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Today’s presentation

• Context and motivation

• Brief thoughts on structuring models

• Representing temporal variability in electric sector planning
models

• Assessing the system value of optimal electricity load shifting
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Trends for context and motivation

• Climate change

• Energy system changes (USDOE, 2016):

Technology Cost decline 2008-2016

LED Lighting 94%
EV Battery 73%

PV (‘utility scale’) 64%
Wind (land based) 41%

• Cost per standard computation 1940-2012: 53%/year
(Nordhaus, 2015)

• Algorithmic advances: factor of 580,000 device-independent
speedup, 1990-2013, for mixed integer optimization problems
(Bertsimas, 2014)
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Energy and climate planning models

• Optimization based

• Often framed as finding a ‘good’ (e.g. least cost) way of
meeting some goal, subject to constraints

• From planning a local utility investments to studying how the
world can address climate change

• Increasing number of transportation applications

• Decision support tools
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Use of energy and climate planning models

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Modeling of Greenhouse Gas 
Reduction Measures to Support  
the Implementation of the 
California Global Warming 
Solutions Act (AB32) 
 

ENERGY 2020 Model 
Inputs and Assumptions 

February 01, 2010 
(revision date) 
 

 

Prepared By: 
ICF Consulting Canada, Inc. 

277 Wellington St. W. 
Suite 808 

Toronto, ON M5V 3E4 
 
 

Systematic Solutions, Inc. 
1519 Heatherwood Trail 

Xenia, OH  45385 
 

Contact: 
R. Levesque 

Systematic Solutions, Inc. 
T: (937) 429-4010 

SR/OIAF/2009-05 
 
 
 
 
 
 
 

Energy Market and Economic Impacts of H.R. 2454, 
the American Clean Energy and Security Act of 2009 

 
 
 

August 2009 
 

Energy Information Administration 
Office of Integrated Analysis and Forecasting 

U.S. Department of Energy 
Washington, DC  20585 

 
 
 
 

 
 
This report was prepared by the Energy Information Administration, the independent statistical and 
analytical agency within the Department of Energy. The information contained herein should be attributed 
to the Energy Information Administration and should not be construed as advocating or reflecting any 
policy position of the Department of Energy or any other organization. Service Reports are prepared by 
the Energy Information Administration upon special request and are based on assumptions specified by 
the requester. 

James Merrick 4 / 47



Use of energy and climate planning models

Models played a large role in mid century climate strategies
submitted as part of Paris Agreement

Also, and importantly, used to understand fundamental value of
different technologies and options
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Today’s presentation

• Context and motivation

• Brief thoughts on structuring models1

• Representing temporal variability in electric sector planning
models

• Assessing the system value of optimal electricity load shifting

1Merrick & Weyant 2019
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What is a ‘good’ model?

• Provide useful information for question asked

• Minimize detail

Turns out there is an Information Theory framework that can be
applied to reason about this
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Roadmap to building a ‘good’ model

Still resolving the map.. but it includes

• Use of available data

• Incorporation of structural constraints (economic/physical)

• Alignment between model and question

• The lightest model that can provide the most relevant
information

So, what can we say about some topics important to RAEL:
renewables and smart grid including storage?
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Contributions

• An early attempt at systematic evaluation

• Increasing importance with greater data and greater
computing power
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Today’s presentation

• Context and motivation

• Brief thoughts on structuring models

• Representing temporal variability in electric sector planning
models2

• Assessing the system value of optimal electricity load shifting

2James H. Merrick. “On representation of temporal variability in electricity
capacity planning models”. In: Energy Economics 59 (2016), pp. 261–274.
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The electricity capacity planning problem

$11 trillion projected investment 2014-2040 (IEA 2014)
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The electricity capacity planning problem

Before variable renewables, intuitive temporal representation, to
significantly speed up computation.
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With renewables, now need to consider joint distribution of load,
wind, and solar when aggregating temporal representation.
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The computational motivation

Temporal resolution Runtime for single run
(number of periods) (s)

8760 15
144 0.09
1 <0.01

Table: Influence of temporal resolution on small model runtime

Number of constraints: |H|(1 + 2|G|)→ |P|(1 + 2|G|)
Number of variables: |G|(1 + |H|)→ |G|(1 + |P|)
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The mathematical structure

Detailed Form

Objective Function (minimise generation and investment costs):

minimise Z =
∑
g∈G

(Igccg +
∑
h∈H

Gg,hvcg)

Subject to:
Supply-demand balance:∑

g∈G
Gg,h ≥ dmdh : λh ∀h ∈ H

Generation less than available capacity:

Gg,h ≤ Igag,h : δh ∀g ∈ G, h ∈ H
Non-negativity constraints:

Ig, Gg,h ≥ 0 ∀g ∈ G, h ∈ H
Plus desired policy constraints etc.
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The mathematical structure

Aggregate Form (|P| < |H|,
∑

p∈P wp = 8760)

Objective Function (minimise generation and investment costs):

minimise Z =
∑
g∈G

(Igccg +
∑
p∈P

Gg,pvcgwp)

Subject to:
Supply-demand balance:∑

g∈G
Gg,p ≥ dmdp : λp ∀p ∈ P

Generation less than available capacity:

Gg,p ≤ Igag,p : δp ∀g ∈ G, p ∈ P
Non-negativity constraints:

Ig, Gg,p ≥ 0 ∀g ∈ G, p ∈ P
Plus desired policy constraints etc.
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Aggregation of temporal resolution in literature

A wide variety of existing methods:

Method Model examples

Model every hour EMMA (Hirth, 2013), SMART (Powell, 2012)
13 selected weeks Aboumahboub, 2012
500 hours chosen from 10,000 sample combinations Van der Weijde, 2012
Peak and median load day for each month Berkeley SWITCH
86 representative hours chosen through EPRI REGEN (2014)
combination of clustering and finding extreme hours
6 representative days with 8 time slices each PIK LIMES-EU (2014)
Representative day for each season, 4 time slices each NREL ReEDS (2011)
3 time slices from each of 3 seasons EIA NEMS (2014)
4 representative hours (in USA) JGCRI GCAM (2013)
1 average segment Implicit in an LCOE comparison

Research questions:

• What are mechanisms through which representation can alter
model insights?

• A representation with a guarantee of no error? How to find it?

• Further improvements?
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Temporal variability and the economics of variable
renewables

Lamont (2008)3: Marginal value of a renewable generator:

Marginal Valueg = |H|[(Average price).(Capacity factor)
+Cov(price, availability)]

Marginal Valueg = 8760[E(λ).CF g + Cov(λ,ag)]

After aggregation4:

Marginal Valueg = 8760[E(Λ).CF g + Cov(Λ,ag)]

3Alan D. Lamont. “Assessing the long-term system value of intermittent electric
generation technologies”. In: Energy Economics 30.3 (2008), pp. 1208–1231.

4Let Λp = λp/wp
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Illustrative example with two aggregate resolutions

• S Resolution: 144 periods. 2 days chosen per month, sampled
at 4 hour periods

• M Resolution: Average demand and wind/solar availability
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Illustrative example with two aggregated resolutions

Computer implementation of mathematical formulation, using
ERCOT (Texas) system data.

8760 S (144) M (1)
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How many representative periods?

Zipkin (1980)5: error in objective introduced by aggregation
proportional to similarity of elements within each block

Table: Sample of temporal data (normalised) used in numerical analysis

Load Wind Solar

H1 0.4480 0.4186 0

.

.

.

.

.

.

.

.

.

.

.

.
H8 0.5615 0.3810 0
H9 0.5588 0.3867 0.0130

.

.

.

.

.

.

.

.

.

.

.

.
h5225 1.0000 0.1207 0.2550

.

.

.

.

.

.

.

.

.

.

.

.
h8759 0.5285 0.5339 0
h8760 0.5025 0.4721 0

Hierarchical clustering algorithm as a means of finding similar
hours systematically

5P. H. Zipkin. “Bounds for Row-Aggregation in Linear Programming”. In:
Operations Research 28.4 (1980), pp. 903–916.
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Similarity of hours

y-axis metric: 100.
Sum across clusters of within-cluster variance

Variance across all hours
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Relative variance by clustered resolution. When zero, each cluster
consists only of duplicate hours.
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Reducing resolution further

• Problem structure and prior information

• Operating conditions

• Further statistical development
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Contributions

Introduction of variable renewables implies an increase in the
number of electricity goods from the order of 10 to the order of
1000.

• Illustration of the mechanisms by which aggregation can
produce error

• Pointing out of conditions that guarantee such errors are not
introduced

• An assessment of clustering as a method for aggregation in
this context

• Base on which to appropriately reduce resolution further if
necessary
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Today’s presentation

• Context and motivation

• Brief thoughts on structuring models

• Representing temporal variability in electric sector planning
models

• Assessing the system value of optimal electricity load shifting6

6Merrick, J., Y. Ye, and R. Entriken (2018). Assessing the System Value of
Optimal Load Shifting, IEEE Transactions on Smart Grid, 9:6 (2018), pp.5943-5952
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Context

Home Energy Management System

Controller

Load Shiftable Items Thermal Control
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Research goals:

• Development of associated modeling methods

• Principles of the valuation of these technologies
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Consumer model formulation

Consumer j problem (from Hu et al., 20167):

maximize uj(Dj)− pTuj
subject to uj ≥ dj ,

(ej)Tuj ≥ Dj ,
uj ≤ Ce,

uj , Dj ≥ 0;

• ui ∈ RT+ electricity consumption [decision variable]

• uj(Dj) utility of total demand Dj , a concave function

• p ∈ RT+ electricity price

• dj ∈ RT+ Non-shiftable demand

Maximize utility given constraints
7R Lily Hu et al. “A Mathematical Formulation for Optimal Load Shifting of

Electricity Demand for the Smart Grid”. In: IEEE Transactions on Big Data PP.99
(Early Access Article) (2016).
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Consumer model formulation

Consumer j problem (toy version)

minimize pTu
subject to u1 ≥ 11,

u2 ≥ 16,
u3 ≥ 5,

u1 + u2 + u3 ≥ 37,
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Expanding model to system

• An economy with T goods, electricity in each time period

• Price taking consumers demand electricity to maximise utility
given load-shifting ability

• Price taking producers supply electricity to maximise profit
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Producer model formulation

Producer i problem:

maximize pTxi − ci(xi)
subject to Aixi ≤ bi,

xi ≥ 0,

• xi ∈ RT+ electricity generation [decision variable]

• ci(.) : RT+ → R production cost function

• p ∈ RT+ electricity price

• b ∈ RT+ vector of physical constraints

Essentially: maximize profit given capacity constraints
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Model formulation

Market-clearing condition:
m∑
i=1

xi =

n∑
j=1

uj .

Supply equal demand in each period
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Equivalence to a convex program

Each supplier i and consumer j solving their individual problems
simultaneously is equivalent to the following social problem:

maximize
∑n

j=1 u
j(Dj) −

∑m
i=1 c

i(xi)

subject to Aixi ≤ bi, ∀i,
uj ≥ dj , ∀j,

(ej)Tuj ≥ Dj , ∀j,
uj ≤ Ce, ∀j,∑m
i=1 x

i =
∑n

j=1 u
j ,

xi,uj , Dj ≥ 0, ∀i, j

maximize Societal surplus
subject to Constraints of each generator

Constraints of each consumer
Market clearing constraint

A convex optimization problem, useful for policy analysis or
potentially market design
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A numerical application

• Data from ‘Current Trends’ scenario of ERCOT Long Term
System Assessment, 2031 scenario year.

Table: Capacity mix in example

Technology Capacity (GW) Short-Run Marginal Cost ($/MWh)
Solar 21.7 0
Wind 21.5 0
Nuclear 5.2 11
Gas CC 37.3 49
Gas CT 12.1 73
Gas Steam 8.7 80
Coal 10.2 34.3

• Abstract representation of optimal load shifting capabilities
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A numerical application

Cost Gas CT

Cost Gas CC
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Cost Nuclear
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Figure: Price Duration Curve. In adjustable demand case, 15% of
reference demand is shiftable within each 24 hour window
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Value
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Figure: Sensitivity of the value of load shifting to the fraction of demand
that can shift within each hour (assuming 24 hour window).

Average of ≈ $3 per customer
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Marginal value

The marginal value of adjustable demand turns out to be:8

marginal value =
∑
t

|pt −median(p)|

• The sum of the differences in absolute values around the
median

• A measure of distribution of electricity prices

• In absence of other constraints, model will keep building until
price spread reduces to capital cost of installing

• System value driven by spread of prices

8Derived from optimality conditions. This is the simplest version for clarity
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Marginal value
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Figure: Marginal Value of an additional kW of adjustable electricity
demand in ERCOT 2031 Current Trends example
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More on value

• Caveats to numerical value

• Relationship to value of renewables

M.V. load shifting ∝ dispersion of prices
M.V. variable renewables ∝ correlation(availability,price)

James Merrick 37 / 47



The challenge of modeling storage

Modeling storage, particularly tracking storage balance, requires
something different, maintaining chronological information when
aggregating.
A sample of approaches:

• No temporal aggregation (computationally prohibitive, will
come back to this)

• Representative days/weeks (how know which days/weeks
representative?9)

• System states10

9James H. Merrick. “On representation of temporal variability in electricity
capacity planning models”. In: Energy Economics 59 (2016), pp. 261–274.

10Sonja Wogrin et al. “A New Approach to Model Load Levels in Electric Power
Systems With High Renewable Penetration”. In: IEEE Transactions on Power
Systems 29.5 (2014), pp. 2210–2218.
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Challenge of finding representative days/weeks

Days / weeks tend not to be very similar,11 so how aggregate?
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11James H. Merrick. “On representation of temporal variability in electricity
capacity planning models”. In: Energy Economics 59 (2016), pp. 261–274.
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A step back: the mathematical structure

Minimize generation and investment and storage costs

(x ∈ R
|h|
+ , z, t ∈ R+)

minimize
∑
g

cxgxg + czz + ctt

Subject to: supply equal demand (r ∈ R|h|)∑
g

xg − r = d

Generation less than available capacity

xg ≤ agzg ∀g

Storage balance tracking (s ∈ R
|h|
+ )

sh = sh−1 + rh ∀h

Stored energy (discharge) less than ‘room’ (‘door’) capacity’

s ≤ bt, |r| ≤ t

James Merrick 40 / 47



System states ideas

Inspired by Wogrin (2014), we investigate the representation of a
(any given) temporal aggregation as the transformation from left
to right below:

1

2

p23

p12 = 1

3

8760

8759

8758
…

A

B

CD

E

pBC

pAB

q : duration in state
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To explain: a thought experiment

Consider a world with 6 sequential periods, with periods 1, 3, and
5, and periods 2, 4, 6, respectively identical in terms of
load/wind/solar:

1 2 3 4 5 6

A B A B A B

A B
A B

A 0 1

B 1 0

Probability transition matrix:

Now aggregate, and represent in context of generalized structure

1 2 3 4 5 6

A B A B A B

A B
A B

A 0 1

B 1 0

Probability transition matrix:

wA=3, wB=3

qA=1, qB=1
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ADMM decomposition to scale model

ADMM: Alternating Direction Method of Multipliers
Initialise prices, then repeat until convergence:

• Producers (in parallel):
xik ← arg maxxi f i(xi,pk) + β

2 ||x
i − xik−1 + ∆k

|i|+|j| ||
2

Maximize profit subject to aggregate mismatch penalty

• Consumers (in parallel):
ujk ← arg maxuj gj(uj ,pk) + β

2 ||u
j − ujk−1 −

∆k
|i|+|j| ||

2

Maximize utility subject to aggregate mismatch penalty

• System operator:
∆k+1 ←

∑
i x

i
k −

∑
j u

j
k

pk+1 ← pk − β(∆k+1)
Update aggregate mismatch and prices

Guaranteed convergence12, and unlocks an ability to solve larger
problems

12Dimitri P Bertsekas. “Incremental Aggregated Proximal and Augmented
Lagrangian Algorithms”. In: arXiv:1509.09257v2 [cs.SY] (2015). arXiv: 1509.09257.
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ADMM: Alternating Direction Method of Multipliers
Initialise prices, then repeat until convergence:

• Producers (in parallel):
xik ← arg maxxi f i(xi,pk) + β

2 ||x
i − xik−1 + ∆k

|i|+|j| ||
2

Maximize profit subject to aggregate mismatch penalty

• Consumers (in parallel):
ujk ← arg maxuj gj(uj ,pk) + β

2 ||u
j − ujk−1 −

∆k
|i|+|j| ||

2

Maximize utility subject to aggregate mismatch penalty

• System operator:
∆k+1 ←

∑
i x

i
k −

∑
j u

j
k

pk+1 ← pk − β(∆k+1)
Update aggregate mismatch and prices

Guaranteed convergence12, and unlocks an ability to solve larger
problems

12Dimitri P Bertsekas. “Incremental Aggregated Proximal and Augmented
Lagrangian Algorithms”. In: arXiv:1509.09257v2 [cs.SY] (2015). arXiv: 1509.09257.
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Contributions

• A simple illustration of equilibrium effects, saturation effects

• Optimal load shifting, including storage, not hugely valuable
in every case

• In valuing storage, the challenges of the representative day /
week approach

• A model structure that can scale

• Reduced order methods for modeling batteries
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Today’s presentation

• Context and motivation

• Brief thoughts on structuring models

• Representing temporal variability in electric sector planning
models

• Assessing the system value of optimal electricity load shifting

Ideally ideas here that can help interpret policy/economic
advice/insight about energy and climate issues from models .
A lot can be done before code is written and computers are run.
The mathematical structure can tell a lot.
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Go raiv maix agaiv

Thank You
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