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On Representation of Temporal Variability in Electricity
Capacity Planning Models

James H. Merrick
Stanford University, Department of Management Science and Engineering, 475 Via Ortega, Stanford, CA 94305, United States

Abstract

This paper systematically investigates how to represent intra-annual temporal variability in models of optimum elec-
tricity capacity investment. Inappropriate aggregation of temporal resolution can introduce substantial error into
model outputs and associated economic insight. The mechanisms underlying the introduction of this error are shown.
How many representative periods are needed to fully capture the variability is then investigated. For a sample dataset,
a scenario-robust aggregation of hourly (8760) resolution is possible in the order of 10 representative hours when
electricity demand is the only source of variability. The inclusion of wind and solar supply variability increases the
resolution of the robust aggregation to the order of 1000. A similar scale of expansion is shown for representative
days and weeks. These concepts can be applied to any such temporal dataset, providing, at the least, a benchmark that
any other aggregation method can aim to emulate. How prior information about peak pricing hours can potentially
reduce resolution further is also discussed.
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1. Introduction

The International Energy Agency (2014) reports that
$415 billion was invested globally in electricity gen-
eration capacity in 2013 and estimates, for a central
scenario, that approximately $11 trillion cumulative in-
vestment in generation capacity will be required in the
period 2014-2040. Models of optimum investment,
i.e. capacity planning models, can inform such in-
vestment decisions, and given both current emissions
from the electricity sector and the existence of emission-
free electricity technology options, can also inform the
policy discussions relating to the reduction of societal
greenhouse gas emissions. In so doing, the models can
exist as standalone models or as components of broader
Integrated Assessment Models (IAMs).

To reduce computational burden, intra-annual tempo-
ral variability in these numeric models is often repre-
sented in an aggregate form. This paper systematically
considers the representation of this variability, and in so
doing, four questions in particular are explored:
(a) How can aggregate representations of temporal

variability introduce errors that a↵ect model in-
sights?

Email address: jmerrick@stanford.edu (James H. Merrick)

(b) What conditions guarantee such errors are not in-
troduced when aggregating temporal resolution?

(c) How may an aggregated resolution be found that
meets these conditions?

(d) If the resulting resolution is too great for compu-
tational feasibility, how may the model’s temporal
resolution be reduced further?

An analytic and numeric exposition addresses (a),
sets up our exploration of the other questions, and high-
lights how numeric aggregation schemes used in some
applied models today can distort model output.

In addressing (b), we will see that an analytic guaran-
tee of no aggregation error rests on the intuitive notion
of finding and removing duplicate time periods. Apply-
ing this notion to an example dataset, we will see that,
while the 8760 datapoints that comprise hourly electric-
ity demand in a year can be represented in the order of
10 datapoints, the joint profiles of demand, wind, and
solar power availability require in the order of a 1000
datapoints for representation to the same degree. To put
it another way, the number of electricity goods (peak
electricity, o↵-peak electricity, etc.) can increase from
the order of 10 to the order of 1000 when renewable en-
ergy potential is fully included. A similar exercise is
undertaken for daily and weekly temporal profiles, sug-
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gesting that the concept of representative days or repre-
sentative weeks may be inappropriate for certain appli-
cations.

For (c), clustering algorithms are a natural way to find
the number of unique time periods. Numerical experi-
mentation reveals, however, that unless the members of
each cluster are very similar to each other, model out-
puts will be subject to aggregation error, with the level
of error varying by scenario and by the output of inter-
est. A metric for evaluating the magnitude of aggrega-
tion error is proposed as part of this discussion. Finally,
a number of potential approaches are outlined for (d),
but questions remain for future research.

While points related to each contribution have been
made in isolated contexts in the literature, an additional
contribution of this paper is to combine the ideas with
a focus on the primary concern, the non-distortion of
the economic insight that electricity capacity planning
models are designed to provide.

The robust representation of temporal variability in
a tractable model is but one of the challenges facing
models for long-term electricity planning. Challenges
include conceptual issues such as the appropriate treat-
ment of uncertainty, the reconciliation between private
and public discount rates, the representation of various
market structures, the changing nature of electricity de-
mand, and the treatment of power system stability in a
system with high amounts of renewables. Unlike these
conceptual challenges, the issue addressed in this pa-
per can be resolved analytically, conditional on a cer-
tain classical modelling paradigm. That is, given the
paradigm of representing the shapes of future electric-
ity demand and technological availability on the basis
of hourly data from a historical year, there is no am-
biguity in writing down on paper a model of optimum
investment. Sometimes, the policy or strategy question
at hand demands numeric implementation and solution
of the model. If the solution is sensitive to choices made
in the numeric implementation, for example, in how to
aggregate temporal resolution, the premise of this paper
is that these choices have become relevant to the eco-
nomic advice and are worth investigating.

Section 2 provides further context, Section 3 il-
lustrates why the issue is relevant for economic in-
sight, Section 4 assesses how many representative
hours/days/weeks are required to provide our simple an-
alytic guarantee, Section 5 discusses options for further
reduction, while Section 6 concludes.

2. Background

2.1. Literature
With supply needing to match demand at each instant,

temporal variability has always played an important role
in planning electricity capacity investments. For ex-
ample, Jacoby (1967) provides an early discussion of
tractable representation of electricity demand variabil-
ity in investment planning models. With dispatchable
thermal generating units on the supply side, variability
was only considered on the demand side. The famil-
iar concepts of ‘baseload’, ‘intermediate’, and ‘peaking’
generators came to represent the di↵erent types of tech-
nologies required to meet the shape of electricity de-
mand in, for example, ‘screening curve’ analysis (see
Masters (2004)).

The importance of considering variability on the sup-
ply side in valuing variable generation sources has been
emphasised before. For example, Joskow (2011) pro-
vides a succinct overview of the key issue - that like the
availability of wind and sunshine, the value of electric-
ity supplied at any given hour varies significantly over
the course of a day, of a week, of a year. Appropriate
valuation requires a consideration of how these variable
profiles align. Lamont (2008) derives a term for the
long term system value of a renewable generator that
matches this concept, it being a function of both the av-
erage electricity price received by the generator and the
covariance of electricity price and the generator’s avail-
ability. We will draw upon this work as a guide to the re-
lationships an aggregate temporal representation should
maintain.

Nicolosi (2011) compares model output across vari-
ous temporal representations, finding significant sensi-
tivity of results to degree of aggregation. Wind power
capacity is exogenous in Nicolosi’s study, an impor-
tant distinction we will return to. Similarly, Ludig
et al. (2011), Pina et al. (2011), and Kannan and Tur-
ton (2013) also assess the sensitivity of model outputs
to temporal resolution, this time assessing various ag-
gregations of hours within seasonal representative days,
numerically showing the relevance of higher temporal
resolution for policy analysis. While displaying the rel-
evance of temporal representation in a relative sense, the
concept of a representative seasonal day is challenging
in an absolute sense in the presence of renewables, as
will be shown in Section 4.3. With the advance of re-
newables, the meaning of a seasonal representative day
is not obvious. While previously, for example, a spring
weekday implied a certain demand profile, now it is not
clear whether a sunny or windy spring weekday is be-
ing referred to. Section 3.2 contains a numerical exper-
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iment similar to the numerical experiments conducted
in these papers. It is not conducted, however, with the
sole purpose of similarly illustrating the quantitative rel-
evance of temporal representation, but to also illustrate
the mechanisms underlying this relevance. The devel-
opment of smart aggregation strategies will benefit from
a clear understanding of these mechanisms.

With the relevance of temporal variability to valuing
renewables established in the literature, models in ap-
plied settings have been representing this temporal di-
mension in a variety of ways. Table 1 presents a sam-
ple of various representations that have been employed.
Note that neither model size nor appropriateness de-
clines monotonically as one looks down the table. In the
case of model size, the number of regions in a model,
or whether a static or intertemporal optimisation frame-
work is employed, vary across the models present. In
the case of appropriateness, the appropriate level of de-
tail is commonly espoused to be a function of the ques-
tion asked, with more not necessarily better. And of
course, for any given number of representative hours,
we can choose wisely or poorly. Being a sample, Ta-
ble 1 is not exhaustive. Its main goal is to illustrate the
breadth of di↵erent ways model designers have aggre-
gated temporal resolution. A broader categorisation is
as follows:

• No representation of temporal variability

• Aggregate temporal resolution designed on basis
of demand alone

• Aggregate temporal resolution designed on basis
of demand, but with stochastic renewable availabil-
ity to represent variability

• Aggregate temporal resolution designed on basis
of demand, wind, and solar profiles

• Hourly temporal resolution with demand, wind,
and solar profiles (no aggregation)

There are two important distinctions that this cate-
gorisation does not capture. The first is that, within
categories, rather than attempting to represent tempo-
ral variability directly, some approaches employ ‘side
constraints’ to simulate the representation. For exam-
ple, even prior to the advent of renewables, the MERGE
model (Manne et al., 1995) had ‘share constraints’ on
power generation from coal to simulate the economic
advantage of gas generation to provide power in the
peaking hours not included in the model. Examples of
side constraints employed within the models that partic-
ipated in the Energy Modeling Forum 27 study are avail-
able in Luderer et al. (2014). Further examples include

the concept of ‘System LCOE’1 (Ueckerdt et al., 2013),
the inclusion of a calibrated flexibility constraint (Sulli-
van et al., 2013), and statistical calculations to assess
curtailment of renewable power sources (Short et al.,
2011). Edenhofer et al. (2013) make the point that there
is not always systematic consideration of what these ap-
proaches gain or lose in terms of the economic questions
the models are attempting to address, and along with
Luderer et al. (2014), point out that share constraints
on renewable power generation, for example, are chal-
lenging to credit in strong decarbonisation scenarios.2
To generalise this concern, side constraints that simulate
faithfully temporal variability in certain scenarios may
lose their validity in other scenarios. This paper does not
evaluate various side constraint approaches that exist, or
propose new ones, but attempts to make clear what these
side constraints are attempting to emulate with respect
to temporal variability.

Secondly, of those aggregate temporal resolutions
that take into account wind and solar variability in their
design, there is an important distinction between those
where the renewable capacity is fixed and those where
the renewable capacity is endogenous. For example,
de Sisternes et al. (2015) model investment in a power
system, but with renewable capacity held fixed at a man-
dated level. In such cases, the temporal representation
can be designed around the ‘net load duration curve’.
When, however, the level of renewable capacity is en-
dogenous, i.e. investment in renewable capacity can oc-
cur, the ‘net load duration curve’ is now impossible to
define a priori as it is dependent on the amount of renew-
able capacity the model chooses to build. An aggregate
resolution that is valid for any level of installed renew-
able capacity will thus typically be of greater magnitude
than a resolution designed under the assumption that re-
newable capacity is fixed.

Let us now consider a number of ways employed to
aggregate resolution that take into account wind and so-
lar variability in addition to demand variability alone.
van der Weijde and Hobbs (2012) sample 500 of the
8760 hours 10,000 times, then choose the set that most
closely matches the statistical properties of the full
dataset. While there is no guarantee that the sampling
method will not miss important hour combinations, or
that 500 is not too many or too few hours to sample, the
method does seem to behave well empirically (Munoz
and Mills, 2015). Swider and Weber (2007) use repre-

1LCOE = Levelised Cost of Energy
2As share constraints on a technology imply an infinite price for

any new investment in that technology above the arbitrary cap, no
matter what the circumstance.
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Table 1: Examples of temporal representations in electricity capacity planning models

Method Model examples
Model every hour EMMA (Hirth, 2013), SMART (Powell et al., 2012)
13 selected weeks As presented in Aboumahboub et al. (2012)
500 hours chosen from 10,000 sample combinations As presented in van der Weijde and Hobbs (2012)
Peak and median load day for each month Berkeley SWITCH (Johnston et al., 2013; Fripp, 2012)
86 representative hours chosen through EPRI REGEN (Blanford et al., 2014)
combination of clustering and finding extreme hours
6 representative days with 8 time slices each PIK LIMES-EU (Nahmmacher et al., 2014b)
Representative day for each season, 4 time slices each NREL ReEDS (Short et al., 2011)
3 time slices from each of 3 seasons EIA NEMS (EIA (Energy Information Administration), 2013)
4 representative hours (in USA) JGCRI GCAM (Luderer et al., 2014)
1 average segment Implicit in an LCOE comparison

sentative demand days, but with stochastic availability
of wind on those days instead of average availability,
increasing the size of the model with probabilities in-
formed by cluster analysis. Munoz et al. (2016) rep-
resent varying temporal conditions as di↵erent scenar-
ios in a stochastic optimisation framework. Ueckerdt
et al. (2015) introduce the concept of a Residual Load
Duration Curve, a non-linear formulation where the du-
ration curve is represented by a rectangle and triangle
that endogenously change shape with deployment of re-
newables. Parpas and Webster (2014) formulate the ca-
pacity expansion problem as a stochastic optimal con-
trol problem, with variability represented by finite state
Markov processes. To develop a computationally at-
tractive aggregate problem, singular perturbation the-
ory is drawn upon. The numerical example in the paper
takes wind capacity as fixed however, using 4 net load
states. We will consider how many temporal states are
required when wind capacity is endogenous in Section
4. Continuing with net load duration curve represen-
tations, de Sisternes et al. (2015) conduct an exhaus-
tive search of all combinations of 4 selected weeks to
find the combination that minimises an error metric and
Green et al. (2014) use a k-means clustering algorithm
to aggregate hours for an operation model of the Great
Britain power system. Returning to models where re-
newable capacity is endogenous, Munoz et al. (2016),
Munoz and Mills (2015), the REGEN model (Blanford
et al., 2014), and the LIMES model (Nahmmacher et al.,
2014b) adopt clustering methods to choose their rep-
resentative hours, with LIMES employing a hierarchi-
cal clustering method as outlined by Nahmmacher et al.
(2014a). Hierarchical clustering will also be used in this

paper, not as a silver-bullet solution to finding an appro-
priate resolution, but as part of a broader approach to
finding robust aggregate temporal structure.

The use of clustering methods has a strong founda-
tion. A section of the operations research literature
abstractly considers aggregation problems of the type
of concern in this paper. Rogers et al. (1991) and
Litvinchev and Vladimir (2003) provide much guidance
on our problem, pointing us to results that bound the
error introduced in various aggregation strategies, and
highlighting the value of clustering techniques for prob-
lem reduction. We will draw upon the bounds derived
by Zipkin (1980a,b) in Section 4. We can also observe
that the original methods to aggregate temporal data
prior to the advent of renewables implicitly followed
this idea of clustering similar hours, but with hours de-
fined on basis of demand characteristics alone.

For certain questions, maintaining the chronological
relationship between hours in an aggregate formulation
is an important consideration, allowing, for example,
modeling of electricity storage technologies or ramp-
ing constraints on generators. A number of modeling
approaches have been adopted to maintain this chrono-
logical information. The most common approach is
to choose representative sequences of hours allowing
chronological constraints within each sequence. Many
of the example temporal representations in Table 1 refer
to such sequences in the form of representative days or
representative weeks. We will investigate this approach
in Section 4.3. Wogrin et al. (2014) present an alter-
nate novel approach, where chronological information
about the aggregated representative hours is contained
in a transition matrix. How many temporal states to
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represent in the transition matrix can be informed by
Section 4.2 below.

Finally, a number of the side constraints mentioned
above attempt to simulate more than temporal variabil-
ity alone, but also features such as generator ramp-
ing limitations, unit commitment decisions, and oper-
ating reserve requirements. These model features can
be broadly categorised as the modelling of ‘system flex-
ibility’, a concept often discussed in the context of mod-
elling systems with large amounts of renewables (Lan-
noye et al., 2012; Welsch, 2013). If the appropriate rep-
resentation of temporal variability happened to address
system flexibility concerns then we would not need to
explicitly model those system flexibility features. Mo-
tivating this thought is the observation that a number of
the technologies that have the technical characteristics
associated with flexibility also have economic charac-
teristics that favour their deployment alongside variable
renewable sources in models where temporal variability
is captured. For example, gas generation is considered
favourable from a flexibility standpoint, but with its tra-
ditional low capital costs relative to operating costs, is
also economically advantageous for providing power at
peak pricing hours, the number of which can increase
with greater deployment of renewables. Such a find-
ing has been reported by Bertsch et al. (2016), whereas
Palmintier and Webster (2011) motivate further research
by presenting a scenario with significant amounts of nu-
clear investment where the inclusion of unit commit-
ment constraints are shown as relevant to planning. A
recent example of such research is that undertaken by
Poncelet et al. (2016).

2.2. Model structure

Mathematically, the aggregation process for a sim-
ple capacity planning model is the transformation from
the detailed form3 to the aggregated form below. To fo-
cus on the issue of interest, the model has been stripped
to a minimum. For example, the model is determin-
istic with no treatment of uncertainty, existing power
sector capacity and transmission are not included, de-
mand cannot adjust, no storage or ramping constraints
are included4 and it is a static model in the sense that

3The ‘detailed form’ here could represent any resolution, for ex-
ample second-by-second resolution. From this point onwards in the
paper, hourly resolution will be referred to as the detailed benchmark
to which aggregate representations will be compared. Whether more
granular resolutions are more relevant for the economic questions at
hand is left to further research.

4The lack of such constraints imply hours are independent of each
other, allowing chronology to be ignored in the aggregation process.

the optimisation is conducted for some future year and
not intertemporally across multiple years.

Detailed Form
Objective Function:

minimise Z =
X

g2G
(Igccg +

X

h2H
Gg,hvcg) (1)

Subject to:
Supply must equal demand:

X

g2G
Gg,h = m.dh 8h 2 H (2)

Generation must be less than available capacity:

Gg,h  Igag,h 8g 2 G, h 2 H (3)

Non-negativity constraints:

Ig,Gg,h � 0 8g 2 G, h 2 H (4)

Aggregated form

minimise Z =
X

g2G
(Igccg +

X

p2P
Gg,pvcgwp) (5)

X

g2G
Gg,p = m.dp 8p 2 P (6)

Gg,p  Igag,p 8g 2 G, p 2 P (7)

Ig,Gg,p � 0 8g 2 G, p 2 P (8)

Where the sets are as follows:
G : generators
H : hours
P : ‘representative’ periods (|P| << |H|)

And the variables:
Gg,h/p : Generation by g in hour h / period p
Ig : Investment in generator g

And the parameters:
ccg : Annualised capital cost of g
vcg : Variable operating cost of g
ag,h/p : Availability factor5 of g in h or p
m : Maximum electricity demand
dh/p : Fraction of m in h or p
wp : Weight of representative period p,

with
P

p2P wp = |H|
Given parameter inputs, the model finds the level of

investment and associated operation strategy that min-
imises total cost. The aggregate formulation reduces the

5We will assume ag is constant for thermal generators. For vari-
able renewable generators, ag is the hourly availability of capacity as
allowed by the weather.
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number of constraints from |H|.(1+2|G|) to |P|.(1+2|G|),
and the number of variables from |G|.(1+ |H|) to |G|.(1+
|P|). When the structure of the model is more elaborate,
this reduction in model size is magnified as a function
of |H| and |P|.

While the relevance of capturing the temporal vari-
ability when conducting this aggregation has been
recognised in the literature, generally the approaches
attempting to do so do not come with analytic guaran-
tees or systematic numerical testing of the e↵ect of the
aggregation on model output. We will provide an ex-
ample of both in the following sections. As a first step
however, we will conduct the following analytic and nu-
meric exposition to build understanding of how tempo-
ral representation can a↵ect model outputs.

3. Why temporal representation is relevant

3.1. Mechanism
The mechanism by which temporal representation af-

fects model outputs can be understood through the lens
of how temporal variability itself a↵ects the economics
of electricity sources. The marginal value of an addi-
tional unit of investment in an electricity generator can
be derived from the first order conditions of the optimi-
sation problem. As per Lamont (2008), with the only
change being in notation, the following is an expression
of the marginal value of a new unit of wind or solar
power capacity in our hourly model structure:

Marginal Valueg = 8760[E(�).CFg +Cov(�, ag)] (9)

Where � 2 <|H| is the vector of dual variables associ-
ated with the supply-demand constraint (Statement 2),
or more particularly, the price of electricity. The E(.)
operator is the time-weighted mean, Cov(.) is the time-
weighted covariance, and CFg(the capacity factor) =
E(ag) where a

g

2 <|H| is the availability vector of wind
or solar technology g. Applying a similar logic, we
can develop the following expression for the aggregated
model. The derivation is included in the supplementary
material.

Marginal Valueg = 8760[E(⇤).CFg +Cov(⇤, āg)]
(10)

Here ⇤ 2 <|P| is the vector of the dual variables of
the aggregated supply demand constraint (Statement 6),
each divided by its associated weight wp, while āg 2
<|P| is the aggregated vector of technology availability,
with CFg = E(āg). Time-weighted expectation and co-
variance in the aggregated case implies weighting the

associated vectors in the calculations with the w 2 <|P|
vector.

By considering when these two statements diverge,
we can walk through a number of cases where the ag-
gregate structure misvalues investment in a wind or so-
lar power generator. For this exercise, let us assume we
have an aggregate structure that captures the variability
of demand. For example, assume weighted baseload, in-
termediate, and peaking hours can fully express the vari-
ability of electricity demand. In addition, assume we
are considering the marginal value of a renewable gen-
erator before any renewable generation is installed, and
that non-renewable generation has constant availability.
In such a world, electricity price varies solely with elec-
tricity demand, and the solution to the aggregate model
then reproduces the temporal profile of the hourly elec-
tricity price. We can then expect E(⇤) = E(�). Addi-
tionally, as a weighted average of averages preserves the
overall average, CFg equals CFg. Returning to State-
ments 9 and 10, the constituent factors of the first term
are then equal. We can then consider two paths to mis-
valuation of the wind and solar power generator through
the second term:

• Under-valuation (Cov(⇤, āg) < Cov(�, ag)): This
can occur if hours that contribute toward a positive
covariance between price (demand) and availabil-
ity are missing in the aggregate representation. For
example, a high demand hour with low solar avail-
ability is chosen but the high demand hour with
high solar availability is not.

• Over-valuation (Cov(⇤, āg) > Cov(�, ag)): This
can occur if hours that contribute toward a negative
covariance between price (demand) and availabil-
ity are missing. For example, a high demand hour
when the sun is not shining is not included.

For our next case, let us assume that Statements 9
and 10 exactly match when no renewable generation is
installed, but let us relax the assumption that it is at this
point alone that we are considering the marginal value.
With the level of renewables deployment now endoge-
nous, the electricity price distribution changes, and be-
comes no longer a function of demand alone. Both the
first and second terms of the statements can then diverge
leading to either under- or over- valuation in the aggre-
gate model. Hours that are not included in the aggregate
model can now become relevant to the marginal value
as renewable capacity changes. The change of marginal
capacity value of wind and solar power with increas-
ing deployment has been noted of course by the afore-
mentioned Lamont (2008) and, for example, by Hirth
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(2013). The idea has been extended here to illustrate
how the value under the aggregate numeric implemen-
tation can diverge from the true value as expressed con-
ceptually by these papers.

We will see examples of our ‘under-valuation’, ‘over-
valuation’, and ‘endogenous’ cases in the next section.

3.2. Numeric illustration

We will now illustrate the mechanisms for misvalu-
ation numerically. To undertake this assessment, the
model structures seen in statements {1 - 4} and {5 - 8}
are implemented, with the associated GAMS code avail-
able in the supplementary material. To parameterise, the
model of the Texas power system in Merrick (2010) is
drawn upon to provide electricity demand, wind and so-
lar data, investment costs and fuel prices.6 To focus on
the relevance of temporal representation to investment
in new generation capacity, existing capacity and trans-
mission constraints are not included.

It is important to note that the main goal of this ex-
ercise is not to study the absolute numbers, but to pro-
vide intuition by studying the relative changes across
di↵erent temporal representations, holding everything
else constant. The representations chosen for this illus-
trative experiment are as follows:

• 8760: Hourly resolution of demand, wind, and so-
lar data - no aggregation.

• S: 144 periods, aggregation performed as inferred
from the SWITCH model documentation (John-
ston et al., 2013). Here, 2 days were chosen from
each month: one the peak electricity demand day,
the other the median. These 24 days were then
sampled at 4 hour periods to arrive at 144 periods.

• M: 1 period, with demand and wind/solar avail-
ability represented by the mean of the hourly data.
This representation is implicit when technologies
are selected by comparison of Levelised Cost Of
Energy (LCOE), for example as in the MERGE
model (Manne et al., 1995).

The code that undertook these aggregations is in-
cluded in the supplementary material. Figure 1(a)

6 For this exercise there is one wind profile and one solar pro-
file that the model can choose from. Electricity demand and wind
production data comes from ERCOT (Electricity Reliability Council
Of Texas), while solar data comes from the National Solar Radiation
Database. All temporal data is for the year 2008. Technology cost and
performance data comes from EIA and NREL.

Table 2: Influence of temporal resolution on model runtime

Temporal resolution Runtime for single run
(number of periods) (s)
8760 15
144 0.09
1 <0.01

Table 3: Correlation between demand and solar availability under
each sample temporal representation

8760 S M
0.39 0.51 0

shows the load duration curve7 associated with each
representation, while Figure 1(b) shows the ‘solar in-
solation duration curve’ for the potential solar invest-
ment.8 As expected given its design, the S representa-
tion captures the demand variability well. Additionally,
it appears from the solar insolation duration curve that
it also captures the solar availability reasonably well. A
proposed aggregation methodology could present such
charts as proof of a good fit. As we will see in our nu-
merical experiment, what seems like a reasonable fit in
terms of duration curves may in fact introduce aggrega-
tion error in model outputs. For example, a challenge
with any given duration curve is that it does not provide
information about correlations with other temporal pro-
files. Table 3 compares the correlation between electric-
ity demand and solar availability across the representa-
tions. We can see that choosing hours based on demand
alone happens to overestimate the correlation under the
S representation for this particular dataset (the same ag-
gregation methodology could underestimate this corre-
lation for a di↵erent dataset). Meanwhile the simple
M representation underestimates the correlation in this
case. As we have seen however, it is the correlation with
price that counts, for which correlation with demand is
only a proxy that holds at low levels of installed wind
and solar power capacity.

Our first comparison, the results of which are dis-
played in Table 2, illustrates part, if not all, of the
motivation for aggregated temporal representation - the

7The 2008 data is multiplied by a factor of 1.5 to represent load
growth. This may or may not strike the reader as high, but it is impor-
tant to emphasise that it is the shape that counts for our discussion.

8The duration curve is developed for each representation by simply
sorting the elements of each associated profile.
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Figure 1: Sample duration curves in numerical model under each temporal representation

possibility of significant decreases in model runtime.
The relative, and not the absolute, numbers are impor-
tant here, as the computational penalty associated with
greater resolution in Table 2 will increase for models of
greater detail and geographic scope.9

In this illustrative experiment, everything in the
model is held constant across runs with the exception
of the temporal representation employed, and outputs
are subsequently compared. This comparison is under-
taken for two scenarios. In our first scenario, which we
now consider, we have no carbon price and no price on
air pollutants, but a low capacity cost for photovoltaics
(PV) of approximately $1/W. Figure 2(a) provides an
example of how temporal representation can matter in
appropriate valuation of PV technology. An order of
magnitude more PV capacity is installed under the S
representation than under the 8760 representation, while
no PV is installed under the M representation. The dif-
ference between the model outputs under the 8760 and
S representations could be critically important for some
questions, or within the range of acceptable tolerance
for others. As seen in Table 3, the S representation hap-
pens to overestimate the correlation between PV pro-
duction and electricity demand, missing hours when de-
mand is high but PV production is low, and thus mis-
values as in our over-valuation case in Section 3.1. The
M representation on the other hand, only considering
the average PV availability across the whole year, un-
derestimates the correlation between photovoltaic pro-
duction and electricity demand, under-valuing PV as in
our under-valuation case in Section 3.1.

9These runs were conducted on an 8 core 2.7GHz machine with
32GB RAM.

Figure 2(a) also allows us to see capacity investment
in other technologies, while Figure 2(b) presents gen-
eration by technology across our temporal representa-
tions. These figures indicate the importance of temporal
representation for valuing ‘conventional’ technologies
also. Under the most aggregate temporal representation,
M, we see that the technology with the lowest LCOE is
chosen, which for this set of assumptions is coal. Under
our disaggregated S and 8760 representations, we see
gas capacity is installed in addition to coal, to contribute
power for the peak demand hours that the aggregate M
representation does not include.

We can see in Figure 3(a) installed capacity in our
second scenario where PV costs are even lower than our
first scenario (to $0.5/W). We can notice that under the
M representation in this scenario, the model now builds
out more PV than under the 8760 representation. This
is the opposite result to our first case. Here we have
an example similar to our endogenous case in Section
3.1. The M representation is missing hours that be-
come important to the valuation of solar power as so-
lar deployment increases, resulting in the model both
under-valuing and over-valuing solar power, depending
on the scenario, under the same M temporal representa-
tion. This somewhat extreme example shows that it is
not the case that a particular aggregation always under-
values or overvalues, but that it can do either, depend-
ing on the particular parameterisation. In contrast to the
M representation in this case, the model ‘knows’ under
the 8760 and S representations that hours exist where
the sun is not shining, and that other electricity sources
must be installed to provide electricity in those hours.
Considering this case alone, the S representation seems
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Figure 2: Optimal capacity and generation mix by temporal representation, $1/W PV case
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Figure 3: Optimal capacity and generation mix by temporal resolu-
tion, $0.5/W PV case

appropriate. Importantly, we can only discuss the ac-
curacy of the S representation for this case ex post and
with the solution of the non-aggregated model on hand.
As we have seen in our first scenario, the accuracy of
the S representation is not guaranteed across all possi-
ble input sets.

In this section, we have seen how temporal represen-
tations used in existing policy models can introduce er-
ror, how error can be introduced for some input sets and
not others, how the error can be relevant for some ques-
tions and not others, and, importantly, the mechanism
underlying these outcomes. With this knowledge in
hand, we will now consider how to systematically find
temporal representations with a guarantee of not intro-
ducing error under any input set. Additionally, for those
cases where exact reproduction of the non-aggregated
model is required, we will consider a metric that allows
us to avoid checking every model output one-by-one.

4. How many representative periods?

4.1. When does an aggregate problem reproduce the
original problem?

The structure of the electricity capacity planning
problem can be represented in a general abstract form
as follows:

minimise c

T
x Subject to: Ax = b, x > 0

(11)
Where x is the vector of investment and generation

variables, c is the vector of costs of investment and
generation, and Ax = b represents the system of con-
straints. The aggregation of temporal resolution dis-
cussed in this paper, the transformation from the set of
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statements {1-4} in Section 2.2 to the statements {5-8},
can be discussed in the context of this more abstract
structure. In particular, our aggregation of hourly res-
olution can be considered as column aggregation fol-
lowed by row aggregation. Column aggregation (aggre-
gation of variables) results in a reduction in the size of
the c and x vectors and the number of columns in the A
matrix, while the subsequent row aggregation (aggrega-
tion of constraints) reduces the size of the b vector and
the number of rows in the column-reduced Ā matrix.

Zipkin (1980a,b) shows that in conducting this ag-
gregation, the more similar the aggregated columns and
rows are to each other, the lower the bound on how
much the objective function value will change from the
original problem. In the context of our problem, this
translates to the intuitive idea of finding hours that are
duplicates of each other in terms of demand and tech-
nology availability, removing them, and replacing them
with a weighted representative. When duplicates are
aggregated, not only will the objective value be main-
tained, but the solution to the original problem in terms
of investment and total generation by technology will
also be reproduced. For example, if every hour had the
same profile, |P| could be 1 with an associated weight,
w, equal to 8760, and the exact same model outcome
would occur with the aggregate model as with the full
hourly resolution model. With real data, exact dupli-
cates may be challenging to find, so we can look for
hours similar to each other. Just how similar, and how
many such hours exist, is numerically considered next
for the dataset underlying our earlier illustrative numer-
ical model. Additionally, we will extend the analysis to
when the representative periods in question are days and
weeks.

4.2. How many representative hours?

4.2.1. How many hours are unique?
To find those hours that are closely similar, we first

need a metric for similarity. The nature of the data
lends itself to using Euclidean distance10 as this metric,
with the greater the similarity between two hours, the
smaller the Euclidean distance between them. To calcu-
late the distance between a pair of hours, each hour is
represented as an n-dimensional data point comprising
demand11 and availability of each renewable resource12

in that hour. While electricity demand is represented

10 The Euclidean distance between the n-dimensional points x and
y is:

p
(x1 � y1)2 + (x2 � y2)2 + . . . + (xn � yn)2

11dh in earlier notation
12ag,h in earlier notation
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Figure 4: Normalised distance between hour 1 of dataset and other
hours, zero means exact duplicate

Table 4: Sample of temporal data used in numerical analysis

Load Wind Solar
H1 0.4480 0.4186 0
...

...
...

...
H8 0.5615 0.3810 0
H9 0.5588 0.3867 0.0130
H10 0.5490 0.3208 0.0590
H11 0.5334 0.2310 0.1260
...

...
...

...
h5225 1.0000 0.1207 0.2550
...

...
...

...
h8759 0.5285 0.5339 0
h8760 0.5025 0.4721 0

in units of power, endogenous renewable capacity im-
plies that the availability of renewables is a dimension-
less parameter, representing the availability per unit of
installed capacity in each hour. To enable comparison
between these di↵erent units, all temporal profiles are
normalised such that each vector is divided by the max-
imum value of that vector.13 Table 4 presents a sample
of the data when prepared in this format. As an example
application of this test of similarity between hours, Fig-
ure 4 displays the Euclidean distance between hour 1 of
the dataset and every other hour, with the results nor-
malised by the maximum distance. As can be seen from
the figure, the majority of the hours are di↵erent from
hour 1, but hours do exist that are quite similar. To un-
dertake this assessment on a systematic basis across all
hours, a hierarchical clustering approach is employed.

In particular, a form of hierarchical clustering known

13Numerical experiments revealed sensitivity in results to choice of
normalisation methods. However while having a quantitative impact
they did not change the qualitative findings here. See Milligan and
Cooper (1988) for more on normalisation in cluster analysis.
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as agglomerative clustering is employed. The advan-
tage of hierarchical clustering methods over the com-
monly applied k-means clustering method is that there
is no need to provide the clustering algorithm with a set
of k initial points. See Hastie et al. (2009) for more de-
tails on the method. The basic idea is to start with clus-
ters consisting of one data point each and sequentially
merge the clusters that are closest to each other. While
the distance between two points can be determined in a
straightforward manner once a distance metric has been
defined, it is not necessarily obvious how to determine
the distance between two clusters of points. A variety
of methods exist - for example, the clusters with the two
closest points are merged, or clusters with the shortest
longest distance between points are merged. In this ap-
plication, “Ward’s” method is applied.14 This method
merges the clusters that produce the minimum variance
in the merged cluster. In the context of this application,
this is desirable as we want to keep the clusters as tight
as possible, which is consistent with the goal of find-
ing hours that are duplicates of, or extremely similar to,
each other.

A number of methods can be employed to provide a
rule for when this agglomeration process stops. For ex-
ample, the algorithm can simply be stopped when a de-
sired number of clusters is reached, or alternately when
some metric of disunity within clusters is reached. For
our investigation, the hierarchical clustering algorithm
is run until a desired number of clusters is reached,
where the desired number changes in increments of 50
from 8760 to 60, and increments of 10 from 60 to 10.
This approach allows a visual representation of the per-
formance of the clustering algorithm across resolutions,
with a goal of revealing some properties of the tempo-
ral variability. The clustering portion of this investiga-
tion was completed using the MATLAB (The MathWorks,
Inc., 2013) clusterdata function.

The following metric will allow us to assess the per-
formance of a given clustered resolution, where perfor-
mance can be defined as how similar the members of
each cluster are to each other. The same metric, in a
rearranged format, is employed by Ludig et al. (2011)
to assess how much variability is captured in a variety
of time slice configurations. In the context of this pa-
per, the metric allows us to determine how similar the
members of our clusters are, which by the reasoning of
Section 4.1 can guide us to find an aggregate temporal
representation that is robust across all policy and cost

14Further information, including the exact distance equation, is
available in the supplementary material.
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Figure 5: Relative variance by clustered resolution. This metric allows
illustration of the number of unique hours in dataset. When zero, each
cluster consists only of duplicate hours.

scenarios. The ‘% of full dataset variance’ can be de-
fined as follows:

100.
Sum across clusters of within-cluster variance

Variance across all hours
(12)

When this metric reaches zero, the members of each
cluster are identical to each other. Figure 5 presents the
results of this investigation. When only demand is con-
sidered, less than 40 clusters capture the vast majority of
the variance, implying that 8720 hours of the year can be
discarded. Many models designed before the advent of
large scale renewables have temporal resolutions within
this order of magnitude. The inclusion of wind and so-
lar profiles into our hourly data changes the curve, with
approximately 1000 hours required to capture the vari-
ance when one wind and one solar profile are included,
and around 3000 hours required to capture the variance
when 3 regional wind and 7 regional solar profiles are
included. To express it another way, while in the ab-
sence of variable renewables we had about 40 electricity
goods, we now have on the order of 1000 when variable
renewables are included in the set of investment options.
While it will not be a qualitative surprise that increasing
the number of temporal profiles from 1, to 3, to 11, leads
to an increase in the number of unique hours, here we
have quantified the increase for a sample dataset, and
have seen a set of ideas that can be applied to any tem-
poral dataset for any region.

4.2.2. Sensitivity of model outputs
We will now consider the sensitivity of what we really

care about, the economic insights generated by model
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outputs, to the variance metric displayed in Figure 5.
For a sample of parameter configurations, we will com-
pare the output generated by our model of Section 3.2
under an hourly resolution with the output generated
under each of the resolutions associated with the clus-
tering process that underlie Figure 5.15 The parameter
configurations chosen for this numerical experiment are
shown in Table 5.

The bounds of Zipkin (1980a,b) indicate that the
more similar the rows and columns being aggregated,
the smaller the errors introduced into the total value of
the objective function, which in this case is total sys-
tem costs. Figure 6(a) shows the absolute error in to-
tal system costs associated with each clustered resolu-
tion relative to the total system costs associated with
the non-aggregated hourly resolution. We can observe
a broad agreement with the bounds of Zipkin, and with
Figure 5, in that the di↵erence in total system costs in all
scenarios approaches zero at the same resolution where
the variance metric approached zero, i.e. where only
very similar hours are aggregated. In particular, lines
indicating 11 temporal profiles have reached zero at a
clustered resolution of 3000, lines indicating 3 tempo-
ral profiles have reached zero at a clustered resolution
close to 1000, and the solid line indicating the no re-
newables case reaches zero at a clustered resolution of
tens of hours. This is as expected from our previous
discussion. What may not necessarily be expected are
the changes across lines within each colour group. The
extent of the error in total system costs introduced by
temporal aggregation is sensitive to how the model is
parameterised. We will expand on this e↵ect later in
this section.

Frequently, we are interested in the components of
the objective function as much as the objective value it-
self. In the application at hand, we may be as interested
in the technologies the model chooses to meet electricity
demand as we are in the total system costs. For exam-
ple, we could be interested in how a technology-specific
subsidy a↵ects deployment of that technology. How-
ever, we can imagine cases where components of the
objective function could change, but the total value of
the objective function remains the same. In our applica-
tion, this could particularly be the case if technologies
have similar total lifetime costs, but a di↵erent distribu-
tion between whether the costs arise upfront or in oper-
ation. In choosing one such technology over the other,

15Each clustered resolution was represented in the model as fol-
lows. For each cluster of hours, the hour closest to the centroid was
chosen as the representative hour, and assigned a weight equal to the
number of members of the cluster.

the total system costs may not change significantly, but
we could be considering a very di↵erent type of power
system.16 One option to address this possible limita-
tion of considering the objective value alone is to con-
sider other metrics. To assess every model output indi-
vidually, for example, would be comprehensive, but it
would also be burdensome on the analyst and it could
be a process where insight could get buried in the mass
of data. The ‘L1-distance’ is thus proposed here as a
means of comparison between model solution values.
This metric treats the model’s objective function at so-
lution as an n-dimensional point, where each of the n
points represents an element of the decomposed objec-
tive function. The distance measurement between two
model solutions is then the sum of absolute di↵erences
between each of the n values that comprise each objec-
tive function at solution. Equivalently, the metric can be
considered the L1-norm of the vector of n di↵erences in
objective function elements. In our case here, the objec-
tive function is decomposed into investment costs and
generation costs by technology, with the ‘L1-distance’
measuring the di↵erence between two model solutions
by summing the absolute di↵erences in our decomposed
terms across model solutions. Using our earlier nota-
tion, the metric is defined as follows:

L1-distance =
P

g2G
✓
ccg(|I⇤hg � I⇤cg |)

+ vcg(|Ph2H G⇤hg,h �
P

p2PG⇤cg,pwp|)
◆

(13)
Where the superscript h denotes a variable from the
model with hourly resolution, and the superscript c de-
notes a variable from the model with the clustered res-
olution. Like the comparison of objective value (total
system costs), this metric will be zero when genera-
tion and investment in the aggregated model match the
hourly model exactly, but unlike the total system cost
comparison, will be sensitive to substitution of one tech-
nology type over another with similar lifetime costs. As
in Figure 6(a) with total system costs, for each resolu-
tion found by agglomerative clustering, the model was
solved and the outputs were compared to the outputs
from the hourly model using the L1-distance metric.
The outcome is plotted in Figure 6(b).17

16Another way of expressing this is that the model solution is ap-
proaching non-uniqueness. If there was one very clear unique opti-
mum in terms of technology choice, then system costs would be a
su�cient measure to compare model outputs. DeCarolis (2011) dis-
cusses the exploration of near-optimal solution spaces.

17For the interested reader, the breakdown in contribution between
investment and generation for each configuration is available in the
supplementary material.
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Table 5: Parameter configurations in numerical comparison experiment

Number of variable profiles in model Technology cases
Load profile only (no renewables) Default assumptions
Load, 1 wind, 1 solar profile $1/W Photovoltaics, $0.5/W Photovoltaics
Load, 3 wind, 7 solar profiles $1/W Photovoltaics, $0.5/W Photovoltaics
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Figure 6: Distance from solution under hourly resolution to solution under clustered resolution. When the L1-distance is zero, each investment and
generation component in the model solution under the clustered resolution exactly matches the hourly model solution
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Consistent with our earlier discussion, the L1-
distance metric in Figure 6(b) approaches zero at a clus-
tered temporal resolution in the order of tens of hours
when no renewables are in the model, a clustered reso-
lution of approximately 1000 when two renewable pro-
files are included, and a clustered resolution of approx-
imately 3000 when ten renewable profiles are included.
Comparing lines within each colour group, we again see
sensitivity across the parameterisation of the model, this
time in greater amounts. We see that the $0.5/W so-
lar PV scenario is more sensitive to temporal resolution
aggregation than the $1/W scenario, in particular dis-
playing strong non-monotonicity. Finally, as our metric
approaches zero as expected at the clustered resolutions
of 1000 and 3000, some residual error remains beyond
these resolutions in certain configurations.

What are the reasons for the residual error and the
non-monotonicity? Investigation reveals that the answer
rests in the role of ‘extreme hours’, i.e. those hours
where the capacity charge can rest, or equivalently, the
hours where one unit of extra demand can require in-
vestment in a new unit of capacity. With residual er-
ror, though overall variance can be tiny, model outputs
can be very sensitive to any variance associated with
the extreme hours. This residual error disappears when
one reaches the true duplicates on the right hand side of
the figure. We will illustrate this role of extreme hours
by a more detailed investigation of non-monotonicity.
The non-monotonic jump in L1-distance occurs when,
as a ‘parent’ cluster splits into two as the resolution be-
comes more disaggregate, one of the ‘child’ clusters can
end up with the peak electricity price. However, if this
representative hour is not the true peak electricity price
hour, and the true hour remains hidden within a cluster,
then the disaggregation can lead to increased error. As
disaggregation continues, the true peak electricity price
hour eventually becomes a representative hour, at which
point the error relative to the hourly solution can rapidly
drop. To illustrate this mechanism, we will consider the
sharp non-monotonic increase in the dashed line repre-
senting the $0.5/W PV case with one load, wind, solar
profile, that happens to occur across the clustered res-
olutions of 857 and 858.18 The jump in L1-distance to
the hourly solution in this case is due to substitution of
coal technology for solar and gas technology.19 Table 6
illustrates the di↵erence in temporal profile between the

18While the figures are associated with discrete jumps in resolution
of 50, these particular cases were run to illustrate the drivers of the
observed non-monotonicity.

19For the interested reader, the exact underlying capacities across
these resolutions are available in the supplementary material.

Table 6: Di↵erence in temporal profile between the 857 and 858 clus-
tered resolutions

Hour Weight Demand Solar Price
($/MWh)

4649 5 0.915 0.149 41.5
(parent)
4648 3 0.906 0.121 41.5
5201 2 0.985 0.101 54421.5
(children)

Table 7: Di↵erence in temporal profile between the 1110 and 1111
clustered resolutions

Hour Weight Demand Solar Price
($/MWh)

5179 5 0.924 0.056 41.5
(parent)
5179 3 0.924 0.056 41.5
5228 2 0.942 0.004 54421.5
(children)

857 resolution and the 858 resolution. With the splitting
of the non-peak price parent cluster, child cluster 5201
has a higher demand and it turns out that it takes on the
peak electricity price. Even though cluster 5201 has a
low solar availability of 10%, this level of solar avail-
ability under such a high electricity price can increase
the valuation of solar, leading to the misvaluation, and
thus to the non-monotonic increase in the L1-distance.20

Along the same line a sharp drop in L1-distance oc-
curs across the 1110 and 1111 clustered resolutions. Ta-
ble 7 illustrates the di↵erence in temporal profile be-
tween these resolutions. What causes this sharp drop in
error as measured by the L1-distance? Here the peak
pricing hour emerges when the parent cluster splits. 4%
availability instead of 10% at the peak pricing hour re-
duces the value of solar back to that of the 8760 non-
aggregated case.

This is but an example where small changes in the
temporal data change the nature of optimum capacity in-
vestment. Our dashed line cases, with PV so a↵ordable,
are particularly sensitive to small changes in temporal

20In the terms of our expression of marginal value of a renewable
generator in Section 3.1 above, there is an increase in the covariance
between solar availability and electricity price.
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resolution. While they may be extreme cases in a model
where electricity demand cannot adjust, they are help-
ful in illustrating how aggregation strategies that may
perform under one set of conditions perform less well
under others. This discussion illustrates that the value
of clustering in aggregation of temporal resolution rests
as a tool to find duplicates or periods extremely simi-
lar to each other. More aggregate resolutions found by
clustering algorithms, with greater variance within clus-
ters, are not generally robust to introducing aggregation
error into model results.

4.2.3. How many hours required?
Referring to the title of this section, how many rep-

resentative hours are required to represent intra-annual
temporal variability appropriately? For the example
dataset here, the implication is an increase from tens
to thousands in the number of representative hours re-
quired to not introduce aggregation error along the tem-
poral dimension. Agglomerative clustering, when used
appropriately, is a way of finding a set of representa-
tive hours that guarantee no aggregation error is intro-
duced. Importantly however, the search for the appro-
priate clustering resolution should be conducted with
caution - settling on an appropriate resolution on the
basis on one or two model outputs for one particular
scenario could provide one with a false sense of secu-
rity with regard to aggregation error in other scenarios,
as our use of the L1-distance metric showed. In the ex-
ercising of this caution, the variance metric introduced
above can be used to check the level of similarity within
clusters. To illustrate the applicability of this approach
to other datasets, the supplementary material contains
a similar cluster analysis for Irish power system data,
showing a similar number of unique demand hours and
approximately 500 unique hours when one wind profile
is included.

The approach has been discussed in the context of
one geographic region thus far, however, it extends nat-
urally to multiple regions. Simply every additional tem-
poral profile is an additional column in the data matrix
to which clustering is applied. In this manner, multiple
wind and solar profiles were included in the numerical
analysis above.

4.3. How many representative days/weeks?

The numerical analysis thus far has assumed that
no constraints span across hours, and, therefore, that
hours can be treated independently without concern for
chronology. Constraints that require chronology to be
maintained are used to model such features as smart grid

technologies, ramping ability of generators, and short
term energy storage. One approach to include such con-
straints in aggregated models is to employ representa-
tive days or weeks, with the constraints spanning across
hours within each day or week, but not across days or
weeks. Examples of models with such a temporal struc-
ture can be seen in Table 1. The two key assumptions of
this approach are a) that the constraints are relevant for
the question being asked of the model and b) that con-
straints across representative days or weeks are not rele-
vant, such as those that model interseasonal storage op-
tions. We will not consider here whether the constraints
that the representative day/week approach enables are
necessary for economic insight. We will investigate,
however, how many representative days/weeks are re-
quired to guarantee that the approach, when employed,
does not introduce aggregation error.

Using the same logic as Section 4.2, we will now con-
sider how many similar days and weeks are in our exam-
ple temporal dataset. While previously the dataset con-
sisted of 8760 points with associated load/wind/solar
values, for this analysis, the dataset is restructured to
consist of 365 (daily assessment) or 52 (weekly assess-
ment) points with associated load/wind/solar vectors.
For example, with one wind and one solar availability
profile in the daily assessment, each of the 365 points
has a dimension of 72 (the number of hours, 24, mul-
tiplied by the number of load, wind and solar profiles,
3).

Figures 7(a) and 7(b) show how the number of clus-
tered days and weeks required to capture the temporal
variability increases when wind and solar availability
profiles are included in addition to demand alone. For
example, in the case of clustered days, the level of vari-
ance associated with 20 days, when demand alone was
considered, is now associated with approximately 300
days as renewables are included. In the case of weeks,
we see that there are essentially no weeks that are du-
plicates of each other in terms of electricity demand
and renewables availability. While it is not qualitatively
surprising that there will be more unique sequences of
hours than unique hours themselves, and that there will
be more unique periods as more temporal profiles are
included, the approach here has quantitatively shown
how many periods are required to represent our sample
dataset, and can be applied to any such dataset. For ex-
ample, the same approach is applied to Irish power sys-
tem data in the supplementary material, showing similar
increases in the number of unique periods required to
represent the increased temporal variability introduced
by wind power.

As in our investigation of representative hours, we
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(b) Assessment of the similarity of weeks

Figure 7: Relative variance by clustered daily and weekly resolutions.
When zero, each cluster consists of only duplicate days/weeks.

will compare model outputs associated with each clus-
tered resolution to the non-aggregated model solution
in terms of both di↵erence in system costs and the L1-
distance. Figures 8(a) and 8(b) show the results for the
clustered daily resolutions, while Figures 9(a) and 9(b)
show the results for the clustered weekly resolutions. As
expected from our earlier discussions, we see that error
in both total system costs and L1-distance reaches zero
in each scenario as the variance metric in Figures 7(a)
and 7(b) approaches zero, with the error in system costs
reaching zero at more aggregate resolutions.

Figures 6, 8 and 9 all indicate the existence of so-
lutions that are very close to each other in terms of
what the model is optimising, total cost, but are some
distance away from each other in terms of our L1-
distance measure, highlighting the sensitivity of tech-
nology choice, and potentially associated emissions cal-
culations, to temporal representation.

If a temporal representation robust to aggregation er-
ror for any scenario is required, the representative day
and week aggregation approach o↵ers little potential for
reducing model size. Representative days and weeks
are simply not that representative when temporal pro-
files of renewable resource availability are considered in
conjunction with the electricity demand profile. Equiv-
alently, models that do employ this approach in cases of
endogenous renewable capacity are at risk of introduc-
ing aggregation error, depending on the scenarios run
and the questions asked of the model.

Our finding that approximately 300 representative
days are required to capture the temporal variability in
our example dataset stands in contrast to the 20 days that
Nahmmacher et al. (2014a) find is adequate for captur-
ing the temporal variability in the LIMES-EU model,
a number also derived through the application of a hi-
erarchical clustering algorithm. In addition to the dif-
ference in datasets, each day in LIMES-EU has 8 time
slices relative to the 24 in this analysis, implying ag-
gregation that smooths the within-day variability, mak-
ing LIMES-EU days more similar pre-clustering. Addi-
tionally Nahmmacher et al. (2014a) numerically show
the quality of the 20 day resolution at one particular pa-
rameterisation scenario and with two model output met-
rics (total costs and variable renewable share). As we
have seen, there could be discrepancies in components
that underlie these aggregate outputs, discrepancies that
could matter for certain questions. Similarly if the 20
days do not represent all the unique days, other parame-
terisations could theoretically be found where the miss-
ing days produce aggregation error for these two output
metrics. While one can say that these issues may only
arise for extreme scenarios, sometimes it is those sce-
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narios that are of interest.
The relatively small model used in our numeric calcu-

lations has provided us with a platform to conduct an ex-
tensive number of numerical model runs to explore this
issue of temporal aggregation. The experiments con-
ducted here would not be possible in any of the large
scale models used for policy analysis without extraordi-
nary runtime. The findings of these numerical experi-
ments, supported by the earlier analytic reasoning, can
be implemented by those maintaining large models or
designing new models by systematically considering the
number of duplicates/highly similar periods in the tem-
poral input data they are aggregating. If the resulting
resolution is too great for computational implementa-
tion, the next section will consider how we can reduce
it further.

5. On reducing resolution further

5.1. Operating conditions
We have seen how aggregation can introduce error

for some model outputs and not for others. If our ques-
tion of economic interest relates to the una↵ected output
only, then we only need to disaggregate to the level of
temporal resolution that is relevant for that output, and
not for all outputs. Similarly, we have seen that aggre-
gation error only occurs for certain model parameteri-
sations and not for others. If the question relates to the
una↵ected range of parameterisation, then the coarser
level aggregation will be appropriate. Additionally, tol-
erance for what level of error is acceptable can vary by
model output and the question asked. These approaches
imply the necessity for ‘model operating conditions’,
i.e. conditions for what model runs are appropriate
and which are not given the chosen temporal aggrega-
tion scheme.21 For example, computationally tractable
‘side constraint’ approaches, as discussed earlier, would
benefit from explicit accompanying conditions outlining
when they are valid and when they are not. Such oper-
ating conditions can be derived analytically or through
numerical experiment.

5.2. Problem structure and prior information
For a given problem structure, the observation that

finding duplicates provides a guarantee is not the same
as stating that finding duplicates produces the minimum
possible guaranteed resolution. Rather than represent
all the hourly input data flawlessly in our aggregation

21This and related points are discussed in greater detail in Merrick
(2016).

scheme, could we instead focus on representing the sub-
set of hourly input data that drives model results? An
analogy is the encoding of MP3 audio files, where the
goal is to capture a waveform ‘as it sounds’ and not ‘as
it is’ (Sayood, 2012). What sort of prior information
could allow us to find subsets of hours that are more
important than others in driving model behaviour? We
have already seen in Section 4.2 how hours with peak
prices (prices that are often orders of magnitude greater
than the average electricity price) can drive model de-
cisions through their large role in the covariance terms
earlier derived. Aggregation accuracy was particularly
sensitive to these hours. An aggregation system that
treats potential peak pricing hours di↵erently thus may
be a promising direction. The challenge, however, is
knowing a-priori which hours those peak pricing hours
might be. While before the advent of variable renew-
ables the hour with the peak electricity price was that
with maximum demand, the peak electricity hour now
endogenously depends on the level of renewables de-
ployment. If we had such prior information however,
we could partition our hours into hours where this peak
price could rest, and where it could not. In the latter
partition, we could have a coarser threshold for what
counts as a duplicate, allowing a reduction in the num-
ber of periods. For example, a clustering algorithm
could be modified to penalise variance within clusters
that contain those hours identified as potential peak pric-
ing hours. The REGEN (Blanford et al., 2014) tem-
poral representation design implicitly follows such an
approach. In this case, ‘bubble’ partitions are defined
around extreme load/wind/solar periods, with at least 1
period required to be chosen from each bubble, before
a clustering algorithm is implemented to aggregate the
remaining hours outside the bubble partitions. The RE-
GEN approach, however, is a heuristic as synthetic ex-
amples can be constructed such that peak pricing hours
will not be located at one of the extreme vertices.

5.3. Use of bounds enabled by a stochastic framework
Framing temporal variability as a space of stochastic

incidences allows the machinery of stochastic program-
ming to be applied to the problem. Munoz et al. (2016)
harness this machinery to potentially reduce model res-
olution. Starting with a coarse clustered resolution and
progressively trying more disaggregate resolutions, the
model allows calculation of upper and lower bounds
on total cost at each resolution, until such point as the
bounds converge. If bounds converge at a coarse reso-
lution, the more detailed model run can be avoided. As
we have discussed with regard to the L1-distance met-
ric, capacity planning models can have numerous tech-
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nology choice options close to the optimum, an issue
this approach would not directly address. In addition,
this procedure would have to be applied each time the
model runs a new scenario.

6. To conclude

The importance of temporal variability in valuing dif-
ferent electricity supply technologies has been recog-
nised in the literature. We have considered in this study
how this variability is represented in numeric models
of electricity capacity planning. We have analysed how
representations can misvalue technology options, seen
how to guarantee a robust aggregate resolution, and dis-
cussed the intricacies of finding such a resolution nu-
merically. Finally, potential approaches to reduce the
resolution further have been outlined. In addition to the
individual contributions, a contribution of this study as
a whole is to bring these ideas together in one paper.

This study does not change the qualitative under-
standing of how temporal variability a↵ects the eco-
nomics of power system investments, but is highly rel-
evant for any quantitative understanding, such as that
required for applied policy analysis. There is simply
greater information content in the temporal variability
data when variable renewable profiles are considered
in addition to demand variability alone. Equivalently,
from an economic perspective of viewing unique hours
as unique electricity goods in the absence of large scale
electricity storage, the number of electricity goods in-
creases significantly when variable renewable potential
is included. For our sample dataset, the increase is by
two orders of magnitude.

This work has indicated a number of directions for
further research additional to those outlined in Section
5. Following an oft-adopted paradigm, this paper as-
sumed a fixed demand shape. Electricity demand, how-
ever, is potentially on the cusp of change not seen since
the foundation of power systems, straining this assump-
tion. Also following the same paradigm is the assump-
tion that future years’ supply and demand variability can
be represented by historical data. With a changing cli-
mate, wind and solar temporal profiles may also be sub-
ject to change. As these issues are researched, this study
aims to aid the advancement of the models that are used
today to address important societal challenges relating
to the electricity system and the broader climate system.
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