Student Analysis 2-8-23: Different Types of Fractional Laplacians + Intro to non-local mean curvature

Jared Marx-Kuo

Feb 2023

1 Set up

Few more facts on fractional laplacian + Intro to non-local minimal surfaces

2 Sources

"Fractional Laplacians: a short survey" - Maha Daoud, El Haj Laamri
"Hitchhikers Guide to Fractional Sobolev Spaces" - Di Nezza, Palatucci, Valdinoci
"Non-local minimal surfaces" - Caffarelli, RoqueJeffre, Savin
"Non-local diffusion and applications" - Bucur, Valdinoci

- Main survey on fractional laplacian
- Caffarelli-Roque, intro to non-local minimal surfaces
- Hitchhikers guide to fractional sobolev spaces
- Maybe this?
- Guide to fractional laplacian via semigroup
- Better notes for non-local mean curvature
- Non local stuff textbook

3 3: Semigroup

- Useful for studying PDEs
- For $u \in S\left(\mathbb{R}^{N}\right)$, have

$$
(-\Delta)^{s} u(x)=\frac{s}{\Gamma(1-x)} \int_{0}^{\infty}(u(x)-w(x, t)) \frac{d t}{t^{1+s}}
$$

Where w solves the heat equation:

$$
\begin{gathered}
\partial_{t} w(x, t)=\Delta w(x, t) \quad(x, t) \in \mathbb{R}^{N} \times[0, \infty) \\
w(x, 0)=u(x)
\end{gathered}
$$

- Motivation:

$$
\lambda^{s}=\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{-t \lambda}-1\right) \frac{d t}{t^{1+s}}
$$

Proof: set $u=t \lambda$ and remember the definition of $\Gamma(-s)$.
Motivates

$$
" w=e^{-t L} u "
$$

as a solution to

$$
\begin{aligned}
\left(\partial_{t}+L\right) w & =0, \quad \mathbb{R}^{n} \times \mathbb{R}^{+} \\
v(x, 0) & =u(x)
\end{aligned}
$$

because

$$
\begin{gathered}
\partial_{t} w=(-L) e^{-t L} u=-L w \\
w(x, 0)=e^{-0} u=u(x)
\end{gathered}
$$

- With this, we can find a kernel for the fractional laplacian
- First, we prove an equivalence

Proposition 1. The semigroup definition of the fractional laplacian coincides with the fourier definition for $0<2 s<1$

Proof: We have that

$$
\begin{aligned}
F\left((-\Delta)^{s} u\right) & =|\xi|^{2 s} \hat{u}(\xi) \\
& =\hat{u}(\xi) \frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{-t|\xi|^{2}}-1\right) \frac{d t}{t^{1+s}} \\
& =\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{-t|\xi|^{2}} \hat{u}(\xi)-\hat{u}(\xi)\right) \frac{d t}{t^{1+s}}
\end{aligned}
$$

Now fourier invert (Not thinking too deeply about what space these functions lie in), to get

$$
\begin{aligned}
(-\Delta)^{s} u(x) & \left.=\frac{1}{\Gamma(-s)} \int_{0}^{\infty} F^{-1}\left(e^{-t|\xi|^{2}} \hat{u}(\xi)\right)-F^{-1}(\hat{u}(\xi))\right) \frac{d t}{t^{1+s}} \\
& =\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left(e^{t \Delta} u(x)-u(x)\right) \frac{d t}{t^{1+s}} \\
& =\frac{1}{\Gamma(-s)} \int_{0}^{\infty}\left[\left(G_{t} * u\right)(x)-u(x)\right] \frac{d t}{t^{1+s}}
\end{aligned}
$$

finishing the proof. Here $G_{t}(x)$ is the gaussian heat kernel.

4 4: PV Integral

- Principal value integral

$$
\begin{aligned}
&(-\Delta)^{s} u(x)= C(N, s) \lim _{\epsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{N} \backslash B(x, \epsilon)} \frac{u(x)-u(y)}{\|x-y\|^{N+2 s}} d y \\
& C(N, s):=\frac{s 4^{s} \Gamma(s+N / 2)}{\pi^{N / 2} \Gamma(1-s)}
\end{aligned}
$$

with $C(N, s)$ (Equivalent to previous definition that Josef gave) chosen so that
Proposition 2. Let u be a compactly supported smooth function on \mathbb{R}^{n}. Then

$$
\lim _{s \rightarrow 0^{+}}(-\Delta)^{s} u=u, \quad \lim _{s \rightarrow 1^{-}}(-\Delta)^{s} u=-\Delta u
$$

Proof: (Of first one) First we need the following lemma:
Lemma 4.1 (Hitchiker, Cor 4.2). For $C(N, s)$ the normalizing constant we have

$$
\lim _{s \rightarrow 0^{+}} \frac{C(N, s)}{s}=\frac{2}{\omega_{N-1}}
$$

Proof: : Recall that

$$
\Gamma(x)=\frac{1}{x}+O(1)
$$

as $x \rightarrow 0$. This tells us that

$$
\lim _{s \rightarrow 0^{+}} \frac{C(n, s)}{s}=\frac{4 \Gamma(N / 2)}{\pi^{N / 2}}=\frac{2}{\omega_{N-1}}
$$

Now with the lemma, let $\operatorname{supp}(u) \subseteq B_{R_{0}}(0)$. Set $R=R_{0}+|x|+1$ (Draw picture for audience)

$$
\begin{aligned}
\left|\int_{B_{R}(0)} \frac{u(x+y)+u(x-y)-2 u(x)}{|y|^{n+2 s}}\right| & \leq\|u\|_{C^{2}} \int_{B_{R}} \frac{|y|^{2}}{|y|^{n+2 s}} \\
& \omega_{n-1}\|u\|_{C^{2}} \int_{0}^{R} \rho^{1-2 s} d \rho \\
& =\frac{\omega_{n-1}\|u\|_{C^{2}} R^{2-2 s}}{2(1-s)}
\end{aligned}
$$

This tells us by the lemma that

$$
\lim _{s \rightarrow 0+} C(n, s) \int_{B_{R}} \frac{u(x+y)+u(x-y)-2 u(x)}{|y|^{n+2 s}} d y=0
$$

To handle other integral, Note that $|y| \geq R$ gives $|x \pm y| \geq|y|-|x| \geq R-|x|>R_{0}$ so $u(x \pm y)=0$ and

$$
\begin{aligned}
\int_{\mathbb{R}^{n} \backslash B_{R}} \frac{u(x+y)+u(x-y)-2 u(x)}{|y|^{n+2 s}} d y & =-2 u(x) \int_{\mathbb{R}^{n} \backslash B_{R}}|y|^{-n-2 s} d y \\
& =\omega_{n-1}(-2 u(x)) \int_{R}^{\infty} \rho^{-2 s-1} d \rho \\
& =-\frac{\omega_{n-1} R^{-2 s}}{s} u(x)
\end{aligned}
$$

And so

$$
\begin{aligned}
\lim _{s \rightarrow 0^{+}} \frac{C(n, s)}{2} \int_{\mathbb{R}^{n} \backslash B_{R}} \frac{u(x+y)+u(x-y)-2 u(x)}{|y|^{n+2 s}} d y & =\frac{C(n, s) \omega_{n-1} R^{-2 s}}{2 s} u(x) \\
& =u(x)
\end{aligned}
$$

Recalling the definition of the regional laplacian for C^{2} functions gives us the result.

5 Nonlocal mean curvature

- How to get minimal surfaces? One way: minimize

$$
E_{\epsilon}(u)=\int \epsilon|\nabla u|^{2}+\frac{1}{\epsilon} F(u)
$$

for each u. Consider $Y_{\epsilon}=u_{m i n, \epsilon}^{-1}(0)$, and take

$$
Y_{\epsilon} \quad \stackrel{\Gamma, \epsilon \rightarrow 0}{Y}
$$

- Other way: Discretized heat flow:

$$
u=\chi_{\Omega}-\chi_{\Omega^{c}}
$$

as an initial condition. Define

$$
t_{k+1}=t_{k}+\delta
$$

And let S_{k+1} be generated as follows: given $u_{k}(x)$, solve

$$
u_{t}-\Delta u=0, \quad u(\cdot, 0)=u_{k}(x), \quad t \in[0, \epsilon]
$$

Then

$$
u_{k+1}(x)=u(x, \epsilon)=\left(G_{\epsilon} * u_{k}\right)(x)
$$

And define

$$
\Omega_{k+1}=\left\{u_{k+1}>0\right\}, \quad S_{k+1}=\partial \Omega_{k+1}
$$

- If $\delta \sim \epsilon^{2}$, this is a discretized approximiation to mean curvature flow for time $t \sim k \delta$

Figure 1: State of geometry is sad! No one likes to draw pictures like this (mathcha.io)

- Question: What about fractional heat equation? (Motivated by Levy Processes which are like brownian motion but different)
- Now solve

$$
\partial_{t}-\Delta^{s} u=0
$$

- (On Allen-Cahn side, now makes sense to)
define

$$
\tilde{E}(u)=(1-s) \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{(u(x)-u(y))^{2}}{|x-y|^{n+2 s}} d x d y+\int_{\mathbb{R}^{n}} F(u) d x
$$

having replaced gradient term by fractional derivative!

- Q: Let's say $F(u)=\left(1-u^{2}\right)^{2}$ - Are there any minimizers of \tilde{E} such that $F(u) \equiv 0$ a.e.?
- Forces $u= \pm 1$, so we define

$$
\bar{E}(u)=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{(u(x)-u(y))^{2}}{|x-y|^{n+2 s}}
$$

but only search on sets, i.e.

$$
\Omega \subseteq \mathbb{R}^{n}, \quad \bar{E}(\Omega)=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{\left(\chi_{E}(x)-\chi_{E}(y)\right)^{2}}{|x-y|^{n+2 s}}
$$

- How to minimize E with some fixed "boundary data"?
- In classic minimal surfaces, this is like finding area minimizers with fixed boundary \rightarrow Plateau problem (Draw pic of hyperboloid bubble wand set up)
- Boundary data: in non-local setting, idea is to fix E outside of some set Ω
- Let $\Omega \subseteq \mathbb{R}^{n}$, and consider sets $E \subseteq \mathbb{R}^{n}$ such that $E \cap \Omega^{c}$ is fixed
- New stuff:

Definition 5.1. The s overlap of two sets A and B is given by

$$
L_{s}(A, B)=\int_{A \times B} \frac{1}{|x-y|^{n+s}} d x d y
$$

Some properties:

$$
\begin{gathered}
L(A, B)=L(B, A) \\
L\left(A_{1} \sqcup A_{2}, B\right)=L\left(A_{1}, B\right)+L\left(A_{2}, B\right)
\end{gathered}
$$

Definition 5.2. The s perimeter of some set E in Ω is

$$
P_{s, \Omega}(E):=\left[\chi_{E}\right]_{H^{s / 2}(\Omega)}^{2}=\frac{1}{2} \int_{\mathbb{R}^{n} \times \mathbb{R}^{n} \backslash\left(\Omega^{c} \times \Omega^{c}\right)} \frac{\left|\chi_{E}(x)-\chi_{E}(y)\right|^{2}}{|x-y|^{n+s}} d x d y
$$

- Note that

$$
P_{s, \Omega}(E)=L\left(E \cap \Omega, E^{c}\right)+L\left(E \cap \Omega^{c}, E^{c} \cap \Omega\right)
$$

Definition 5.3. We say that E is s-nonlocal minimal (or ∂E is a nonlocal minimal surface) in a bounded lipschitz domain Ω if

$$
P_{s, \Omega}(E) \leq P_{s, \Omega}(F) \quad \text { if } \quad E \cap \Omega^{c}=F \cap \Omega^{c}
$$

Proposition 3. E is s-nonlocal minimal if and only if it satisfies the

1. Subsolution property

$$
\forall A \subseteq E \cap \Omega, \quad L(A, E \backslash A)-L\left(A, E^{c}\right) \geq 0
$$

2. Supersolution property

$$
\forall A \subseteq E^{c} \cap \Omega, \quad L(A, E)-L\left(A, E^{c} \backslash A\right) \leq 0
$$

Proof: (Draw picture) The idea for the first is that if $A \subseteq E \cap \Omega$ then consider $F=E \backslash A$ and break down

Figure 2

$$
P_{s, \Omega}(E) \leq P_{s, \Omega}(E \backslash A)
$$

The RHS is

$$
\begin{aligned}
P_{s, \Omega}(E \backslash A) & =L\left((E \backslash A) \cap \Omega,(E \backslash A)^{c}\right)+L\left((E \backslash A) \cap \Omega^{c},(E \backslash A)^{c}, \Omega\right) \\
& =I_{1}+I_{2} \\
I_{1} & =L\left(E \cap \Omega, E^{c} \cup A\right)-L\left(A, E^{c} \cup A\right) \\
& =L\left(E \cap \Omega, E^{c}\right)+L(E \cap \Omega, A)-L\left(E^{c}, A\right)-L(A, A) \\
I_{2} & =L\left(E \cap \Omega^{c},\left(E^{c} \cup A\right) \cap \Omega\right) \\
& =L\left(E \cap \omega^{c}, E^{c} \cap \Omega\right)+L\left(E \cap \Omega^{c}, A\right)
\end{aligned}
$$

So that

$$
\begin{aligned}
P_{s, \Omega}(E \backslash A)-P_{s, \Omega}(E) & =L(E, A)-L\left(E^{c}, A\right)-L(A, A) \\
& =L(E \backslash A, A)-L\left(E^{c}, A\right) \\
& \geq 0
\end{aligned}
$$

ending proof.

- supersolution condition is similar, if $A \subseteq E^{c} \cap \Omega$, then $F=E \cup A$ is comparable
- Intuition, let $A=\left\{x_{0}\right\}$ for $x_{0} \in \partial E$ (Assume ∂E smooth):

$$
\begin{aligned}
& L(E \backslash A, A)-L\left(E^{c}, A\right)=L\left(E,\left\{x_{0}\right\}\right)-L\left(E^{c},\left\{x_{0}\right\}\right) \geq 0 \\
& L(A, E)-L\left(A, E^{c} \backslash A\right)=L\left(\left\{x_{0}\right\}, E\right)-L\left(\left\{x_{0}\right\}, E^{c}\right) \leq 0
\end{aligned}
$$

$$
\text { Nonlocal Minimal } \Longrightarrow L\left(E,\left\{x_{0}\right\}\right)-L\left(E^{c},\left\{x_{0}\right\}\right)=0
$$

We define

$$
H_{s}\left(x_{0}\right)=L\left(E,\left\{x_{0}\right\}\right)-L\left(E^{c},\left\{x_{0}\right\}\right)=\int_{\mathbb{R}^{n}} \frac{\chi_{E}(x)-\chi_{E^{c}}(x)}{\left|x-x_{0}\right|^{n+s}} d x
$$

Find E such that the above is true at every boundary point

- Nonlocal minimal surfaces weird because interaction between $E \cap \Omega$ and E^{c}, as well as $E \cap \Omega^{c}$ and $E^{c} \cap \Omega$

Figure 3

- Connecting to fractional laplacian: Define

$$
\tilde{\chi}_{E}= \begin{cases}\chi_{E}-\chi_{E^{c}} & x \notin \partial E \\ 0 & x \in \partial E\end{cases}
$$

intuitively, this function averages out to 0 near points on ∂E. Then for

$$
\begin{aligned}
H_{s}\left(x_{0}\right) & =\frac{1}{2} \int_{\mathbb{R}^{n}} \frac{\tilde{\chi}_{E}\left(x_{0}+y\right)+\tilde{\chi}_{E}\left(x_{0}-y\right)}{|y|^{n+s}} d y \\
& =\frac{1}{2} \int_{\mathbb{R}^{n}} \frac{\tilde{\chi}_{E}\left(x_{0}+y\right)+\tilde{\chi}_{E}\left(x_{0}-y\right)-2 \tilde{\chi}_{E}\left(x_{0}\right)}{|y|^{n+s}} d y \\
& =\frac{(-\Delta)^{s} \tilde{\chi}_{E}\left(x_{0}\right)}{C(n, s)}
\end{aligned}
$$

- Maybe mention something how nonlocal minimal surfaces are weird - sticking? Regularity?
- Pictures

Figure 1. Long-range interactions leading to the fractional perimeter of the set E in Ω.

Figure 4

