method at the 
inlet, aorta, graft, and outlet for each pig.   The flow values 
are plotted for the one-dimensional analyses and PC-MRI for 
both the aorta and graft for each pig (Fig. 5.) 

IV. DISCUSSION 

While the one-dimensional model does not match exactly 
the PC-MRI data, it does provide a good approximation to the 
flow rate in the aorta and bypass.  There are a few sources of 
error to consider.  First, the empirical methods used to model 
pressure loss for complex geometry were developed under 
steady flow conditions for rigid vessels and may not be 
optimal for use in deformable vessels with pulsatile flow.  
Furthermore, losses associated with curvature are not 
included.  Second, the sum of the measured flow through the 
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in vivo aorta and bypass did not always equal the measured 
inlet flow.  This could be due in part to flow through 
intercostal arteries in the thoracic aorta in our region of 
interest, and difficulties in velocity data extraction from PC-
MRI.  When the mean flow ratios were computed with 
respect to the combined flow between the aorta and graft, the 
one-dimensional and PC-MRI values compared favorably 
(Fig. 6).  The greatest discrepancy is with pig 2.  The MR 
sequence used to acquire the velocity data for pig 2 was 
different from the other test subjects and the respiration was 
not suspended for pig 2 as it was in the other animals.  
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V. CONCLUSION 

The one-dimensional finite element method compares 
favorably with the in vivo magnetic resonance data.  This 
numerical method enables rapid prediction of flow 
distribution using modest computational resources.  However, 
there are limitations that will be addressed in future work. For 
this experiment, we were able to specify the boundary 
conditions using the post-operatively measured velocity.  
However, this data would not be available in a true planning 
scenario, and methods for determining post-operative 
boundary conditions from pre-operative data are needed.  
This experiment was also sensitive to errors associated with 
measuring and processing the PC-MRI data.  Controlled flow 
studies are necessary to quantify our predictive accuracy and 
calibrate the loss coefficients.  
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