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1 Set up

Few more facts on fractional laplacian + Intro to non-local minimal surfaces

2 Sources

“Fractional Laplacians: a short survey” - Maha Daoud, El Haj Laamri

“Hitchhikers Guide to Fractional Sobolev Spaces” - Di Nezza, Palatucci, Valdinoci

“Non-local minimal surfaces” - Caffarelli, RoqueJeffre, Savin

“Non-local diffusion and applications” - Bucur, Valdinoci

� Main survey on fractional laplacian

� Caffarelli-Roque, intro to non-local minimal surfaces

� Hitchhikers guide to fractional sobolev spaces

� Maybe this?

� Guide to fractional laplacian via semigroup

� Better notes for non-local mean curvature

� Non local stuff textbook

3 3: Semigroup

� Useful for studying PDEs

� For u ∈ S(RN ), have

(−∆)su(x) =
s

Γ(1− x)

� ∞
0

(u(x)− w(x, t))
dt

t1+s

Where w solves the heat equation:

∂tw(x, t) = ∆w(x, t) (x, t) ∈ RN × [0,∞)

w(x, 0) = u(x)

� Motivation:

λs =
1

Γ(−s)

� ∞
0

(e−tλ − 1)
dt

t1+s
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Proof: set u = tλ and remember the definition of Γ(−s).

Motivates
“w = e−tLu”

as a solution to

(∂t + L)w = 0, Rn × R+

v(x, 0) = u(x)

because
∂tw = (−L)e−tLu = −Lw
w(x, 0) = e−0u = u(x)

� With this, we can find a kernel for the fractional laplacian

� First, we prove an equivalence

Proposition 1. The semigroup definition of the fractional laplacian coincides with the fourier definition for
0 < 2s < 1

Proof: We have that

F ((−∆)su) = |ξ|2sû(ξ)

= û(ξ)
1

Γ(−s)

� ∞
0

(e−t|ξ|
2

− 1)
dt

t1+s

=
1

Γ(−s)

� ∞
0

(e−t|ξ|
2

û(ξ)− û(ξ))
dt

t1+s

Now fourier invert (Not thinking too deeply about what space these functions lie in), to get

(−∆)su(x) =
1

Γ(−s)

� ∞
0

F−1(e−t|ξ|
2

û(ξ))− F−1(û(ξ)))
dt

t1+s

=
1

Γ(−s)

� ∞
0

(et∆u(x)− u(x))
dt

t1+s

=
1

Γ(−s)

� ∞
0

[(Gt ∗ u)(x)− u(x)]
dt

t1+s

finishing the proof. Here Gt(x) is the gaussian heat kernel.

4 4: PV Integral

� Principal value integral

(−∆)su(x) = C(N, s) lim
ε→0+

�
RN\B(x,ε)

u(x)− u(y)

||x− y||N+2s
dy

C(N, s) :=
s4sΓ(s+N/2)

πN/2Γ(1− s)
with C(N, s) (Equivalent to previous definition that Josef gave) chosen so that

Proposition 2. Let u be a compactly supported smooth function on Rn. Then

lim
s→0+

(−∆)su = u, lim
s→1−

(−∆)su = −∆u

Proof: (Of first one) First we need the following lemma:

Lemma 4.1 (Hitchiker, Cor 4.2). For C(N, s) the normalizing constant we have

lim
s→0+

C(N, s)

s
=

2

ωN−1

2



Proof: : Recall that

Γ(x) =
1

x
+O(1)

as x→ 0. This tells us that

lim
s→0+

C(n, s)

s
=

4Γ(N/2)

πN/2
=

2

ωN−1

Now with the lemma, let supp(u) ⊆ BR0
(0). Set R = R0 + |x|+ 1 (Draw picture for audience)∣∣∣ �

BR(0)

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s

∣∣∣ ≤ ||u||C2

�
BR

|y|2

|y|n+2s

ωn−1||u||C2

� R

0

ρ1−2sdρ

=
ωn−1||u||C2R2−2s

2(1− s)

This tells us by the lemma that

lim
s→0+

C(n, s)

�
BR

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy = 0

To handle other integral, Note that |y| ≥ R gives |x± y| ≥ |y| − |x| ≥ R− |x| > R0 so u(x± y) = 0 and

�
Rn\BR

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy = −2u(x)

�
Rn\BR

|y|−n−2sdy

= ωn−1(−2u(x))

� ∞
R

ρ−2s−1dρ

= −ωn−1R
−2s

s
u(x)

And so

lim
s→0+

C(n, s)

2

�
Rn\BR

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy =

C(n, s)ωn−1R
−2s

2s
u(x)

= u(x)

Recalling the definition of the regional laplacian for C2 functions gives us the result.

5 Nonlocal mean curvature

� How to get minimal surfaces? One way: minimize

Eε(u) =

�
ε|∇u|2 +

1

ε
F (u)

for each u. Consider Yε = u−1
min,ε(0), and take

Yε
Γ,ε→0

Y

� Other way: Discretized heat flow:

u = χΩ − χΩc

as an initial condition. Define
tk+1 = tk + δ

And let Sk+1 be generated as follows: given uk(x), solve

ut −∆u = 0, u(·, 0) = uk(x), t ∈ [0, ε]
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Then
uk+1(x) = u(x, ε) = (Gε ∗ uk)(x)

And define
Ωk+1 = {uk+1 > 0}, Sk+1 = ∂Ωk+1

� If δ ∼ ε2, this is a discretized approximiation to mean curvature flow for time t ∼ kδ

Figure 1: State of geometry is sad! No one likes to draw pictures like this (mathcha.io)

� Question: What about fractional heat equation? (Motivated by Levy Processes which are like brownian motion
but different)

� Now solve
∂t −∆su = 0

� (On Allen–Cahn side, now makes sense to )
define

Ẽ(u) = (1− s)
�
Rn

�
Rn

(u(x)− u(y))2

|x− y|n+2s
dxdy +

�
Rn

F (u)dx

having replaced gradient term by fractional derivative!

� Q: Let’s say F (u) = (1− u2)2 - Are there any minimizers of Ẽ such that F (u) ≡ 0 a.e.?

� Forces u = ±1, so we define

E(u) =

�
Rn

�
Rn

(u(x)− u(y))2

|x− y|n+2s

but only search on sets, i.e.

Ω ⊆ Rn, E(Ω) =

�
Rn

�
Rn

(χE(x)− χE(y))2

|x− y|n+2s

� How to minimize E with some fixed “boundary data”?

� In classic minimal surfaces, this is like finding area minimizers with fixed boundary → Plateau problem (Draw
pic of hyperboloid bubble wand set up)

� Boundary data: in non-local setting, idea is to fix E outside of some set Ω

� Let Ω ⊆ Rn, and consider sets E ⊆ Rn such that E ∩ Ωc is fixed

� New stuff:
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Definition 5.1. The s overlap of two sets A and B is given by

Ls(A,B) =

�
A×B

1

|x− y|n+s
dxdy

Some properties:
L(A,B) = L(B,A)

L(A1 tA2, B) = L(A1, B) + L(A2, B)

Definition 5.2. The s perimeter of some set E in Ω is

Ps,Ω(E) := [χE ]2Hs/2(Ω) =
1

2

�
Rn×Rn\(Ωc×Ωc)

|χE(x)− χE(y)|2

|x− y|n+s
dxdy

� Note that
Ps,Ω(E) = L(E ∩ Ω, Ec) + L(E ∩ Ωc, Ec ∩ Ω)

Definition 5.3. We say that E is s-nonlocal minimal (or ∂E is a nonlocal minimal surface) in a bounded
lipschitz domain Ω if

Ps,Ω(E) ≤ Ps,Ω(F ) if E ∩ Ωc = F ∩ Ωc

Proposition 3. E is s-nonlocal minimal if and only if it satisfies the

1. Subsolution property
∀A ⊆ E ∩ Ω, L(A,E\A)− L(A,Ec) ≥ 0

2. Supersolution property
∀A ⊆ Ec ∩ Ω, L(A,E)− L(A,Ec\A) ≤ 0

Proof: (Draw picture) The idea for the first is that if A ⊆ E ∩ Ω then consider F = E\A and break down

Figure 2

Ps,Ω(E) ≤ Ps,Ω(E\A)

The RHS is

Ps,Ω(E\A) = L((E\A) ∩ Ω, (E\A)c) + L((E\A) ∩ Ωc, (E\A)c,Ω)

= I1 + I2

I1 = L(E ∩ Ω, Ec ∪A)− L(A,Ec ∪A)

= L(E ∩ Ω, Ec) + L(E ∩ Ω, A)− L(Ec, A)− L(A,A)

I2 = L(E ∩ Ωc, (Ec ∪A) ∩ Ω)

= L(E ∩ ωc, Ec ∩ Ω) + L(E ∩ Ωc, A)
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So that

Ps,Ω(E\A)− Ps,Ω(E) = L(E,A)− L(Ec, A)− L(A,A)

= L(E\A,A)− L(Ec, A)

≥ 0

ending proof.

� supersolution condition is similar, if A ⊆ Ec ∩ Ω, then F = E ∪A is comparable

� Intuition, let A = {x0} for x0 ∈ ∂E (Assume ∂E smooth):

L(E\A,A)− L(Ec, A) = L(E, {x0})− L(Ec, {x0}) ≥ 0

L(A,E)− L(A,Ec\A) = L({x0}, E)− L({x0}, Ec) ≤ 0

Nonlocal Minimal =⇒ L(E, {x0})− L(Ec, {x0}) = 0

We define

Hs(x0) = L(E, {x0})− L(Ec, {x0}) =

�
Rn

χE(x)− χEc(x)

|x− x0|n+s
dx

Find E such that the above is true at every boundary point

� Nonlocal minimal surfaces weird because interaction between E ∩ Ω and Ec, as well as E ∩ Ωc and Ec ∩ Ω

Figure 3

� Connecting to fractional laplacian: Define

χ̃E =

{
χE − χEc x 6∈ ∂E
0 x ∈ ∂E

intuitively, this function averages out to 0 near points on ∂E. Then for

Hs(x0) =
1

2

�
Rn

χ̃E(x0 + y) + χ̃E(x0 − y)

|y|n+s
dy

=
1

2

�
Rn

χ̃E(x0 + y) + χ̃E(x0 − y)− 2χ̃E(x0)

|y|n+s
dy

=
(−∆)sχ̃E(x0)

C(n, s)

� Maybe mention something how nonlocal minimal surfaces are weird - sticking? Regularity?

� Pictures
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Figure 4
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