lof 4

IN VIVO VALIDATION OF A ONE-DIMENSIONAL FINITE ELEMENT METHOD
FOR SIMULATION-BASED MEDICAL PLANNING FOR CARDIOVASCULAR
BYPASS SURGERY

B. N. Steele!, J. Wan?, J. P. Ku®, T. J. R. Hughes', C. A.Taylor™*
'Department of Mechanical Engineering, Stanford University, CA, USA
“Department of Petroleum Engineering, Stanford University, CA, USA
3Department of Electrical Engineering, Stanford University, CA, USA
“Department of Surgery, Stanford University, CA, USA

Abstract-Current practice in vascular surgery utilizes only
diagnostic and empirical data to plan treatments, and does not
enable quantitative a priori prediction of the outcomes of
interventions. We have previously described simulation-based
medical planning methods to model blood flow in arteries and
plan medical treatments based on physiologic modelg[1, 2].
These methods utilize computationally intensive three
dimensional finite element analysis. We recently described a
new method for simulation-based medical planning based on
solving one-dimensional equations of blood flow [3]. We
demonstrate herein that these one-dimensional methods can be
used to simulate blood flow in a porcine thoraco-thoraco bypass
and further that predicted flow rates compare favorably to in
vivo data obtained using cine phase-contrast magnetic resonance
imaging in four pigs.

Keywords - blood flow, Simulation-Based Medical Planning, one-
dimensional analysis methods

q. INTRODUCTION

At present, vascular surgical planning is based on a
diagnostic/empirical paradigm.  Surgeons consider each
patient’s medical condition, expected tolerance to aternate
procedures and the anticipated benefit of each treatment.
This approach does not enable the a priori prediction of the
outcomes of alternate interventions for individual patients.
The ability to predict changes in blood flow would enable a
surgeon to evaluate and rank the treatments in order of
efficacy. We have previously described a new approach,
Simulation-Based Medical Planning, whereby a physician
uses software tools in conjunction with anatomic and
physiologic data to design and preoperatively evaluate
treatment outcomes [1]. To date, we have solved the time-
dependent, three-dimensional equations governing blood flow
to obtain detailed data on blood flow distribution, wall shear
stress, particle residence time, and flow recirculation.
However, these methods are computationally expensive,
reguiring hours of computation on parallel computers and are
not suitable for rapid evaluation of surgical treatments.

Simpler, zero and one-dimensional methods have been
used to describe blood flow in arteries and quantify mean
flow rate and pressure. These methods include lumped
parameter models [4, 5], one-dimensional nonlinear pulse
wave propagation methods solved using both frequency
domain approaches [6] and numerical methods [7-10]. We
have developed a one-dimensional nonlinear pulse wave
propagation method using a finite element method [3].
Although one-dimensional analysis methods cannot provide
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the same level of detail as three-dimensional methods, they
may provide adeguate information with which to rank
treatment outcomes based on mean flow rate and pressure
distribution.

A series of animal experiments was performed to test the
accuracy of the three-dimensional modeling and flow
analysis compared to in vivo measurements [11]. Using the
same model geometry and flow boundary conditions, we
compare the flow waveforms predicted by our one-
dimensional method with in vivo magnetic resonance data.

Il. METHODOLOGY
A. One-Dimensional Method

The one-dimensional equations for the flow of a Newtonian
fluid in an impermeable, deforming, elastic domain consist of
the continuity equation, a single axial momentum balance
equation, a congtitutive equation, and suitable initial and
boundary conditions. The governing equations are derived in
general form by Hughes and Lubliner [12]. The partia
differential equations for mass and momentum balance are
given by
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The primary variables are cross-sectiona area S, pressure p,
and volumetric flow rate Q. The density of the fluid is given
by p, the external force by f, and the kinematic viscosity by v.
The variable 0 is related to the profile function for the
velocity over the cross-sectional area and N is a viscous loss
term. We assume that the axial velocity is much greater than
the radial velocity components. If we specify the vessel to
have a circular cross-section and assume a quadratic flow
profile, we obtain
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For boundary conditions, we specify the flow rate at the inlet
and prescribe a pressure boundary condition at the outlet(s)

Q(zt)=Q() onTli,
p(z,t) = p(t) onT gy

We use the congtitutive equation described by Olufsen [13].
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E is the Young's modulus, h is the wall thickness, and rq is
the radius at the reference pressure po. In the relationship, ki,
ko, ks are derived by a best fit to experimental data and are set
to default values of k; = 2x10’g52em™, k, = -22.53cm™ , and
ks = 8.65x10°g 5 omi* [13].

To solve the system of equations, we employ a space-time
finite element method including Galerkin Least Squares
stabilization and the Discontinuous Galerkin method in time.
We use a modified Newton-Raphson technique to solve the
resultant nonlinear equations for each time step.

For the one-dimensional theory, the assumptions made for
the flow profile are not valid in regions of flow separation
such as downstream of stenoses or branches, and the one-
dimensional method does not adequately model the pressure
losses. The minor loss coefficient, K [14], is defined as a
relationship between fluid density p, vessel flow rate Q, and
cross-sectional area S, and the change in pressure 4p.
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We can incorporate the experimentaly determined,
dimensionless form, K, into our numerical model through the
viscous loss term N.  Starting with (2) and assuming a
constant flow rate and zero external force. We obtain,
1dp Q
Dz N? (8)
If we assume a straight vessel, we can integrate over the
length of the vessel and solve for N.
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Combining (7)]and [9)]we obtain
N= K (10)
2L

We implemented the minor loss value for a stenosis model
(Fig. 1) developed by Seeley and Young [15]. This model
utilizes the area ratio between the stenosed segment and the
unobstructed segment prior to the stenosed segment (Fig. 1)

to obtain
2 2
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where Apis the pressure drop due to the stenosis, Re is the
Reynolds number in the unobstructed section, Dy the
unobstructed diameter, and S, and S; are the cross sectional
areas of the unobstructed and stenosed sections respectively.
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Further,
2
K, = 32L(§] (12)
Dol S
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represent viscous and turbulent factors with L being the
length of the stenosed segment. This K is used in for
segments that have a 75% or more reduction in area
compared to the distal segment area.
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Fig. 1. Stenosis model diagram

We implemented minor loss values for branch junctions of
arbitrary angles using a model developed by Gardel [16]. For
each branching case of converging flow (Fig. 2) and
diverging flow (Fig. 3), minor loss coefficients are computed
for the through and branching segment with respect to the
combined segment. The branch, through, and combined legs
are labeled 1, 2, and 3 respectively.
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Fig. 2. Converging flow diagram
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Fig. 3. Diverging flow diagram
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Minor loss coefficients are computed for each through, 2, and
branch, 1, segment. The coefficient K; 3 is the minor loss
coefficient for the converging flow branch leg. The subscript
indicates flow from 1 into 3. Similarly, Ks, refers to the
minor loss coefficient for the through leg of the diverging
flow, flow from 3 into 2. The coefficients are expressed in
terms of the side branch angle 6, flow ratio g=q./gs, and area
ratio a=a;/a; and are given as
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These K values are used in for the branch and through
segments near a junction.
B. Animal Sudy
We used data collected from a series of four animal
studies. All anima procedures were approved by the
university’s Ingtitutional Animal Care and Use Committee.
In each animal, we created an aortic constriction by tying
polyester (Dacron) umbilical tape around the descending
thoracic aorta to restrict blood flow and create a diseased
state. A polyester (Dacron) graft was attached to the thoracic
aorta proximal and distal to the constriction to provide an
aternate path for blood flow. This model resembles the
anatomy of patients who have been diagnosed with aorto-iliac



disease and have been treated with an aorto-femoral bypass
with proximal end-to-side anastomosis. In both cases, blood
is divided between the native aorta and the bypass graft and
combines downstream of the stenosis.

Anatomic and physiologic data was acquired for each
animal using magnetic resonance imaging (MRI). Contrast—
enhanced magnetic resonance angiography (CE-MRA) was
used to acquire three-dimensional anatomic images of blood
vessels, while phase contrast MRI (PC-MRI) was used to
collect velocity information at four different locations: the
proximal aorta (inlet), the mid-aorta (aorta), the graft, and the
distal aorta (outlet) (Fig. 4). Pressure catheters were used to
capture the blood pressure proximal and distal to the bypass
region [11].
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Fig. 4 In vivo geometry and PC-MRI acquisition locations
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Using a previously described process [17], a geometric
model of the thoracic aorta and corresponding bypass was
congtructed from the CE-MRA data of each animal. The
cross sectional profiles of the vessels were approximated with
circles for use with the one-dimensional finite element
method. A velocity profile was generated from the PC-MRI
data at the inlet using custom software [18]. The geometric
model, inlet velocity profile, and a constant pressure outlet
boundary condition were used to simulate the blood flow for
each animal using the one-dimensiona finite element method
previously described.

I1l. RESULTS

Flow rate was extracted from both the in vivo PC-MRI
data and the one-dimensional finite element method at the
inlet, aorta, graft, and outlet for each pig. The flow values
are plotted for the one-dimensional analyses and PC-MRI for
both the aorta and graft for each pig (Fig. 5.)

IV. DISCUSSION

While the one-dimensional model does not match exactly
the PC-MRI data, it does provide a good approximation to the
flow rate in the aorta and bypass. There are a few sources of
error to consider. First, the empirical methods used to model
pressure loss for complex geometry were developed under
steady flow conditions for rigid vessels and may not be
optimal for use in deformable vessels with pulsatile flow.
Furthermore, losses associated with curvature are not
included. Second, the sum of the measured flow through the
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Fig. 5.



in vivo aorta and bypass did not always equal the measured
inlet flow. This could be due in part to flow through
intercostal arteries in the thoracic aorta in our region of
interest, and difficulties in velocity data extraction from PC-
MRI. When the mean flow ratios were computed with
respect to the combined flow between the aorta and graft, the
one-dimensional and PC-MRI values compared favorably
(Fig. 6). The greatest discrepancy is with pig 2. The MR
sequence used to acquire the velocity data for pig 2 was
different from the other test subjects and the respiration was
not suspended for pig 2 asit was in the other animals.
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V. CONCLUSION

The one-dimensional finite element method compares
favorably with the in vivo magnetic resonance data. This
numerical method enables rapid prediction of flow
distribution using modest computational resources. However,
there are limitations that will be addressed in future work. For
this experiment, we were able to specify the boundary
conditions using the post-operatively measured velocity.
However, this data would not be available in a true planning
scenario, and methods for determining post-operative
boundary conditions from pre-operative data are needed.
This experiment was also senditive to errors associated with
measuring and processing the PC-MRI data. Controlled flow
studies are necessary to quantify our predictive accuracy and
calibrate the loss coefficients.
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