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1 Set up

Few more facts on fractional laplacian + Intro to non-local minimal surfaces

2 Sources

“Fractional Laplacians: a short survey” - Maha Daoud, El Haj Laamri
“Hitchhikers Guide to Fractional Sobolev Spaces” - Di Nezza, Palatucci, Valdinoci
“Non-local minimal surfaces” - Caffarelli, RoquelJefire, Savin

“Non-local diffusion and applications” - Bucur, Valdinoci
e Main survey on fractional laplacian
e (Caffarelli-Roque, intro to non-local minimal surfaces
e Hitchhikers guide to fractional sobolev spaces
e Maybe this?
e Guide to fractional laplacian via semigroup
e Better notes for non-local mean curvature

e Non local stuff textbook

3 3: Semigroup

e Useful for studying PDEs
e For u € S(RY), have
s dt

(8 °ue) = s | o)~ w0 i

Where w solves the heat equation:

ow(z,t) = Aw(z,t) (x,t) € RN x [0,00)

w(zx,0) = u(x)

e Motivation:



https://hal.univ-lorraine.fr/hal-03276152/file/Fractional-Laplacians-a-short-survey.pdf
https://arxiv.org/pdf/0905.1183.pdf
https://arxiv.org/pdf/1104.4345.pdf
https://arxiv.org/pdf/1808.05159.pdf
https://arxiv.org/pdf/1808.05159.pdf
https://pabloraulstinga.github.io/Savin-lecture-notes-NSFE2022.pdf
https://link.springer.com/chapter/10.1007/978-3-319-28739-3_5
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Proof: set u = tA and remember the definition of I'(—s). O

Motivates

as a solution to

(0, +Lyw=0, R"xR"

v(z,0) = u(z)
because
oyw = (—L)e Fu = —Lw
w(z,0) = e "u = u(x)

With this, we can find a kernel for the fractional laplacian
First, we prove an equivalence

Proposition 1. The semigroup definition of the fractional laplacian coincides with the fourier definition for
0<2s<1

Proof: We have that
F((=A)u) = [¢[**a(¢)
R 1 > e dt
=il [ -

1 o lel2 dt
_ —tlgl? ;
- F(*S) /0 (6 Il u(&) - u(g))t1+8
Now fourier invert (Not thinking too deeply about what space these functions lie in), to get
s _ 1 R —t|€]? o —1/n dt
AVl = gy [P e ) - P a©)

[ ute) - i
1 > dt
/

(G ) @) = u@))

finishing the proof. Here G(x) is the gaussian heat kernel.

4: PV Integral

Principal value integral

: u(z) —u(y)
—A)°u(x) = C(N,s) lim ——="d
A R A R i
_ s4°T(s + N/2)
C(N,s) = TNT(1—5)

with C(N, s) (Equivalent to previous definition that Josef gave) chosen so that

Proposition 2. Let u be a compactly supported smooth function on R™. Then

lim (—A)°u = wu, lim (—A)°u=—Au

s—0t s—1—

Proof: (Of first one) First we need the following lemma:
Lemma 4.1 (Hitchiker, Cor 4.2). For C(N,s) the normalizing constant we have

. C(N,s) 2
lim =
s—0t S WN -1




Proof: : Recall that )
I(z) = = +0(1)
as x — 0. This tells us that
. C(n,s) 4T'(N/2) 2
lim = =
s—0t S miN/2 WN—1

Now with the lemma, let supp(u) C Bg,(0). Set R = Ry + |z| + 1 (Draw picture for audience)

u(e +y) + ule — y) - 2u(z) ol
[ < lulles [

|y|n+23 n |y|n+2$

R
aneallulles [ o dp
0

o ilfulles B
2(1-ys)

This tells us by the lemma that

on Clos) / waty) bl —y) - 20i)
S_>O+ BR |y|”+ s

To handle other integral, Note that |y| > R gives |x +y| > |y| — || > R — |z| > Ry so u(z £ y) = 0 and

u(x +y) +ulx —y) —2u(x n—2s
/ 2tv) (n+25 Ve —2u(x)/ ly| " dy
R™\Br lyl R™\Bp

And so

— —9 _ —2s
lim C(n,s) / u(z+y) +ulz—y) u(a:)dy _ C(n,s)wn—1R u(z)
s—0+ 2 R7\Bp |y‘n+25 2s

Recalling the definition of the regional laplacian for C? functions gives us the result.

5 Nonlocal mean curvature

e How to get minimal surfaces? One way: minimize
5 1
E.(u)= [ €|Vu|” + ZF(U)

for each u. Consider Y, =u_} (0), and take

min,e
I',e—0
€

e Other way: Discretized heat flow:

U= xo— X

as an initial condition. Define
thp1 =1tk +0

And let Si11 be generated as follows: given uy(x), solve

ut—Au:O, U(,O) :uk(z)7 te [036]



Then
up+1(2) = u(z, €) = (Ge * ug)(v)
And define
Qi1 = {upy1 > 0}, Sk41 = 041

e If § ~ €2, this is a discretized approximiation to mean curvature flow for time ¢ ~ k¢

(/L h (X{\ i u(x,\eps)

Figure 1: State of geometry is sad! No one likes to draw pictures like this (mathcha.io)

e Question: What about fractional heat equation? (Motivated by Levy Processes which are like brownian motion
but different)

Now solve
875 —A°u=0

(On Allen—Cahn side, now makes sense to )

define )
o [ [ e [ R

having replaced gradient term by fractional derivative!

o Q: Let’s say F(u) = (1 —u?)? - Are there any minimizers of E such that F(u) = 0 a.e.?

0= [ ]SS
acw. To- [ [ MO

How to minimize F with some fixed “boundary data”?

e Forces u = *1, so we define

but only search on sets, i.e.

In classic minimal surfaces, this is like finding area minimizers with fixed boundary — Plateau problem (Draw
pic of hyperboloid bubble wand set up)

Boundary data: in non-local setting, idea is to fix E outside of some set 2

Let Q C R™, and consider sets £ C R" such that F N Q° is fixed

New stuff:



Definition 5.1. The s overlap of two sets A and B is given by

1
Ls(A, B) :/ Ty

dxd
A><B|x_ e

Some properties:
L(A,B) = L(B,A)

L(Al L Ao, B) = L(Al,B) + L(AQ,B)
Definition 5.2. The s perimeter of some set E in Q is

1 Ixe(z) — xB)?
]2 _1
Poa(B) =[xl = 5 /Rnx]Rn\(QCXQC) |z —y|nte ey

e Note that
P, o(E)=L(ENQ,E)+L(ENQ°,E°NQ)

Definition 5.3. We say that E is s-nonlocal minimal (or OF is a nonlocal minimal surface) in a bounded
lipschitz domain Q if
P, o(E) < P, o(F) if ENQ°=FnNQ°

Proposition 3. E is s-nonlocal minimal if and only if it satisfies the

1. Subsolution property
VAC ENQ, L(A,E\A)— L(A,E) >0

2. Supersolution property
YA C E‘NQ, L(AE) - L(A,E\A) <0

Proof: (Draw picture) The idea for the first is that if A C E N then consider F = F\ A and break down

2/8 [

R )\ F

Figure 2

Ps o(E) < Ps o(E\A)
The RHS is

Pso(E\A) = L((E\A) N Q, (E\A)) + L((E\A) N Q°, (E\A)", Q)
—hL+1
L(ENQ,E°UA) - L(A E°U A)
L(ENQ, B + L(ENQ, A) — L(E°, A) — L(A, A)
(
(

I
I

L(ENQC, (E°UA)NQ)
L(ENw®, E°NQ) + L(E N Q°, A)



So that
Poo(B\A) — Poo(E) = L(E, A) — L(E°, 4) — L(4, A)
= L(E\A,A) — L(E°, A)
>0
ending proof.
e supersolution condition is similar, if A C E°NQ, then F' = F U A is comparable
e Intuition, let A = {xo} for zy € OF (Assume OF smooth):
L(E\A, A) — L(E®, A) = L(E,{20}) — L(E®, {z0})
L(A, E) = L(A, E°\A) = L({zo}, E) — L({zo}, E°)
Nonlocal Minimal = L(E,{zo}) — L(E°, {z0}) =0

>0
<0

We define

Hulan) = LE. z0}) = LB, (ao)) = [ X=X,

Find FE such that the above is true at every boundary point

e Nonlocal minimal surfaces weird because interaction between £ N Q and E€, as well as ENQ° and E€NQ

E°\ 0
:-t
E\ n
E
Figure 3
e Connecting to fractional laplacian: Define
g = XE — XBe T ¢OF
L 0 x €0F
intuitively, this function averages out to 0 near points on O0F. Then for
1 Xe(®o +y) + Xe(2o0 — y)
H, == d
S(CL'O) 9 /n |y|n+s Y
_ 1/ Xp(zo +y) + XB(®0 —y) — 2XB(20) ,
2 Jpn [yl g
_ (=A)*xs(x0)

C(n,s)
e Maybe mention something how nonlocal minimal surfaces are weird - sticking? Regularity?

e Pictures



Figure 1. Long-range interactions leading to the fractional
perimeter of the set E in Q.

Figure 4
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