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ABSTRACT

Modern radios, such as 5GNew Radio, feature a large set of physical-

layer control knobs in order to support an increasing number of

communication scenarios spanning multiple use cases, device cate-

gories and wireless environments. The challenge however is that

each scenario requires a diferent control algorithm to optimally

determine how these knobs are adapted to the varying operating

conditions. The traditional approach of manually designing difer-

ent algorithms for diferent scenarios is increasingly becoming not

just diicult to repeat but also suboptimal for new scenarios that

previous-generation radios were not designed for.

In this paper, we ask: can we make a radio automatically learn

the optimal physical-layer control algorithm for any scenario given

only high-level design speciications for the scenario, i.e., can we

design a self-driving radio?We describe how recent advances in deep

reinforcement learning can be applied to train a self-driving radio

for several illustrative scenarios, and show that such a learning-

based approach not only is easily repeatable but also performs

closer to optimal than the current state of the art.
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inforcement learning.

KEYWORDS

Radios; Physical layer; Cellular networks; Reinforcement learning; 
Deep learning; LTE; 5G

ACM Reference Format:

Samuel Joseph, Rakesh Misra, and Sachin Katti. 2019. Towards Self-Driving 
Radios: Physical-Layer Control using Deep Reinforcement Learning. In The 
20th International Workshop on Mobile Computing Systems and Applications 
(HotMobile ’19), February 27ś28, 2019, Santa Cruz, CA, USA. ACM, New York, 
NY, USA, 6 pages. https://doi.org/10.1145/3301293.3302374

∗equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.

HotMobile ’19, February 27ś28, 2019, Santa Cruz, CA, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6273-3/19/02. . . $15.00
https://doi.org/10.1145/3301293.3302374

1 INTRODUCTION

Modern radios1, such as 5G New Radio (NR) [1], are expected to

accommodate a wide variety of communication scenarios [6]. They

are at once expected to be able to support high-bandwidth ixed

wireless access, e.g., to provide iber-like broadband connectivity

to the home, very high-speed mobilities, e.g., trains moving at 300

km/h, and very low-power connectivity for IoT devices, among

many others. No single physical-layer design can work well under

all scenarios, hence the natural response of the standards bodies

has been to specify designs with a large number of control knobs

so that a radio can be tuned to the speciic deployment scenario

in the ield. These control knobs range from modulation order and

coding rate, to OFDM subcarrier spacing and cyclic preix length,

to reference signal (pilot) density, to transmit power scaling and

so on. Each of these knobs has numerous settings leading to a

combinatorially large number of choices, and radio designers need

to design a control algorithm that chooses the right one dynamically

at run time depending on the scenario and the varying operating

conditions.

The current approach is to preprogram empirical control rules

with conigurable thresholds that can be adjusted by domain experts

in an iterative trial-and-error manner on the ield for each scenario.

This approach has worked reasonably well for LTE but is under

strain for 5G because of the much larger number and complexity

of scenarios it is expected to support, e.g., LTE was not originally

designed to support ixed wireless access or low-power IoT connec-

tivity. Furthermore, 5G is expected to evolve to support network

slicing where the wireless stack is adapted to future applications,

e.g., peer-to-peer connectivity for autonomous vehicles, that are

not fully deined yet, so an approach based on heuristic rules and

thresholds is intrinsically limited in how quickly and how optimally

it can be repeated to support new requirements.

In this paper, we argue for a learning-based approach to design-

ing control algorithms for radios. Our vision is that radio designers

should be able to provide only high-level speciications for a sce-

nario, including the communication objective, the control knobs

and measurements available, and a model for the wireless envi-

ronment in that scenario, and the radio should be able to learn

on its own an algorithm to adapt the control knobs in real time2;

see Figure 1. In essence, the goal is to learn, rather than design, a

near-optimal control algorithm that can be deployed on the ield.

We refer to such radios as self-driving radios (SDR). In doing so, we

hope to repurpose the SDR acronym, originally used for a software-

deined radio, to refer to a radio that has not only the lexibility to be

conigured in software (software-deined) but also the capability to

build the right software to use in any given scenario (self-driving).

1In this paper, by radio, we refer to the radio baseband, not the front end.
2Note: this algorithm does not require access to user data, e.g., I/Q samples.
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[Offline] A radio designer provides design specifications for a given communication 
scenario. The SDR learning engine converts the specifications into a physical-layer control 

algorithm encoded as a deep neural network (DNN) using reinforcement learning.

[Run time] A base station uses SDR DNN-based 
control algorithms to adapt the physical-layer 
control knobs in real time for both downlink 
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Figure 1: The self-driving approach to radio design. Unlike the traditional approach where radio designers manually design

the physical-layer control algorithms, in this approach, they just manually specify the communication scenario and the radio

learns a near-optimal control algorithm on its own using deep reinforcement learning.

We describe the SDR approach in more detail in Section 2, and

contrast it with related work in Section 3. We illustrate the SDR

approach in Section 4 by showing how to design control algorithms

to jointly control the modulation order and transmit power scaling

in several scenarios where a radio has to meet a throughput target

while minimizing its average transmit power. We show in Section 5

that control algorithms using the SDR approach are able to meet

their throughput targets 10-45% more often than the control algo-

rithms in LTE, which is the industry state of the art, and only 7-26%

less often than the oline-optimal control algorithms, while using

similar transmit powers as LTE and 2-3 dB higher than optimal.

2 MOTIVATION FOR THE SDR APPROACH

In this section, we describe the two broad challenges in designing

physical-layer control algorithms for modern radios using tradi-

tional approaches, and explain why a self-driving approach has the

potential to overcome both challenges.

Challenge: should be quickly repeatable for new scenarios

The physical-layer control algorithms for modern radios such as

NR need to be easy to adapt to new, potentially unseen, scenarios

in the future. These scenarios can be very diverse, and may span

multiple use cases, device categories and wireless environments.

Diferent use-case requirements, e.g., high throughput, low latency,

high reliability etc., present diferent optimization objectives. Difer-

ent device categories, e.g., low-power IoT, high-mobility IoT, ixed

wireless etc., mean that the optimization must be performed under

diferent device constraints. Diferent wireless environments, e.g.,

indoor vs outdoor, short range vs long range, stationary vs mobile

etc., present diferent dynamics, which require diferent optimiza-

tion strategies over time. As a result, every new combination of use

case, device category and wireless environment requires a very dif-

ferent control algorithm. The traditional approach, which involves

manually designing a control algorithm for every scenario using

empirical rules and thresholds, is tedious and inherently limited in

how quickly it can be repeated for new scenarios.

SDR approach: learn rather than design The SDR approach

aims to use machine learning to learn the optimal control algorithm.

A learning-based approach is quickly repeatable for new scenarios

because designing a new control algorithm just requires manually

specifying the new scenario, see Figure 1, as opposed to manually

designing a new algorithm, e.g., by ine tuning rules and thresholds.

Challenge: should sequentially optimize for a communica-

tion objective while controlling inter-dependent knobs In or-

der to meet the needs of a wide variety of stressful scenarios, mod-

ern radios need to optimize for an explicit objective, e.g., an IoT

radio may want to reliably upload a ixed-size packet under a total

energy constraint, while controlling several control knobs that we

had listed earlier. The challenge is two-fold. First, this optimization

problem is sequential, i.e., a control decision in one time step af-

fects the optimal decision in a subsequent step, e.g., the above IoT

radio may choose to transmit at a higher power in the beginning to

increase the reliability of the upload but will be left to work with a

lesser energy budget subsequently. In traditional approaches, the

decisions in one time step do not explicitly account for the con-

sequences on future steps. Second, the set of control knobs is not

just large but also inter-dependent, e.g., a drop in link quality can

be handled by either reducing the modulation order or increasing

the transmit power, among several other ways. The traditional ap-

proach uses separate algorithms to control these inter-dependent

knobs, e.g., modulation and coding rate is chosen by a separate

algorithm than the transmit power. As a result, as the scenarios be-

come more complex, e.g., the wireless environment becomes more

dynamic or the set of inter-dependent knobs becomes larger, the

traditional approach becomes increasingly suboptimal.

SDR approach: learn by reinforcement using deep neural

networks The SDR approach aims to learn the joint optimal con-

trol algorithm using deep reinforcement learning (RL). RL is a natural
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it for sequential optimization and has been successfully applied

in a number of problems [7, 9, 10] where a controller has to learn

how to plan its actions with future consequences in mind. Deep

neural networks (DNNs), owing to their large expressive power, are

capable of encoding the complex strategies required for adapting

the large inter-dependent set of control knobs. Therefore, a control

algorithm expressed using a DNN and trained using RL has the

potential to be near optimal, even in the most complex of scenarios.

3 RELATEDWORK

Deep learning has been applied extensively in recent times to solve

problems arising in mobile and wireless networking; see [15] for

an excellent survey. Most of these works however relate to either

(i) mobile data analysis, which involves using deep learning to

solve prediction or clustering problems e.g., network prediction [11],

traic classiication [12] etc., in contrast to SDR which uses deep

learning for a control problem, or (ii) mobile network or link control,

which involves using deep learning for mobile network-layer or

link-layer control algorithms e.g., traic scheduling [3], resource

allocation [14], interference alignment [5] etc., in contrast to SDR

which uses deep learning for physical-layer control.

Deep learning for wireless physical-layer control has been rela-

tively much less explored. The closest we are aware of are works

that used deep learning for building control algorithms for speciic

physical-layer knobs, e.g., closed-loop power control for VoLTE

downlink [8], adaptive modulation and coding [4] etc. SDR is difer-

ent from these works in two signiicant respects. First, SDR learns

the joint optimal control algorithm, i.e., an algorithm to control

all physical-layer knobs jointly for optimal performance, unlike

these works that focus on individual control knobs independently.

Second, SDR optimizes explicitly for the communication objective,

unlike these works which focus on optimizing lower-level metrics

like SINR which may not lead to the optimal communication perfor-

mance, e.g., an energy-constrained IoT radio that wants to conserve

battery does not care about maximizing SINR.

4 DESIGNING A SELF-DRIVING RADIO

Figure 1 illustrates the key steps in the design and deployment of a

self-driving radio. We describe these key steps below.

A radio designer provides design speciications. First, a radio

designer provides high-level design speciications for the physical-

layer control algorithm, speciically: (i) the objective function that

it must optimize, (ii) the control knobs that it must adapt, and their

possible settings, (iii) the measurements that it can use to adapt the

control knobs, and (iv) a channel model, or a set of channel traces,

representing the characteristics of the wireless environment that it

must optimize its strategy for.

A learning engine generates a physical-layer control algo-

rithm. Next, a learning engine converts the above speciications

into a physical-layer control algorithm, encoded typically as a DNN.

This learning engine forms the core of the SDR capability. We will

describe it in more detail in the rest of this section.

A radio uses the learned control algorithm at run time. Fi-

nally, DNNs that are learned using the above learning engine are

used at run time to adapt the physical-layer control knobs for both

downlink and uplink. In practice, we envision that any base station,

depending on its purpose and deployment, would typically need

to support anywhere between 1-3 use cases, 2-4 device categories

and 1-5 operating environments, so it might need to maintain on

the order of a few such DNNs to tens of such DNNs3. At run time,

before every transmission, a base station will irst select the most

relevant DNN for each of uplink and downlink, and then execute

them to adapt the control knobs. The decisions of the DNNs will

be enforced at the base stations for the downlink, and signaled via

the control channel to the devices to enforce for the uplink.

In the rest of this section, we focus on the design of the SDR

learning engine. To illustrate its working, we use the following

scenarios as reference, in each of which a radio needs to meet an

average throughput target in every 10-ms windowwhile optimizing

its average transmit power based on its energy sensitivity, and

describe how to learn control algorithms for these scenarios.

Scenario 1: A radio on a phone needs to achieve 3-Mbps physical-

layer throughput on the uplink in every 10-ms time window, to

support, for example, HD (720p) real-time video conferencing.

Scenario 2: A radio on a connected autonomous vehicle (AV) has

the same requirement as above; however, AVs are less battery con-

strained so they can aford to spend more energy per bit.

Scenario 3: A radio on an AV needs to achieve 5 Mbps instead of 3

Mbps on the uplink in every 10-ms time window, to support, for

example, Full HD (1080p) real-time video conferencing.

4.1 SDR as a reinforcement learning problem

The SDR learning engine uses RL to learn a control algorithm. We

start by describing how the design speciications for the above

scenarios may look like, and how they map to the RL framework.

Reward function Radio designers need to specify the communica-

tion objective, based on the use case and the device category. In the

RL framework, this deines the reward function. For example, in the

above scenarios, a radio designer might want the control algorithm

to optimize the following objective in every 10-ms window,

(NBS − NBStarдet ) − ϵ × EnerдySpent

where NBS and EnerдySpent are the number of bits sent success-

fully and the corresponding energy spent, NBStarдet is 30000 or

50000 bits corresponding to 10 ms times 3 or 5 Mbps respectively,

and ϵ is a measure of the energy sensitivity of the device. As an

illustration, ϵ may be 10 times lesser for AVs than for phones, e.g.,

22.5 and 2.25 bits per energy unit for phones and AVs respectively4.

The irst component rewards the control algorithm for how much

it exceeds the throughput target while the second component pe-

nalizes it for the energy spent, and ϵ controls the relative tradeof

between these two conlicting components.

Action space Radio designers need to specify the control knobs

available, and their possible settings. In the RL framework, this

deines the action space. For example, in the above scenarios, a ra-

dio designer might want the control algorithm to adapt two knobs

every 1 ms - the modulation order and the transmit power (via base-

band scaling) - while all other knobs are held ixed at their default

settings. The modulation order controls the sending rate and there-

fore inluences the throughput. The transmit power controls the

3Each DNN that we train in Section 4 is on the order of 10 kB, so we expect the
combined memory footprint to be 1 MB or less.
4penalty for spending 1 energy unit = reward for exceeding target by 22.5 or 2.25 bits
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Figure 2: Architecture of the SDR Deep Q Network that we

trained for each of the three reference scenarios in Section 4

energy spent, and also inluences the reliability of the transmission,

i.e., whether or not a transmission at a certain modulation order in

a time step will experience a block error given the channel condi-

tion in that step. As an illustration, the possible settings may be 2

(QPSK), 4 (16-QAM) or 6 (64-QAM) for the modulation order5, and

10, 15 or 20 dBm for the transmit power. The control algorithm’s

dilemma is that for a given transmit power, a higher modulation

order in a time step can lead to a higher throughput if the transmis-

sion is successful, but also has a higher risk of a block error which

would result in zero throughput in that step. On the other hand, for

a given modulation order, a higher transmit power lowers the risk

of a block error but also consumes more energy.

State space Radio designers need to specify the measurements

available based on which the control knobs can be adapted. In the

RL framework, this deines the state space. For example, the con-

trol algorithm could use the following measurements commonly

available at a radio to adapt the modulation order and the transmit

power: (i) last 4 channel estimates6, (ii) data left to meet the through-

put target in the 10-ms window, (iii) time left in the 10-ms window,

and (iv) ACK/NACK of the transmission in the previous time step.

While (i) and (iv) provide visibility into the link conditions, (ii) and

(iii) help track the optimization state.

Learning environment Radio designers need to specify the wire-

less environment for which the control algorithmmust be optimized.

In the RL framework, this feeds into the learning environment. For

example, a radio designer might choose the reference model in [13],

and might want to optimize the control algorithm for mobility en-

vironments where speeds and path losses vary uniformly between

0-100 km/h and 70-90 dB respectively. Note that using such refer-

ence models is standard practice in the industry for designing and

evaluating any new technology for mobile networks as it ofers an

easy, faithful and repeatable way for testing the technology in a

wide variety of realistic and challenging deployment scenarios.

4.2 The SDR learning engine

In this section, we describe the working of the SDR learning en-

gine, and explain how we converted the above speciications into a

DNN-based physical-layer control algorithm for each scenario; see

Figure 1 (central subigure) for an illustration.

Physical-layer simulatorWe implemented a MATLAB simulator

consisting of a physical layer that simulates an LTE- and NR-like

OFDM-based transmitter and receiver, and a wireless layer that

5In the physical-layer setting that we use for our evaluation in Section 5, this translates
to a sending rate of 2.1, 4.2 or 6.3 Mbps respectively.
6We arrived at the choice of 4 using trial and error, as adding more history did not
provide any signiicant gain but made the training slower.

simulates the impact of wireless channels in baseband. In the wire-

less layer, we used 17600 of 22000 channel traces generated using

the speciied model above, each lasting 10 ms, for training the SDR

control algorithm for each scenario; the rest were reserved for

evaluation. In every step during training, the SDR control algo-

rithm conigured the modulation order and the transmit power of

the physical layer, and the simulator fed back the updated state

variables and the new reward.

RL method and DNN architecture We used deep Q-learning7

to train the SDR control algorithm for each scenario. In this RL

method, the control algorithm is represented using a Deep Q Net-

work (DQN) [9] and it learns to estimate the quality of choosing

each possible combination of actions from a given state. Figure 2

shows the architecture of the SDR DQN that we trained for each sce-

nario. The last 4 channel estimates were fed into a Long Short-Term

Memory (LSTM) layer, which is known to be good at time-series

predictions, with 16 hidden units. The output of the LSTM layer

was concatenated with the remaining inputs and fed through two

fully-connected layers with 64 and 9 units each. The 9 outputs of

the neural network correspond to the Q-values of the 3×3 possible

combinations of actions.

Training We trained three SDR DNNs, one for each of the three

reference scenarios. To make the training faster and more robust,

we pre-cached the rewards and states from the simulator for all

possible actions and time steps in the 17600 channel traces, and

during training we only looked up a table for computing rewards

and states. Exploration-exploitation tradeof was annealed from

1 to 0.02 over 2 million time steps linearly, and learning rate was

0.01. Each DNN converged in around 20 million time steps, roughly

corresponding to 2 million episodes, lasting about 32 hours8 with a

single Intel Xeon E5-2699 v3 CPU running at 2.30 GHz.

5 EVALUATION

In this section, we evaluate the SDR DNN-based physical-layer con-

trol algorithms that we trained in Section 4 for the three reference

scenarios, in order to answer the following questions:

How does the SDR control algorithm perform compared to (i)

LTE’s uplink closed-loop power control and adaptive modulation

algorithms, which represent the industry state of the art, and (ii) the

oline-optimal control algorithm, which achieves the best possible

performance in theory? (see Section 5.2)

What have the SDR DNNs actually learnt in terms of adapting

to diferent scenarios and operating conditions? (see Section 5.3)

5.1 Evaluation method

Performancemetrics The two metrics of interest to our reference

problem are:

(i) the target met (%) which is the percentage of time windows

in which the throughput target was met (higher is better), and

(ii) the average transmit power in a window (lower is better).

Note that if the throughput target in a window is met in less than

7There is scope to use more advanced learning algorithms, however as we show in
Section 5, this learning algorithm already shows promising results.
8There is scope to make the training faster, however this is already a reasonable
training cost given these models would be trained oline and would not usually need
retraining for weeks or months.
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Figure 3: Benchmarking SDR’s performance. In these sce-

narios, SDRmeets its throughput targets 10-45% more often

than LTE and 74-93% as often as the ofline optimal solution,

while using similar average transmit powers as LTE and 2-3

dB higher than ofline optimal.

10 ms, the transmit power for the remaining time steps is assumed

to be 0 while computing the average transmit power.

Benchmarks We evaluated three classes of control algorithms:

(1) LTE, speciically the adaptive modulation and power control

algorithms deined in [2],

(2) oline optimal, obtained using dynamic programming assum-

ing perfect knowledge of the future, and

(3) SDR, trained as described in Section 4.

EvaluationWe evaluated the performance of the above control al-

gorithms on 4400 traces, each lasting 10 ms, which were previously

held back, and hence unseen, during the training of the SDR DNNs.

Figure 3 summarizes the results.

5.2 Benchmarking SDR’s performance

Note that the SDR approach is easily repeatable, as designing a

control algorithm for a new scenario just requires us to provide the

corresponding new speciications. In this section, we show that this

repeatable approach is indeed able to adapt to new scenarios, and

its performance is closer to optimal than traditional approaches.

SDR is able to adapt to diferent scenarios As one illustration,

if we compare scenarios 1 and 2, we observe that SDR has been

able to adapt to the lower energy sensitivity of AVs, as it uses a

higher average transmit power for AVs (16.7 dBm) compared to

phones (14.7 dBm) for the same throughput target (3 Mbps), to meet

the target more often for AVs (80.3%) than for phones (77.1%). In

contrast, since LTE does not adapt to the energy sensitivities of

devices by design, its performance is similar (∼69% target met using

15.4 dBm on average), and inferior to SDR9, in both scenarios.

SDR’s performance is closer to optimal than LTE In the three

scenarios, SDR meets the throughput target 90.6%, 93.5% and 73.9%

as often as the oline-optimal solution while using 1.9 dB, 3.4 dB

and 2.5 dB higher transmit power respectively. In contrast, LTE

meets the throughput target only 81.4%, 80.1% and 51.3% as often as

oline optimal while using 2.6 dB, 2.1 dB and 2.5 dB higher transmit

power respectively in the three scenarios.

9In scenario 2, even though SDR uses a slightly higher transmit power than LTE, it
also meets the target more often; its overall reward is still higher.

5.3 Interpreting the behavior of SDR DNNs

In order to gain insights into what the SDR DNNs have actually

learnt, we perform a sensitivity analysis. By this, we mean that we

vary one input variable while holding the others ixed at diferent

levels, and observe how each DNN changes its decisions in response.

This allows us to both sanity check as well as interpret the behavior

of the blackbox SDR DNN models.

In this section, due to lack of space, we restrict our attention to

studying the sensitivity to the last (most-recent) channel estimate

alone, which is the most important input for any adaptive modu-

lation and transmit power selection algorithm. Figure 4 visualizes

the results of this analysis in 6 diferent contexts. In each of the 6

subigures, we sweep the most-recent channel estimate along the

x-axis, from −95 dB to −70 dB, while the communication scenario

and other input variables, indicated in the title and the subtitle

respectively of each subigure, are held ixed at diferent values.

Sanity check Qualitatively, we expect that as the link becomes

stronger, the optimal behavior would be to transmit at higher mod-

ulation orders using lesser transmit powers. In each of the 6 sub-

igures, we observe that the SDR DNNs have been able to learn

the expected qualitative behavior, i.e., as the most-recent channel

estimate increases, the modulation order increases (monotonically)

and the transmit power reduces (albeit non monotonically10).

Insights So what did the DNNs additionally learn that enabled

them to outperform LTE? We observe that they have learnt to

adapt the answers to three broad questions based on the context.

(1) What are the channel estimate thresholds for switching up

the modulation order from 2 to 4, and from 4 to 6?

(2) Should the transmit power also be switched up when the

modulation order switches up, and by how much?

(3) What are the channel estimate thresholds for switching

down the transmit power?

We encourage the readers to study the subigures in Figure 4 and

observe how the answers to the above questions change depending

on the context, speciically how they are diferent for diferent

(i) devices (compare subigures 1 and 2), (ii) throughput targets

(compare 2 and 3), (iii) data left (compare 1 and 4), (iv) time left

(compare 3 and 6), and (v) channel gradients (compare 2 and 5).

These diferences reveal why it is extremely hard for an algorithm

based on manually-speciied rules and thresholds, like the control

algorithms used in LTE today, to capture the optimal solution, and

why it is instead better to use a deep learning-based approach to

design control algorithms for next-generation radios.

6 TAKING SDR TO PRACTICE

Where will the SDR learning engine operate in practice?We

expect that the SDR learning engine will operate as a service, either

locally at each base station or in the cloud, the latter being easier to

scale and manage. Whenever a new scenario needs to be supported,

a radio designer would submit the new design speciications to this

service, which in turn will train an appropriate DNN and push it

to the relevant base stations. Whenever the speciications change

10Whenever SDR increased the transmit power even as the link became stronger, it was
always to support a corresponding increase in the modulation order so as to ensure
the transmission is still reliable, which is a sensible behavior in hindsight.
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Figure 4: Sensitivity of the SDR deep neural networks to the most-recent channel estimate in diferent contexts. In all subig-

ures, the most-recent channel estimate is swept along the x-axis from −95 dB to −70 dB while the communication scenario and

other input variables (indicated in the title and the subtitle of each subigure respectively) are held ixed at diferent values.

or a base station detects a drift in the wireless environment, this

service will be requested to retrain the afected DNNs.

What support is needed from the base stations? In order to use

the SDR approach, base stations need to have (i) the lexibility to

download and use new or upgraded control algorithms for diferent

scenarios, and (ii) the ability to run the SDR DNNs in real time. The

DNNs may need to run as often as every 1 ms in LTE, and possibly

more often in NR; the DNNs that we trained in Section 4 took 0.8

ms on average to execute on a standard MacBook Pro with 2.9 GHz

Intel Core i5. We envision that the base stations will use hardware

accelerators to run these DNNs, which can reduce this by an order

of magnitude and comfortably meet the real-time requirement.

Howdoes the SDR approachworkwhen a base station has to

serve multiple devices simultaneously? This is a challenging

open question and requires the SDR approach to be extended to the

link layer, i.e., resource scheduler. This requires expanding both the

state space (to handle states of a variable number of devices) and

the action space (to also select resource schedule in addition to the

physical-layer control knobs), incorporating fairness criteria in the

objective function, and training the SDR DNNs using a simulator

that also simulates the link-layer dynamics.
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