# Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Jared Marx-Kuo (Joint w/ Érico Silva)

Stanford University

Sept. 20, 2023

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications

### Minimal Surfaces



Figure: Plateau's problem, 2 different minimal surface solutions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications

# Minimal Surfaces



Figure: Plateau's problem, 2 different minimal surface solutions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで



Figure: Taut circus tent minimizing energy.

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications

# Minimal Surfaces



Figure: Plateau's problem, 2 different minimal surface solutions



Figure: Taut circus tent minimizing energy.



Figure: Gyroid (Alan Schoen)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

# (Continued)



#### Interface in phase separations/transitions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications



# (Continued)



- Interface in phase separations/transitions
- ► Minimize configuration energy ↔ transition interface is small

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

uture Directions



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# (Continued)





Figure

- Interface in phase separations/transitions
- ► Minimize configuration energy ↔ transition interface is small
- Allen–Cahn equation models phase transitions

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basic** 

Applications

Let (M, g) closed manifold.

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications

Future Directions

・ロト・日本・日本・日本・日本・日本

Let (M, g) closed manifold. The Allen–Cahn equation is

$$\epsilon^2 \Delta_g u = u(u^2 - 1)$$

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

(1)

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Applications

Let (M, g) closed manifold. The Allen–Cahn equation is

$$\epsilon^2 \Delta_g u = u(u^2 - 1)$$

Solutions are critical points of

$$E_{\epsilon}(u) = \int_{M} \epsilon \frac{|\nabla^{g} u|^{2}}{2} + \frac{W(u)}{\epsilon}$$

 $W(u)=\tfrac{(1-u^2)^2}{4}.$ 

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

(1)

(2)

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Applications

Let (M, g) closed manifold. The Allen–Cahn equation is

$$\epsilon^2 \Delta_g u = u(u^2 - 1)$$

Solutions are critical points of

$$E_{\epsilon}(u) = \int_{M} \epsilon \frac{|\nabla^{g} u|^{2}}{2} + \frac{W(u)}{\epsilon}$$

 $W(u)=\tfrac{(1-u^2)^2}{4}.$ 

Well known results

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

(1)

(2)

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Applications

Let (M, g) closed manifold. The Allen–Cahn equation is

$$\epsilon^2 \Delta_g u = u(u^2 - 1)$$

Solutions are critical points of

$$E_{\epsilon}(u) = \int_{M} \epsilon \frac{|\nabla^{g} u|^{2}}{2} + \frac{W(u)}{\epsilon}$$

 $W(u)=\frac{(1-u^2)^2}{4}.$ 

Well known results

► Γ-convergence (Modica-Mortola, '77):  $E_{\epsilon} \xrightarrow{\epsilon \to 0} P(\{u_{\epsilon} = 0\})$  Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

(1)

(2)

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Applications

Let (M, g) closed manifold. The Allen–Cahn equation is

$$\epsilon^2 \Delta_g u = u(u^2 - 1)$$

Solutions are critical points of

$$E_{\epsilon}(u) = \int_{M} \epsilon \frac{|\nabla^{g} u|^{2}}{2} + \frac{W(u)}{\epsilon}$$

 $W(u)=\frac{(1-u^2)^2}{4}.$ 

Well known results

► Γ-convergence (Modica-Mortola, '77):  $E_{\epsilon} \xrightarrow{\epsilon \to 0} P(\{u_{\epsilon} = 0\})$  Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

(1)

(2)

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Applications

#### Gluing (Pacard-Ritore, '03): Near a minimal surface, one can find a solution to (1)

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

Future Directions

・ロト・日本・日本・日本・日本・日本

 Gluing (Pacard-Ritore, '03): Near a minimal surface, one can find a solution to (1)



Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

#### Index and Nullity bounds:



Figure

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications



#### Index and Nullity bounds:



Figure

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

▶  $\{u_{\epsilon}\}$  solutions with  $u_{\epsilon}^{-1}(0) \rightarrow Y$  minimal (nicely) as  $\epsilon \rightarrow 0$ ,

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications

#### Index and Nullity bounds:



Figure

▶  $\{u_{\epsilon}\}$  solutions with  $u_{\epsilon}^{-1}(0) \rightarrow Y$  minimal (nicely) as  $\epsilon \rightarrow 0$ ,

(Gaspar, Hiesmayr, Le) $Ind_{AC,\epsilon}(u_{\epsilon}) \ge Ind(Y)$ 

(Chodosh-Mantoulidis) $Ind_{AC,\epsilon}(u_{\epsilon}) + Null_{AC,\epsilon}(u_{\epsilon}) \leq Ind(Y) + Null(Y)$ 

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

#### Motivation

►  $E_{\epsilon}(u)$  defined for all  $u \in H^1$ , not just those with  $u_{\epsilon}^{-1}(0)$ "well behaved" hypersurface

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

#### Motivation

- ▶  $E_{\epsilon}(u)$  defined for all  $u \in H^1$ , not just those with  $u_{\epsilon}^{-1}(0)$ "well behaved" hypersurface
- Only interested in Allen–Cahn in connection to minimal surfaces

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

pplications

#### Motivation

- ▶  $E_{\epsilon}(u)$  defined for all  $u \in H^1$ , not just those with  $u_{\epsilon}^{-1}(0)$ "well behaved" hypersurface
- Only interested in Allen–Cahn in connection to minimal surfaces
  - only look at  $u \in H^1$  vanishing on hypersurfaces?

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

pplications

# (M<sup>n</sup>, g) closed manifold, Y<sup>n-1</sup> ⊆ M<sup>n</sup> separating, closed hypersurface

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications

- (M<sup>n</sup>, g) closed manifold, Y<sup>n-1</sup> ⊆ M<sup>n</sup> separating, closed hypersurface
- Exists unique solutions,  $u_{\epsilon}^{\pm}$ , on  $M^{\pm}$  vanishing on Y

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications

- (M<sup>n</sup>, g) closed manifold, Y<sup>n−1</sup> ⊆ M<sup>n</sup> separating, closed hypersurface
- Exists unique solutions,  $u_{\epsilon}^{\pm}$ , on  $M^{\pm}$  vanishing on Y
- Define the "Balanced Energy"

$$\mathsf{BE}_{\epsilon}(Y) := E_{\epsilon}(u_{\epsilon}^+, M^+) + E_{\epsilon}(u_{\epsilon}^-, M^-)$$

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications

- (M<sup>n</sup>, g) closed manifold, Y<sup>n-1</sup> ⊆ M<sup>n</sup> separating, closed hypersurface
- Exists unique solutions,  $u_{\epsilon}^{\pm}$ , on  $M^{\pm}$  vanishing on Y
- Define the "Balanced Energy"

$$\mathsf{BE}_{\epsilon}(Y) := E_{\epsilon}(u_{\epsilon}^+, M^+) + E_{\epsilon}(u_{\epsilon}^-, M^-)$$

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications





Figure

#### Theorem (MK, Silva)

The first variation is given by

$$\frac{d}{dt}BE_{\epsilon}(Y_t)\Big|_{t=0} = \frac{\epsilon}{2}\int_{Y}f[(u_{\epsilon,\nu}^+)^2 - (u_{\epsilon,\nu}^-)^2]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

#### **BE Basics**

Applications



#### Theorem (MK, Silva)

The first variation is given by

$$\frac{d}{dt}BE_{\epsilon}(Y_t)\Big|_{t=0} = \frac{\epsilon}{2}\int_Y f[(u_{\epsilon,\nu}^+)^2 - (u_{\epsilon,\nu}^-)^2]$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

• Critical points  $\implies u_{\epsilon,\nu}^+ = u_{\epsilon,\nu}^-$ •  $u_{\epsilon}$  is an Allen–Cahn solutions Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

#### **BE Basics**

pplications

uture Directions

Figure





# Theorem (MK, Silva)

The first variation is given by

$$\frac{d}{dt}BE_{\epsilon}(Y_t)\Big|_{t=0} = \frac{\epsilon}{2}\int_Y f[(u_{\epsilon,\nu}^+)^2 - (u_{\epsilon,\nu}^-)^2]$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Critical points ⇒ u<sup>+</sup><sub>ϵ,ν</sub> = u<sup>-</sup><sub>ϵ,ν</sub>
 u<sub>ϵ</sub> is an Allen–Cahn solutions
 Existence of critical points (Pacard–Ritore)

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

#### **BE Basics**

Applications



Figure

# Theorem (MK, Silva)

The first variation is given by

$$\frac{d}{dt}BE_{\epsilon}(Y_t)\Big|_{t=0} = \frac{\epsilon}{2}\int_Y f[(u_{\epsilon,\nu}^+)^2 - (u_{\epsilon,\nu}^-)^2]$$

- Critical points  $\implies u_{\epsilon,\nu}^+ = u_{\epsilon,\nu}^-$ •  $u_{\epsilon}$  is an Allen–Cahn solutions
- Existence of critical points (Pacard–Ritore)
- For Y satisfying mild geometric assumptions

$$\frac{\epsilon}{2}(u_{\epsilon,\nu}^{+})^{2} - (u_{\epsilon,\nu}^{-})^{2} = \frac{1}{2\sqrt{2}}[H_{Y} + O(\epsilon)]$$

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

#### **BE Basics**

Applications

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications

Future Directions

・ロト・日本・日本・日本・日本・日本

#### Theorem (MK, Silva)

Let Y a critical point for  $BE_{\epsilon}$ . The second variation is given by

$$\left. \frac{d^2}{dt^2} BE_{\epsilon}(Y_t) \right|_{t=0} = \epsilon \int_{Y} f u_{\nu} [\dot{u}_{\epsilon,\nu}^+ - \dot{u}_{\epsilon,\nu}^-]$$

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications

#### Theorem (MK, Silva)

Let Y a critical point for  $BE_{\epsilon}$ . The second variation is given by

$$\frac{d^2}{dt^2}BE_{\epsilon}(Y_t)\Big|_{t=0} = \epsilon \int_{Y} fu_{\nu}[\dot{u}^+_{\epsilon,\nu} - \dot{u}^-_{\epsilon,\nu}]$$

If Y satisfies mild geometric assumptions, then

$$\frac{d^2}{dt^2}BE_{\epsilon}(Y_t)\Big|_{t=0} = D^2A|_Y(f) + E(f)$$
$$|E(f)| \le K\epsilon^{1/2}||f||_{H^1}^2$$

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

#### **BE Basics**

Applications

#### Theorem (MK, Silva)

Let Y a critical point for  $BE_{\epsilon}$ . The second variation is given by

$$\frac{d^2}{dt^2}BE_{\epsilon}(Y_t)\Big|_{t=0} = \epsilon \int_{Y} fu_{\nu}[\dot{u}^+_{\epsilon,\nu} - \dot{u}^-_{\epsilon,\nu}]$$

If Y satisfies mild geometric assumptions, then

$$\frac{d^2}{dt^2}BE_{\epsilon}(Y_t)\Big|_{t=0} = D^2A|_Y(f) + E(f)$$
$$|E(f)| \le K\epsilon^{1/2}||f||_{H^1}^2$$

#### Remarks

•  $\dot{u}_{\epsilon}^{\pm}$  satisfies linearized Allen–Cahn system on  $M^{\pm}$ 

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

#### **BE Basics**

Applications

#### Theorem (MK, Silva)

Let Y a critical point for  $BE_{\epsilon}$ . The second variation is given by

$$\frac{d^2}{dt^2}BE_{\epsilon}(Y_t)\Big|_{t=0} = \epsilon \int_{Y} fu_{\nu}[\dot{u}^+_{\epsilon,\nu} - \dot{u}^-_{\epsilon,\nu}]$$

If Y satisfies mild geometric assumptions, then

$$\frac{d^2}{dt^2}BE_{\epsilon}(Y_t)\Big|_{t=0} = D^2A|_Y(f) + E(f)$$
$$|E(f)| \le K\epsilon^{1/2}||f||_{H^1}^2$$

#### Remarks

- $\dot{u}^{\pm}_{\epsilon}$  satisfies linearized Allen–Cahn system on  $M^{\pm}$
- Error bound relies on invertibility of  $\epsilon^2 \Delta_g W''(u) : H_0^1(M^+) \to H_0^{-1}(M^-)$

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

#### **BE Basics**

Applications

#### Applications: Fischer-Colbrie-Schoen Mimic

Let  $M^3$  complete 3-manifold with  $R \ge 0$  and  $Y^2 \subseteq M^3$ , compact.

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Applications

#### Applications: Fischer-Colbrie-Schoen Mimic

Let  $M^3$  complete 3-manifold with  $R \ge 0$  and  $Y^2 \subseteq M^3$ , compact.

Theorem (Fischer-Colbrie-Schoen)

If Y is a stable minimal surface, then Y conformally equivalent to  $(S^2, g_{round})$  or a totally geodesic flat torus  $T^2$ . If R > 0 on M then only  $S^2$  can occur Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Applications

### Applications: Fischer-Colbrie-Schoen Mimic

Let  $M^3$  complete 3-manifold with  $R \ge 0$  and  $Y^2 \subseteq M^3$ , compact.

#### Theorem (Fischer-Colbrie-Schoen)

If Y is a stable minimal surface, then Y conformally equivalent to  $(S^2, g_{round})$  or a totally geodesic flat torus  $T^2$ . If R > 0 on M then only  $S^2$  can occur

#### Theorem (MK, Silva)

If Y is a stable critical point for  $BE_{\epsilon}$  (satisfying mild geometric constraints) then Y is either conformally equivalent to ( $S^2$ ,  $g_{round}$ ) or Y is topologically a torus and

$$||A_Y||_{L^2(Y)}^2 \le K\epsilon^{1/2}$$

for K independent of  $\epsilon$ .

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

Future Directions

・ロト・日本・日本・日本・日本・日本

Theorem

Let  $Y \leftrightarrow u_{\epsilon}$  a critical point for  $BE_{\epsilon}$ . Then

 $Ind_{AC}(u_{\epsilon}) = Ind_{BE_{\epsilon}}(Y)$  $Null_{AC}(u_{\epsilon}) = Null_{BE_{\epsilon}}(Y)$  Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Applications

Theorem

Let  $Y \leftrightarrow u_{\epsilon}$  a critical point for  $BE_{\epsilon}$ . Then

 $Ind_{AC}(u_{\epsilon}) = Ind_{BE_{\epsilon}}(Y)$  $Null_{AC}(u_{\epsilon}) = Null_{BE_{\epsilon}}(Y)$  Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications

Future Directions

► Let 
$$Q(u_{\epsilon})(v) = \frac{d^2}{dt^2} E_{\epsilon}(u+tv)\Big|_{t=0}$$
. Recall  
 $\operatorname{Ind}_{AC}(u) := \max\{\dim V \mid V \subseteq H^1(M), Q(u)\Big|_{(V,V)} < 0\}$   
 $\operatorname{Null}_{AC}(u) := \dim \ker(\epsilon^2 \Delta_g - W''(u))$   
(kernel is in  $H^1(M)$ )

1

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Theorem

Let  $Y \leftrightarrow u_{\epsilon}$  a critical point for  $BE_{\epsilon}$ . Then

$$Ind_{AC}(u_{\epsilon}) = Ind_{BE_{\epsilon}}(Y)$$
  
 $Null_{AC}(u_{\epsilon}) = Null_{BE_{\epsilon}}(Y)$ 

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

Future Directions

► Let 
$$Q(u_{\epsilon})(v) = \frac{d^2}{dt^2} E_{\epsilon}(u + tv) \Big|_{t=0}$$
. Recall  
 $\operatorname{Ind}_{AC}(u) := \max{\dim V \mid V \subseteq H^1(M), Q(u) \Big|_{(V,V)} < 0}$   
 $\operatorname{Null}_{AC}(u) := \dim \ker(\epsilon^2 \Delta_g - W''(u))$   
(kernel is in  $H^1(M)$ )  
Theorem says we can compute index/nullity on smaller

ı.

space of

$$W = \{ \dot{w}(f) \in H^1(M) \mid f \in H^1(Y), \epsilon^2 \Delta_g \dot{w} = W''(u) \dot{w}, \\ \dot{w} \Big|_{Y} = -fu_{\nu} \}$$

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

Future Directions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

• Want to compute 
$$\frac{d^2}{dt^2}E_{\epsilon}(u+tv)$$

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications

Future Directions

#### 

$$Y_t = (u + tv)^{-1}(0)$$

and  $M_t^{\pm}$  accordingly

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

Future Directions

・ロト・日本・日本・日本・日本・日本



$$Y_t = (u + tv)^{-1}(0)$$



Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications



Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

**Future Directions** 

・ロト・日本・山田・山田・

• Let 
$$\dot{\psi} = \partial_t \psi \Big|_{t=0}$$
, then

$$\frac{d^2}{dt^2} E_{\epsilon}(u+tv) \stackrel{!}{=} \frac{d^2}{dt^2} \mathsf{BE}_{\epsilon}(Y_t)\Big|_{t=0} + Q(u)(\dot{\psi},\dot{\psi})$$

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへで

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications

• Let 
$$\dot{\psi} = \partial_t \psi \Big|_{t=0}$$
, then

$$\frac{d^2}{dt^2} E_{\epsilon}(u+tv) \stackrel{!}{=} \frac{d^2}{dt^2} \mathsf{BE}_{\epsilon}(Y_t) \Big|_{t=0} + Q(u)(\dot{\psi}, \dot{\psi})$$

•  $\dot{\psi}\Big|_{Y} = 0$  and  $u_{\epsilon}$  is a minimizer gives:

$$Q(\dot{\psi}, \dot{\psi}) \ge 0$$
$$\implies \frac{d^2}{dt^2} E_{\epsilon}(u + tv) \Big|_{t=0} - \frac{d^2}{dt^2} \mathsf{BE}_{\epsilon}(Y_t) \Big|_{t=0} \ge 0$$
$$\implies \mathsf{Ind}_{AC}(u_{\epsilon}) - \mathsf{Ind}_{\mathsf{BE}_{\epsilon}}(Y) \ge 0$$

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications

# Applications of 2nd Variation: Solutions on $S^1$

Let  $u_{\epsilon,2p}: S^1 \to \mathbb{R}$  be the unique Allen–Cahn solution on  $S^1$  vanishing on  $D_{2p}$ -symmetric points:

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Applications

# Applications of 2nd Variation: Solutions on $S^1$

Let  $u_{\epsilon,2p}: S^1 \to \mathbb{R}$  be the unique Allen–Cahn solution on  $S^1$  vanishing on  $D_{2p}$ -symmetric points:



・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

# Applications of 2nd Variation: Solutions on $S^1$

Let  $u_{\epsilon,2p}: S^1 \to \mathbb{R}$  be the unique Allen–Cahn solution on  $S^1$  vanishing on  $D_{2p}$ -symmetric points:



#### Theorem

Fix p > 0. There exists  $\epsilon_p$  such that for all  $\epsilon < \epsilon_p$ ,  $u_{\epsilon,2p}$  has Allen–Cahn Morse index 2p - 1 and nullity 1. The nullity is realized by rotations and every other variation produces a strictly negative variations.

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

Future Directions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

$$\frac{d^2}{dt^2} \mathsf{BE}_{\epsilon}(Y+tf) = \sum_{i=0}^{2p-1} f\left(\frac{i}{2p}\right) u_{\nu}\left(\frac{i}{2p}\right) \left[\dot{u}_{i,x}^+ - \dot{u}_{i,x}^-\right] \left(\frac{i}{2p}\right)$$
$$= \epsilon c \sum_{i=0}^{2p-1} f\left(\frac{i}{2p}\right) \dot{u}_{i,x}\left(\frac{i}{2p}\right)$$
$$+ f\left(\frac{i+1}{2p}\right) \dot{u}_{i,x}\left(\frac{i+1}{2p}\right)$$
$$\stackrel{!}{=} \epsilon c^2 v(\epsilon) \sum_{i=0}^{2p-1} \left[f\left(\frac{i}{2p}\right) - f\left(\frac{i+1}{2p}\right)\right]^2$$

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basic

Applications

Future Directions

くちゃ 御をえばをえばや (日本)

$$\begin{aligned} \frac{d^2}{dt^2} \mathsf{BE}_\epsilon(Y+tf) &= \sum_{i=0}^{2p-1} f\left(\frac{i}{2p}\right) u_\nu\left(\frac{i}{2p}\right) \left[\dot{u}_{i,x}^+ - \dot{u}_{i,x}^-\right] \left(\frac{i}{2p}\right) \\ &= \epsilon c \sum_{i=0}^{2p-1} f\left(\frac{i}{2p}\right) \dot{u}_{i,x} \left(\frac{i}{2p}\right) \\ &+ f\left(\frac{i+1}{2p}\right) \dot{u}_{i,x} \left(\frac{i+1}{2p}\right) \\ &\stackrel{!}{=} \epsilon c^2 v(\epsilon) \sum_{i=0}^{2p-1} \left[ f\left(\frac{i}{2p}\right) - f\left(\frac{i+1}{2p}\right) \right]^2 \end{aligned}$$

where  $v(\epsilon) < 0$  - relies on explicit computation of  $\dot{u}_{i,x}$ 

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications

**Future Directions** 

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

**BE Basics** 

Applications

Future Directions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

 Constructing solutions near minimal surfaces with singularities Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

- Constructing solutions near minimal surfaces with singularities
- Applying framework to line bundle valued Allen–Cahn for existence of minimizers



・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

- Constructing solutions near minimal surfaces with singularities
- Applying framework to line bundle valued Allen–Cahn for existence of minimizers



▶ Development of *BE*<sub>€</sub>-surface flow

$$\partial_t x = [u_{\nu}^+(x)]^2 - [u_{\nu}^-(x)]^2$$

Rice Geometry Seminar: Minimal Surfaces, Allen–Cahn, and Balanced Energy

Background and Motivation

BE Basics

Applications

Future Directions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへで