12. Robustness of Monetary Policy Rules

Why Study Robustness?

- Monetary models differ
 - Even within the sticky-price rational expectations world (NKE or DSGE)
 - Volker Wieland's model data base has 50 models!
 - Even wider when we go outside of that world
 - Old Keynesian, RBC, or Austrian schools
- Optimizing with one model will tend to make the rule exploit special features of that model
 - But some special features may be arbitrary
 - Example of different forms of staggered pricing
- Much interesting research

Trying out policy in different models

Considering five rules in nine different models of which Ball and Woodford are two.

Look especially inertia example in which future $E_t i_{t+1}$ will react to increases in π_t today and have a stabilizing effect without affecting y_t

NBER monetary policy rules conference:

$$i_t = g_{\pi}\pi_t + g_y y_t + \rho i_{t-1}$$

	g_{π}	g_{y}	ρ
Rule I	3.0	0.8	1.0
Rule II	1.2	1.0	1.0
Rule III	1.5	0.5	0.0
Rule IV	1.5	1.0	0.0
Rule V	1.2	.06	1.3

Robustness of Rule III and Rule IV

Standard Deviation of:

	Stan	dara Deviano	11 01.	
	Inflation	Output	Interest Rate	
		Rule III		
Ball	1.85	1.62		
Haldane-Batini	1.38	1.05	0.55	
McCallum-Nelson	1.96	1.12	3.94	
Rudebusch-Svensson	3.46	2.25	4.94	
Rotemberg-Woodford	2.71	1.97	4.14	
Fuhrer-Moore	2.63	2.68	3.57	
MSR	0.70	0.99	1.01	
FRB	1.86	2.92	2.51	
TMCM	2.58	2.89	4.00	
Average	2.13	1.94	2.82	
	Observe tradeoff			
Ball	2.01	1.36		between output
Haldane-Batini	1.46	0.92	0.72	and inflation
McCallum-Nelson	1.93	1.10	3.98	variance
Rudebusch-Svensson	3.52	1.98	4.97	variance
Rotemberg-Woodford	2.60	1.34	4.03	
Fuhrer-Moore	2.84	2.32	3.83	
MSR	0.73	0.87	1.19	
FRB/US	2.02	2.21	3.16	
TMCM	2.36	2.55	4.35	
Average	2.16	1.63	3.03	

Robustness of Rules I,II, and III

	Inflation	Output	Interest R	
		Rule I		
Ball	2.27	23.06		
Haldane-Batini	0.94	1.84	1.79	
McCallum-Nelson	1.09	1.03	5.14	
Rudebusch-Svensson	∞	∞	∞	
Rotemberg-Woodford	0.81	2.69	2.50	
Fuhrer-Moore	1.60	5.15	15.39	Reacting to lagged
MSR	0.29	1.07	1.40	interest rate is not
FRB/US	1.37	2.77	7.11	
TMCM	1.68	2.70	6.72	robust to models
		Rule II		with less, or especially
Ball	2.56	2.10		no, forward looking
Haldane/Batini	1.56	0.86	0.99	110, for ward looking
McCallum/Nelson	1.19	1.08	4.41	
Rudebusch-Svensson	∞	∞	∞	
Rotemberg-Woodford	1.35	1.65	2.53	
Fuhrer-Moore	2.17	2.85	8.61	
MSR	0.44	0.64	1.35	
FRB/US	1.56	1.62	4.84	
TMCM	1.79	1.95	5.03	
		RuleV	//	
Ball	∞	∞	∞ /	
Haldane-Batini	∞	∞	~ × ×	
McCallum-Nelson	1.31	1.12	2.10	
Rudebusch-Svensson	∞	∞	∞	
Rotemberg-Woodford	0.62	3.67	1.37	
Fuhrer-Moore	7.13	21.2	27.2	
MSR	0.41	1.95	1.31	
FRB	1.55	6.32	4.67	
TMCM	2.06	4.31	4.24	

Dealing with Zero Lower Bound Problem

Evaluating Monetary Policy using RE models - FOMC transcript - Jan 2002

- Goal estimate the effect on average economic performance of lowering the target rate of inflation (which makes the zero bound more of a constraint on policy)
- Approach simulate the FRB/US model under <u>rational expectations</u>, subject to shocks like those experienced over the past 35 years
- Policy assumption the Taylor rule
 - $I_t = R_t^* + \pi_t + .5 \text{ GAP}_t + .5 (\pi_t \pi^*)$

Economic Performance Under Rules With Alternative Degrees of Responsiveness 1

	Core C	Core CPI inflation target		
	0	2	4	
Standard deviation of the unemployment rate (percent)				
1. Taylor rule	1.8	1.5	1.4	
2. More responsive rule	1.3	1.1	1.1	
Frequency of deep recessions (number per 100 years)				
3. Taylor rule	5.2	4.6	4.4	
4. More responsive rule	3.1	2.6	2.3	

Backward-Looking Adjustment

Forward-Looking Adjustment

Augmented rule for the zero lower bound:

$$i_t = \max(i_t^{rule} - \alpha Z_t, 0)$$

where

$$Z_{t} = d_{t} + d_{t-1} + d_{t-2} + d_{t-3} + \dots$$

$$d_t = i_t - i_t^{rule}$$

Augmented Rule

-1.0	0.0	1.0	2.0
			2.0
33	19	9	4
7	5	4	3
3.0	3.0	2.9	2.9
1.8	1.8	1.9	1.9
1.9	2.2	2.4	2.4
	7 3.0 1.8	3.0 3.0 1.8 1.8	33 19 9 7 5 4 3.0 3.0 2.9 1.8 1.8 1.9 1.9 2.2 2.4

- $1. \ \, \text{Percent of quarters funds rate} \leq 5 \,\, \text{basis points}. \\ 2. \ \, \text{Mean number of consecutive quarters funds rate} \leq 5 \,\, \text{basis points}.$

Regular rule

	Inflation Target				
	0	1	2	3	4
Percent of time funds rate bounded at zero ¹		9			<1
Mean duration of periods funds rate bounded ²	6	5	4	3	2
Constant bias adjustment to target inflation	.7	.3	.1	.0	.0
Standard deviation of:					
Output gap	3.6	3.2	3.0	2.9	2.9
Inflation	2.0	1.9	1.9	1.9	1.9
Federal funds rate	2.3	2.4	2.5	2.5	2.5
NT 4					
Notes:					
 Percent of quarters funds rate ≤ 5 basis points. 					

2. Mean number of consecutive quarters funds rate \leq 5 basis points.