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Abstract

We investigate the asymptotic expansion and the renormalized volume of minimal submanifolds, Y m

of arbitrary codimension in Poincare-Einstein manifolds, Mn+1. In particular, we derive formulae for
the first and second variations of renormalized volume for Y m ⊆ Mn+1 when m < n + 1. We apply
our formulae to the codimension 1 and the M = Hn+1 case, exhibiting a small correction to [2] when
n = 2. Furthermore, we prove the existence of an asymptotic description of our minimal submanifold,
Y , over the boundary cylinder ∂Y ×R+, and we further derive an L2-inner-product relationship between
u2 and um+1 when M = Hn+1. Our results apply to a slightly more general class of manifolds, which
are conformally compact with a metric that has an even expansion up to high order near the boundary.

1 Introduction

We consider the half-space model of Hn+1 = {(y, x) | y ∈ Rn, x ∈ R+} equipped with the complete metric

g =
dy2

1 + · · ·+ dy2
n + dx2

x2

Renormalized volume arises by trying to make sense of the m-dimensional volume of noncompact Y m ⊆ Hn+1

which intersect ∂Hn+1 in a compact (m − 1)-submanifold, γ, Cm+1,α-embedded in ∂Hn+1 = Rn. The
hyperbolic metric is singular along the boundary ∂Hn+1 = {x = 0}, and the m-dimensional volume is a
priori infinite. But because ∂Y = γ ⊆ Rn is prescribed and Y is minimal, we know the precise manner in
which the volume of appropriate cutoffs diverge. The original definition of renormalized volume comes from
an asymptotic expansion of the m-dimensional volume of Y ∩ {x > ε} as ε→ 0

�
x>ε

dAY = a0ε
−m+1 + · · ·+ am−1ε

−1 + am +O(ε)

and then defining the renormalized volume

V(Y ) := am

The process of expanding in ε is known as Hadamard regularization, and it can be used to compute renormal-
ized volume in more general contexts, including Poincaré-Einstein (hereon labeled as “PE”) spaces. Though
V(Y ) no longer represents the “volume” of Y , it is a Riemannian invariant that reflects the topology and
conformal geometry of Y when m is even (cf [2], Proposition 3.1). When m is odd, the definition depends
on the choice of representative of the conformal infinity of g, but the “conformal anomaly” is computable
and of physical interest.

Our goal is to compute formulae for the first and second variations of renormalized volume for minimal
submanifolds of PE spaces. This requires us to prove regularity of minimal submanifolds in PE spaces,
which is needed to formally expand the volume form as ε → 0. Renormalized volume is typically defined
using Hadamard regularization (notable exceptions [24] [1]). We find it more convenient to use Riesz regu-
larization 2.4, an equivalent way of defining renormalized volume. Formulae for variations of renormalized
volume appear for Y 2 ⊆ H3 in [2], and this paper was the primary motivation for our work. We prove
results for Y m ⊆Mn+1 of arbitrary dimension and codimension with M PE. When m is odd, renormalized
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volume depends on the choice of representative in the conformal class of the metric. However, any two such
choices lead to definitions of renormalized volume that differ by a boundary integral, depending only on the
curvature of γ = ∂Y , and not the “global” data of Y in the interior. The first and second variations of
renormalized volume for m odd are similarly well defined up to a “local” boundary integral.

1.1 Background

Renormalized volume was originally studied in high energy physics and string theory. We state its physical
significance here for historical record: for a k-brane in string theory, one can associate a k-dimensional sub-

manifold, Y , of an ambient manifold, X
n+1

. The expected value of the Wilson line operator of the boundary,
W (∂Y ), is then given by exp(−TV(Y )) where T is the string tension and V(Y ) is the renormalized volume
[12]. Henningson and Skenderis [17] were the first to compute renormalized volume (in the literature, “Weyl
Anomaly”) for low dimension odd examples, and Graham and Witten developed the mathematical theory
shortly after.

We are interested in the renormalized volume of minimal submanifolds Y m ⊆ Mn+1 where M is a con-
formally compact, asymptotically hyperbolic, and has an even metric to high order in terms of a “boundary
defining function” x. While M = Hn+1 is the primary example, we are generally motivated by PE spaces
and their deep history. Graham and Lee [11] first discuss existence of PE metrics on Bn+1 with ∂M = Sn.
Graham and Witten [12] is the most relevant work for us. They show that renormalized volume is mathemat-
ically defined for even dimensional submanifolds of PE spaces, and that a graphical expansion for Y minimal
is even in its bdf to high order (assuming the expansion exists). One of the main results of this paper is to
show existence of such an expansion in aribtrary codimension. There is a long history of showing regularity
in codimension one, including Lin [21], Guan, Spruck, Szapiel [15], Tonegawa [28], Han, Sehn, Wang [16],
and Jiang [19]. More recently, Mazzeo and Alexakis [2] derive a formula for the first and second variation of
renormalized area for Y 2 ⊆ H3. They also show that these variations record a Dirichlet-to-Neumann type
operator, and we generalize the variation formulas. Nguyen and Fine investigate renormalized area through
their work on weighted monotonicity theorems with applications to the renormalized area of minimal surfaces
in [23]. They have further work on minimal Y 2 ⊆ H4 in preparation.

1.2 Statement of Results

We work with (Mn+1, g) PE and Y m ⊆ Mn+1 minimal (m ≥ 2), conformally compact with boundary
γ = ∂Y = Y ∩∂M . We require that Y be embedded in some neighborhood of its boundary, γ = ∂Y . WLOG
we assume that γ is connected and Cm+1,α embedded in ∂M . Let x be a bdf for M in a neighborhood of
∂M and consider the cylinder over the boundary:

Γ = γ × [0, ε) = {(x, s) | s ∈ γ, 0 ≤ x < ε}

We assume Y is graphical over Γ in a neighborhood of the boundary (see figure 1) and describe Y via the
exponential map

Y ∩ {x ≤ ε} = {expΓ(u(s, x))} (1)

where exp denotes the exponential map taken with respect to the compactified metric, g = x2g, restricted to
elements of N(Γ). Here u = uiN i ∈ NΓ where {N i(s, x)} is a normal frame for Γ and u satisfies a degenerate
elliptic equation coming from Y being minimal. In §3, we establish regularity of u and prove theorem 3.1

Theorem. For Y m ⊆Mn+1 minimal and u = uiN i satisfying (1), we have

ui(s, x) =

u
i
2(s)x2 + ui4(s)x4 + · · ·+ uim(s)xm + uim+1(s)xm+1 + . . . m even

ui2(s)x2 + ui4(s)x4 + · · ·+ uim+1(s)xm+1 + U i(s)xm+1 log(x) + um+2(s)xm+2 + . . . m odd

for Cm+1,α coefficients uk(s) and U(s).
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Figure 1

§3 contains the full details. To make similar statements to the above but more concisely, we recall notation
from [1]: let

f : Γ→ R
f(s, x) = f0(s) + f1(s)x+ · · ·+ fm(s)xm +O(xm+1)

and define

F : C∞(Γ)→ Z

F(f) =


0 if f is O(xm+1)

1 if f is even below xm and not O(xm+1)

−1 if f is odd below xm and not O(xm+1)

undefined else

When m is odd, we define the above but replacing m→ m+ 1 and allowing for xm+1 log(x) terms. We will
often omit the case of F = 0 and write F = 1 or F = −1 for our computations, i.e. any statement of F = ±1
should be interpreted as F ∈ {0,±1} (see §2.5 for a full definition and convention). We note that theorem
3.1 becomes, F(u) = 1 (or F(u) = 0, implicitly). With this, we informally state theorem 4.1 in codimension
1

Theorem. Suppose that Y m ⊆ Mn+1 minimal with h = g
∣∣∣
TY

even up to order xm. Let p ∈ Y , A :

Sym2(TY )→ N(Y ) denote the second fundamental form, ν be a normal to Y , both with respect to g. Then
A and its covariant derivatives are even up to order xm.

See §4 for the full theorem. We also consider variations of Y among the space of minimal submanifolds. We
can describe a smooth family of minimal submanifolds as

Yt = expY (St)

for St ∈ N(Y ) a smooth function of t and expY the exponential map with respect to h = g
∣∣∣
Y

. Let

Ṡ := F∗(∂t)
∣∣∣
t=0

and S̈ = ∇F∗(∂t)F∗(∂t)
∣∣∣
t=0

. Both satisfy Jacobi equations when {Yt} is a family of minimal

submanifolds, giving regularity and parity. in codimension 1 we can write

Ṡ = φ̇(s, x)ν(s, x)

S̈ = φ̈(s, x)ν(s, x)

for ν a normal to Y with respect to g (see figure 2). We informally state theorem 5.1
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Figure 2

Theorem. For {Yt} a family of minimal submanifolds, and Ṡ = φ̇(s, x)ν, S̈ = φ̈ν:

∀i, F(φ̇i) = 1

∀i, F(φ̈i) = 1

i.e. φ̇ and φ̈ are even in x to high order - see section §5 for full details. We remark that in order to compute
an equation for S̈, we compute the second variation of mean curvature (i.e. third variation of area). The
author was unable to find this result in the literature, so it is stated in proposition 2. In codimension 1, we
get corollary 5

Proposition. For {Yt} a family of minimal submanifolds, and Ṡ = φ̇(s, x)ν, S̈ = φ̈ν, we have that

d2

dt2
H(t)

∣∣∣
t=0

= [JY (φ̈) +G(φ̇,∇φ̇,D2φ̇)]ν = 0

where F(G(φ̇,∇φ̇,D2φ̇)) = 1

We then compute the first and second variations of renormalized volume in theorem 8.1. In codimension 1,
n even, with kn+1 = 0 (e.g. M = Hn+1/Γ, see (3)), we get propositions 10.1 10.2

Theorem.
d

dt
V(Yt)

∣∣∣
t=0

= −(n+ 1)

�
γ

φ̇0(s)un+1(s) dAγ(s)

d2

dt2
V(Yt)

∣∣∣
t=0

=

�
γ

(
− (n+ 1)φ̈0un+1 + (1− n)φ̇0(s)φ̇n+1(s)

+ φ̇0(s)2 [(n− 1)(n− 2)− 4(3n− 1)u2un+1(s)]
)
dAγ(s)

The full theorem in arbitrary codimension and m odd is stated in §8. We note that while M being PE is
the most natural setting, our results hold for a slightly larger class of manifolds - namely those that are
conformally compact with a metric, g, that splits as in (2) with k(x, s) satisfying (3).

As an application of the second variation formula and regularity of u, we prove the following projection
relationship, proposition 3
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Theorem. For n even, Y n ⊆ Hn+1 minimal with graphical expansion given by u(s, x), we have

〈u2, un+1〉L2(γ)

Vol(γ)
= − (n− 1)(n− 2)

2(n2 − 6n+ 1)

Remark when n = 2 we get that 〈u2, u3〉γ = 0

1.3 Outline of Proofs

This paper has 3 goals:

� In §3, we show that Y can be described in Fermi coordinates by a graphical function u. We prove
that u has an even expansion as as we approach the boundary, and that u is highly regular (formally
“polyhomogeneous”) in this domain

– The proof relies on Allard’s regularity theorem, as well as geometric microlocal techniques from
[26], and standard PDE arguments. The author suspects that Allard’s theorem can be avoided in
establishing the regularity of Y , but have yet to find such a proof.

– Several authors have contributed to the existence, regularity, and asymptotic expansions of min-
imal hypersurfaces in hyperbolic space, including Lin [21], Guan, Spruck, Szapiel [15], Tonegawa
[28], Han, Sehn, Wang [16], and Jiang [19]. These authors primarily use classical PDE techniques,
and by contrast, we use methods from geometric microlocal analysis to establish regularity.

– This immediately shows that h = g
∣∣∣
Y

and AY have corresponding even expansions in x as well

� In §5, we consider a family of submanifolds close to Y , {Yt} with Yt=0 = Y . Each Yt can be written as
Yt = expY (St(p)) for some St ∈ N(Y ). We show that Ṡ and S̈ are regular and admit even asymptotic
expansions, by computing the first and second variations of mean curvature.

� In §8 and §9, we prove a formula for the first and second variations of renormalized volume for families
of minimal submanifolds {Yt} ⊆ Mn+1. Such formulae appear for minimal surfaces in H3 in [2], and
we extend their results to Y m ⊆ Mn+1 for m and n arbitrary, and M a PE manifold. Past research
([2] [1] [12]) focuses on m even, however we extend our results to m odd as well.

� In §10, we specialize our result to the codimension 1 case, i.e. m = n, yielding a slight correction to
the second variation formula in [2]. We use this to prove an L2-orthogonality result in §11

The author wishes to thank Rafe Mazzeo for providing the inspiration for this problem, as well as his time
spent across many meetings. The author also wishes to thank Otis Chodosh for suggesting the application in
§11, as well as Brian White and Joel Spruck, for their insight on barrier arguments for minimal submanifolds.

2 Preliminaries

2.1 Defining Renormalized Volume

Consider Mm a Poincare-Einstein manifold. For x : M → R≥0 a special bdf, the metric splits in Graham-Lee
Normal form as

g =
dx2 + k(s, x)

x2
(2)

with (s, x) smooth coordinates on a neighborhood, U , of ∂M , with U ∼= ∂M × [0, b) for b > 0. Here, k(s, x)
is a smooth tensor on T∂M , i.e. k(∂x, ·) ≡ 0, and it has an even expansion in x up to order xm−2 (xm−1)
when m is even (odd), i.e.

m even =⇒ k(s, x) = k0(s) + x2k2(s) + · · ·+ km−2(s)xm−2 + km−1(s)xm−1 + km(s)xm +O(xm+1) (3)

m odd =⇒ k(s, z, x) = k0 + x2k2 + · · ·+ xm−1km−1 + xm−1 log(x)K + xmkm + xm+1km+1 +O(xm+2)

5



we then compute

dVol =
√

det gdx ∧ ds =
1

xm

√
det k dx ∧ ds

In [9], Graham showed that for m even,

q(x, s) :=
√

det k = q0(s) + q2(s)x2 + · · ·+ qm(s)xm + qm+1(s)xm+1 + . . .

i.e. Tr(km−1) = 0 and q is even up to order m. For m even, define

V(M) := FP
ε→0

�
x>ε

dVol

�
x>ε

dVol =

(�
x>b

+

� b

ε

)
q(x, s)

xm
dxds

=

�
x>b

dVol +

� b

x=ε

[x−mq0(s) + x−m+2q2(s) + · · ·+ qm(s) +R(s, x)]dsdx

= I(b) + c0(s)
b−m+1 − ε−m+1

1−m
+ · · ·+ cm(s)(b− ε) + F (b, ε)

where R(s, x) = O(x) and

F (b, ε) :=

� b

x=ε

R(s, x)dsdx

c2k(s) :=

�
∂M

q2k(s)ds

Renormalized volume is then

V(M) = FP
ε→0

I(b) +

m/2∑
k=0

c2k(s)
b−m+1 − ε−m+1

1−m
+ F (b, ε)

= I(b) + F (b, 0) +

m/2∑
k=0

c2k(s)
b−m+1

1−m

A priori, using x seems arbitrary, as there could be several functions like x for which we have an asymptotic
expansion in ε. Formally, we require x to be a “special bdf” which we define in §2.2. One can show that
renormalized volume is a geometrically natural quantity to consider as it is:

� Independent of the parameter b

� Independent of the choice of special bdf, x, or equivalently independent of the representative in the

conformal infinity, k0 = g
∣∣∣
γ

The former fact follows by keeping track of boundary terms when integrating applying the FTC. The latter
is discussed in [12] among other sources, and are also shown in §9.3. These properties only hold for m even.
Renormalized volume is defined similarly for odd dimensional submanifolds and is done in §13.5. However,
the renormalized volume depends on the choice of x, and hence depends on the choice of representative of
the conformal infinity.

Note that to have an expansion for k(s, x) (and hence q(s, x)) in the first place, there needs to be some
regularity of the metric as we approach the boundary. When we handle the case of Y m ⊆ Mn+1 with the
metric induced by resstriction, this amounts to regularity of Y itself. Thus, when we prove regularity of
Y , we implicitly prove that renormalized volume is mathematically defined for our class of Y m ⊆ Mn+1

minimal.
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2.2 Brief Review of Poincaré-Einstein Manifolds

The splitting of the metric in (2) is motivated by Graham-Lee Normal Form [11] [6] for Poincaré-Einstein
(PE) manifolds. A Riemannian manifold (M, g) is Einstein if g satisfies the Einstein equations. The manifold
is Poincare if g is conformally compact, i.e. the boundary is compact and there exists a function

ρ : M → R≥0 s.t. {ρ = 0} = ∂M, ∇ρ|∂M 6= 0

and g = ρ2g is a nondegenerate metric on M . Here, ∇ := ∇g and we call g := ρ2h the compactified
metric. Furthermore, ρ is a boundary defining function (bdf). We are interested in g|∂M and how it
determines g on the interior. Note that if ϕ : M → R+ is a positive smooth function, then ρ̃ = ϕρ is also
a boundary defining function. As a result, we can consider the conformal class [g|∂M ], which we call the
conformal infinity. For PE manifolds with a chosen representative, k0, in the conformal infinity, there exists
a bdf x, for which g splits as in equation 2. Moreover, k(s, x) is regular up to order xm as shown in [11].
The bdf x is special if

||d log(x)||g = 1

holds in a neighborhood of ∂M . Furthremore, by equation (2) we have k0 = x2g
∣∣∣
∂M

. Given these conditions,

x is unique (see [5] for details). Renormalized volume is conformally invariant for m even in the sense that
it does not depend on the choice of k0 ∈ [g|∂M ] and the corresponding special bdf used. Thus, we can define
renormalized volume for m even as long as we use a special bdf (see [1] [12]).

Example. Consider the Poincare Ball model of hyperbolic space M = H3. The metric on H3 is

g =
4

(1− r2)2

[
dr2 + r2dφ2 + r2 sin2 φdθ2

]
is Einstein. We want to find a special bdf, ρ, for H3. We assume that it is rotationally symmetric, i.e.
ρθ = ρφ = 0. With this, we compute

1 = ||d log(ρ)||2g =
ρ2
r

ρ2
grr = ∂r(log(ρ))2 (1− r2)2

4

we take the negative root and get

∂r(log(ρ)) =
−2

1− r2

Integrating and exponentiating, we compute

ρ = A
1− r
1 + r

for 0 ≤ r ≤ 1 and some constant A. Note that as long as A 6= 0, we have ρ−1(0) = {r = 1} = S2,
which is the boundary of H3. Suppose that we want to prescribe the standard metric on this boundary. i.e.
k0(θ) = sin2 φdθ2 + dφ2. Then we have that

k0 = ρ2h
∣∣∣
r=1

=
4A2

(1 + r)4
[dr2 + r2dφ2 + r2 sin2 φdθ2]

∣∣∣
r=1

=
4A2

16
[dφ2 + sin2 φdθ2]

so we choose A = 2 so that ρ is positive. Se see that g
∣∣∣
r=1

= g
∣∣∣
∂M

= k0. Note that

∇ρ = gij(∂iρ)∂j = grr(∂rρ)∂r =
(1 + r)4

16
· −4

(1 + r)2
∂r

∇ρ
∣∣∣
r=1

= −∂r

which is non-zero.

We can also compute the renormalized volume of Y = H2 ⊆ H3 = M in this model.
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Example. Consider the Poincare Ball model of hyperbolic space with H2 ⊆ H3 represented as the geodesic
disk (see figure 3). The restricted metric on H2 corresponds to when φ = π/2

h := g
∣∣∣
H2

=
4

(1− r2)2
[dr2 + r2dθ2]

Because ρ = 2(1−r)
1+r is rotationally symmetric, it is the special bdf for H2 by the same computation.

Figure 3: Poincare Ball model framed as PE manifold, with H2 submanifold

With this, we can compute the renormalized area of H2 ⊆ H3

V(H2) = FP
ε→0

�
ρ>ε

dA = FP
ε→0

�
ρ>ε

4r

(1− r2)2
drdθ

= FP
ε→0

4π

� (2−ε)/(2+ε)

r=0

d

dr

1

1− r2
dr

since ρ > ε↔ 2−ε
2+ε > r. Integrating, we get

�
ρ>ε

dA = 4π
[
(1− r2)−1

](2−ε)/(2+ε)

r=0
= 4π

[
4 + 4ε+ ε2

8ε
− 1

]
= 4π

[
1

2ε
− 1

2
+
ε

8

]
Taking the constant term in ε then yields

FP
ε→0

�
ρ>ε

dA = 4π · −1

2
= −2π

This example generalizes to higher dimensions as well.

2.3 Model Case: Half Space Model of Hn+1

Consider Hn+1 now with the half-space structure. The metric is

g =
dx2 + (dy2

1 + · · ·+ dy2
n)

x2
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so that k(s, x) is the standard Euclidean metric on the first n coordinates, which is even in x as there is no
x dependence. Clearly the metric splits in the desired form, and

||d log(x)||2g = gxx∂x(log(x))2 = x2 · (1/x)2 = 1

Moreover the chosen representative of the conformal infinity is

k0 = dy2
1 + · · ·+ dy2

n = x2g
∣∣∣
x=0

where we take Rn = ∂Hn+1. The issue is that the boundary is not compact. In order for this to be a
conformally compact manifold, we need to consider the one point compactification of Rn as the boundary,
i.e. Sn, and redefine the metric appropriately. Under this compactification, x is no longer a bdf because of
the added point at infinity which would have x = +∞ as opposed to x = 0.

Conformally compact minimal submanifolds of Hn+1 Despite the above, our analysis in this paper is moti-
vated and includes M = Hn+1 with the half space model. Though x is not a valid bdf for Hn+1 itself, it can be
used to define renormalized volume for minimal submanifolds with compact boundary (which are conformally
compact) that are smoothly embedded in a neighborhood of the boundary. We have ∂Y = γ ⊂⊂ Rn = ∂Hn+1

so x
∣∣∣
Y

(p) = 0 ⇐⇒ p ∈ γ. This means that x
∣∣∣
Y

does define the boundary. However, even if

||d log(x)||g = 1

it is not usually true that ||d log(x)||h = 1 for the induced metric h = g
∣∣∣
Y

. Moreover, the metric may not

split, i.e. h(∂sa , ∂x) 6= 0. To get around this, the idea is as follows: Y is quadratic and even to high order as
we approach the boundary (see 3.1). As a result, if we consider a special bdf for Y , call it xY , we can write
it in a neighborhood of the boundary as

xY = xeω(s,x)

where ω(s, 0) = 0 and ω(s, x) has an even expansion up to order m + 2 (see §7). Consequently k(s, x) still
has an even expansion up to order m in equation (2), so it makes sense to define

V(Y ) = FP
ε→0

�
{xY >ε}∩Y

dA

and it turns out that

FP
ε→0

�
{x>ε}∩Y

dA = FP
ε→0

�
{xY >ε}∩Y

dA

by parity considerations. To formally show this, we first introduce Riesz regularization in §2.4, we then
reprove the fact that Riesz regularization produces the result as Hadamard regularization in §13.5, and
finally, we show that the usage of x vs. xY is irrelevant in defining renormalized volume for minimal
submanifolds in Hn+1 in §7. It is also worth noting that while we consider M a PE space more generally, our
analysis of Y ⊆ M is local near a point p ∈ ∂Y = γ, for which we can choose coordinate charts resembling
hyperbolic space.

Example. Consider the geodesic copy of H2 as a hemisphere of radius 1 inside H3 = {(x, y, z) | x ≥ 0} with

the metric dx2+dy2+dz2

x2 . The boundary is a circle of radius 1, and we parameterize H2 as

f(x, θ) = (x,
√

1− x2 cos θ,
√

1− x2 sin θ)

we compute the induced metric

hxx =
1

x2(1− x2)
, hxθ = 0, hθθ =

1− x2

x2

so that

dAH2 =
√

det gdxdθ =
1

x2
dxdθ
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we now compute

V(H2) = FP
ε→0

�
x>ε

dAH2

we integrate �
x>ε

dAH2 =

� 2π

θ=0

� 1

x=ε

1

x2
dxdθ = 2π

[
− 1

x

]1

ε

= −2π +
2π

ε

and so V(H2) = −2π , which is the same result as if we computed the renormalized volume in the “proper”
setting, i.e. the ball model.

2.4 Riesz Regularization

Having defined special bdfs, we can define renormalized volume in an alternate way with Riesz regularization:
given an asymptotically hyperbolic manifold, M , and a special bdf, xM , on M , consider the following
meromorphic function

f(z) =

�
M

xzMdAM

As with Hadamard regularization, the quantity xM seems unmotivated. However, xM being a special bdf
gives f(z) geometric meaning. This function is holomorphic for Re(z) > m, and it has poles at z ∈
{−∞, . . . ,−1, 0, 1, . . . ,m}. We define

V(M) := FP
z=0

�
M

xzdAM = FP
z=0

f(z)

Computing FP
z=0

f(z) amounts to subtracting off the pole at z = 0 (if it exists) and evaluating the remaining

difference. This process is known as Riesz regularization, and the equivalence of these two definitions is
given in the appendix §13.5. As mentioned before, one can show that for Y m ⊆ Mn+1 with Y conformally
compact and m < n+ 1:

FP
z=0

�
Y

xzY dAY = FP
z=0

�
Y

xzdAY (4)

On the left hand side, we are using xY , a special bdf for Y considered as its own asymptotically hyperbolic
manifold. On the right hand side, we use x, which is a special bdf on Mn+1. This equation holds for m even,
and it holds up to a boundary error for m odd (see §7). The latter is expected, as renormalized volume in
odd dimensional manifolds depends on the choice of special bdf ([1]).

Example. We compute V(H2) for H2 ⊆ H3 using Riesz regularization in the half space model (we leave it
to the reader to compute this for the poincare ball model).

ζ(z) =

�
H2

xzdAH2 =

� 1

x=0

� 2π

θ=0

xz−2dxdθ = 2π

[
xz−1

z − 1

]x=1

x=0

= 2π
1

z − 1

Again, when we find the meromorphic extension, we first assume Re(z) � 0 so that 0z−1 = 0. There is no
pole at z = 0 in this extension, so

V(H2) = FP
z=0

ζ(z) = ζ(0) = −2π

2.5 Parity of functions

Throughout this paper, we will use x to denote a special bdf on our ambient PE space (Mn+1, g) and identify
a neighborhood of the boundary, U(∂M), with ∂M×[0, ε). When M = Hn+1, x is the distinguished direction
in the decomposition of Hn+1 ∼= Rn × R+. Let f be a function defined on Γ ⊆ M in coordinates of (s, x).
Further assume that f is polyhomogeneous and can be expanded as

f(s, x) =

{
f0(s) + f1(s)x+ · · ·+ fm(s)xm +O(xm+1) m is even

f0(s) + f1(s)x+ · · ·+ fm+1(s)xm+1 + F (s)xm+1 log(x) +O(xm+2) m is odd
(5)

10



then we define for m < n even

F(f) =


0 f(s, x) is O(xm+1)

1 f(s, x) is even up to xm and not O(xm+1)

−1 f(s, x) is odd up to xm and not O(xm+1)

undefined else

(6)

When m = n, we assume that

f(s, x) =

{
f0(s) + f1(s)x+ · · ·+ fm(s)xm + F (s)xm log(x) +O(xm+1) m is even

f0(s) + f1(s)x+ · · ·+ fm+1(s)xm+1 + F (s)xm+1 log(x) +O(xm+2) m is odd
(7)

For m = n even, we define

F(f) =


0 f(s, x) is O(xn+1)

1 f(s, x) is even up to xn log(x) and not O(xn+1)

−1 f(s, x) is odd up to xn log(x) and not O(xn+1)

undefined else

(8)

Similarly for m = n odd, we define

F(f) =


0 f(s, x) is O(xn+2)

1 f(s, x) is even up to order xn+1 log(x) and not O(xn+2)

−1 f(s, x) is odd up to order xn+1 log(x) and not O(xn+2)

undefined else

(9)

We note that F is multiplicative in the sense that if f and g both satisfy equation (5) then

F(fg) = F(f)F(g)

We may explicitly write that a given function is “even/odd up to” a given order when relevant. We are
primarily interested in the case of F 6= 0 for all usages of the F functional. Thus, throughout this paper,
any computation of F = 1 signifies F ∈ {0, 1}, and similarly F = −1 signifies F ∈ {0,−1}. We adopt this
convention for brevity at the expense of some clarity. If there are asymptotics to show that F 6= 0, we will
write these explicitly.

Remark The case of m = n even is special because of (3) for Mn+1

n+ 1 even =⇒ k(s, x) = k0 + x2k2 + · · ·+ kn−1x
n−1 + knx

n + kn+1x
n+1 +O(xn+2)

n+ 1 odd =⇒ k(s, x) = k0 + x2k2 + · · ·+ knx
n +Kxn log(x) + kn+1x

n+1 +O(xn+2)

When Y m ⊆ Mn+1 with m < n, we expect the presence of kn−1x
n−1 in the even case and Kxn log(x) in

the odd case to not affect our formulation of even expansions up to order m. However, when m = n even,
we expect K = K(s) to give rise to xn log(x) terms. We note that when K ≡ 0, this separate definition for
F when m = n even is unecessary. In particular, for M = Hn+1/Γ for Γ a coconvex compact subgroup, no
xn log(x) term is present and (6) applies for all m < n+ 1 even.

We also define a parity preserving first order linear operator L as

L := da(s, x)∂sa + dx(s, x)∂x (10)

F(da) = 1

F(dx) = −1

=⇒ F(L) = 1 (11)

11



We similarly define a parity preserving first order quadratic differential functional, Q, as

Q(f, g) := dab(s, x)fagb + daxfagx + dxxfxgx

F(dab) = 1

F(dax) = −1

F(dxx) = 1

=⇒ F(Q) = 1

Higher order parity preserving linear operators and quadratic functionals are defined analogously

2.6 Variation of Renormalized Volume

When computing the variation of the renormalized volume, we consider {Y mt } ⊆ Mn+1, a one-parameter
family of minimal submanifolds with Yt=0 = Y our designated submanifold. We require that each Yt be
embedded in some neighborhood of the boundary U ∼= ∂M × [0, ε). Define

St : Y → N(Y ), Ṡ := ∂tSt

∣∣∣
t=0

Ft : Y → Yt, Ft(p) := expp(St(p))

Given that this is a variation among minimal submanifolds, we know that Ṡ lies in the kernel of the Jacobi
operator of N(Y ), i.e.

J⊥Y (Ṡ) = ∆⊥Y (Ṡ) + Ã(Ṡ) + Tr[RM (·, Ṡ)·] = 0

where Ã is the Simons operator and Tr[RM (·, Ṡ)] denotes the trace of the ambient Riemann curvature tensor,
RM , taken over TY , applied to Ṡ. As a result, Ṡ satisfies a regularity theorem stated in full in §5.1. In
codimension 1, Ṡ = φ̇(s, x)ν(s, x) = [x−1φ̇(s, x)]ν for ν a normal to Y . Then

∀i, F(φ̇i) = 1

i.e. φ̇ is even to xn or xn+1 with the presence of a log term when n is odd. Similarly, we show in the appendix
that S̈ satisfies an equation of the form

J⊥Y (S̈) = Q⊥(Ṡ, Ṡ)

where Q⊥ is a quadratic functional in {Ṡi, Ṡiα, Ṡiαβ} valued in NY . This establishes regularity in a very
similar manner and proves

∀i, F(φ̈i) = 1

In the codimension 1 even case, neither φ̇ nor φ̈ have xn log(x) terms and the details are done in section
§13.8. Having established regularity of Ṡ and S̈, we define

V(Yt) = FP
z=0

�
Yt

xzdAt = FP
z=0

�
Y

F ∗t (x)zF ∗t (dAt)

Computing variations of this amounts to differentiating the integrand and interpreting it geometrically in
terms of u(s, x), Ṡ, and S̈. With this, we state formulae for the first and second variations of renormalized
volume in codimension 1. The full theorem is stated in §8, theorem 8.1.

Theorem. For {Y nt } ⊆Mn+1 a one-parameter family of hypersurfaces satisfying mild geometric constraints,
suppose Yt=0 = Y is minimal with ∂Y = γ. Then

n even =⇒ d

dt
V(Yt)

∣∣∣
t=0

= −(n+ 1)

�
γ

φ̇0(s)un+1(s) dAγ(s)

n odd =⇒ d

dt
V(Yt)

∣∣∣
t=0

= −(n+ 1)

�
γ

[
φ̇0(s)un+1(s) + F (φ̇0, u2)(s)

]
dAγ(s)
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where F is a polynomial in φ̇0, u2, and their higher derivatives. If in addition each Yt is minimal, then we
have

n even =⇒ d2

dt2
V(Yt)

∣∣∣
t=0

=

�
γ

−(n+ 1)φ̈0un+1 + (1− n)φ̇0(s)φ̇n+1(s)

+ φ̇0(s)2 [(n− 1)(n− 2)− 4(3n− 1)u2un+1(s) + TrTγ(kn+1,0)] dAγ(s)

n odd =⇒ d2

dt2
V(Yt)

∣∣∣
t=0

=

�
γ

−(n+ 1)φ̈0un+1 + (1− n)φ̇0(s)φ̇n+1(s)

+ φ̇0(s)2 [(n− 1)(n− 2)− 4(3n− 1)u2un+1(s) + TrTγ(kn+1,0)]

− φ̇0(s)
[
4(n+ 2)φ̇0(s)u2(s)U(s) + Φ̇(s)

]
+ F2(φ̈0, φ̇0, u2) dAγ(s)

where kn+1,0(s) = kn+1(s, 0) in (3)

3 Graphical Asymptotic Expansion

3.1 Results about u

In this section, we leverage the fact that Y is minimal and smoothly embedded in a neighborhood of the
boundary to get a polyhomogeneous expansion of each ui for u(s, x) = (u1(s, x), . . . , un−m+1(s, x)) ∈ N(Γ).
Recall that u is polyhomogeneous if

u(s, x) ∼
∑

Re(zj)→∞

Nj∑
t=0

xzj log(x)taj,t(s) s.t. aj,t ∈ C∞(γ)

To show polyhomogeneity we establish some initial regularity. We assume that as x → 0, the blown up
localized mass of Y approaches 1. Formally, let x0 � 1, s0 ∈ γ, and define

F0 := (s, x, z)→ (σ, ξ, η) :=

(
s− s0

x0
,
x

x0
,
z − u(s0, x0)

x0

)
(12)

When M = Hn+1, F0 is an isometry.

Assumption. For Y m ⊆Mn+1 minimal, let Y0 = F0(Y ). Assume

∀δ > 0, ∃x∗ > 0, s.t. ∀x0 < x∗

ω−1
m ρ−m||VY0,x

−2
0 F∗0 (g)||(Bρ(a)) ≤ 1 + δ (13)

for all a ∈ Bx0((s0, x0)). Here, ωm is the volume of the m-dimensional Euclidean ball of radius 1, and
||V Y0,x

−2
0 F∗0 (g)||(Bρ(a)) denotes the mass of the varifold intersected with a small ball with respect to the

metric x−2
0 F ∗0 (g).

This geometric constraint requires that our minimal surfaces “flatten” out as we blow up near the boundary.
This restriction is stronger than what is needed to apply Allard regularity, but it gives the correct C1,α

norm bounds. The author hopes that this can be proven with a weaker assumption. With this, we state our
regularity theorem.

Theorem 3.1. Suppose Y m ⊆ Mn+1 minimal satifying equation (13) and γ = ∂Y = Y ∩ ∂Mn+1 is a
Cm+1,α embedded submanifold in ∂Mn+1. Further suppose that Y is embedded and graphical in some
neighborhood of the boundary U ∼= ∂M × [0, ε). Let u(s, x) = ui(s, x)∂zi ∈ N(Γ), which describes Y as in
§3.2. Then, each ui(s, x) is polyhomogeneous and even to order m (m+ 1) for m even (odd).

ui(s, x) =

u
i
2(s)x2 + ui4(s)x4 + · · ·+ uim(s)xm + uim+1(s)xm+1 +O(xm+2 log(x))m even

ui2(s)x2 + ui4(s)x4 + · · ·+ uim+1(s)xm+1 + U i(s)xm+1 log(x) +O(xm+2 log(x)) m odd

Here, {∂zi} is a coordinate basis for N(Γ), and uik(s), U i(s) are Cm+1,α functions on γ.

13



Remark This theorem justifies the existence of an asymptotic expansion for u, the graphical function of
Y , as in [12].

There are several steps to the proof, which we carry out in the following sections:

1. In §3.4, we use the maximum principle and the fact that Y is minimal to show that u is O(x2).

2. In §3.5, we use Allard’s regularity theorem and assumption (13) to establish u ∈ C1,α
0 . We then use the

theory of edge operators as in [26] to prove that u is infinitely regular with respect to edge operators.

3. In §3.5.2 we note that Y is minimal so u also satisfies a degenerate elliptic PDE. We reframe the PDE
in terms of the 0-operators, (x∂x) and (x∂sa).

4. In §3.6, we upgrade regularity in 0-operators to regularity in b-operators, {x∂x, ∂sa}.

5. In §3.8, we upgrade regularity in b-operators to u having a polyhomogeneous expansion using a power
series iteration in x. This follows by linearizing the minimal surface system about successive iterations
of u, i.e. u = 0, u = u2x

2, u = u2x
2 + u4x

4 + . . . .

As remarked in the previous section, the regularity of Y allows us to formally define renormalized volume

Corollary 3.1.1. For Y m ⊆Mn+1 as above with m even, the renormalized volume

V(Y ) := FP
ε→0

�
x>ε

dAY = FP
z=0

�
Y

xzdAY

is formally defined and independent of the special bdf x. For m odd, V(Y ) is defined as above, but it depends
on the choice of x.

3.2 Coordinates and Notation

We coordinatize our space as follows: let p ∈ γ be labeled by geodesic normal coordinates on γ about some
base point p0, i.e.

p = f(s) := expγp0(saEa) (14)

where {Ea} is an ONB at p0 spanning Tp0γ. We then map to the cylinder

R(s, x) = (f(s), x) ∈ ∂M × [0, ε)

where we implicitly use the diffeomorphism of ∂M × [0, ε) ∼= U ⊆ M for an open neighborhood of the
boundary. We define

F (s, x, z) = expΓ
R(s,x)(z

iXi)

where z = (z1, . . . , zn−m+1) are coordinates for the normal bundle, NΓ, and {Xi} is an ONB at p = R(s, x).
Note that in both instances, exp denotes the exponential map with respect to the compactified metric, g,
restricted to γ and Γ, respectively. We coordinatize Y , in some neighborhood of the cylinder Γ, via

Y ∈ q = F (s, x, u(s, x))↔ (s, x, z = u(s, x))

for ||s|| close to 0 and x < ε. This is the definition of the function u(s, x) as an m-vector in N(Γ), and we
investigate this function in the next section.

Finally, we will use v(·), ∂(·) to denote a variety of vectors in TM = TY ⊕ NY = TΓ ⊕ NΓ. Here, we
notate

a, b, c, d↔ sa, sb, sc, sd

i, j, k, `↔ zi, zj , zk, z`

i, j, k, `↔ wi, wj , wk, w`

α, β, γ, δ ↔ {yα, yβ , yγ , yδ} ⊆ {sa, x}
σ, µ, ν, τ, ω ↔ {yσ, yµ, yν , yτ , yω} ⊆ {sa, x, zi}

(15)

We recognize the abuse of notation between the i, j, k, `. The context will be clear when using these indices
to refer to the fermi normal frame off of Γ, i.e. {∂zi}, vs. the normal frame off of Y , {wi}, defined in section
§13.3
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3.3 Metric on Y

We have the coordinate representation

G(s, x) := (F (s, u(s, x)), x) = (s, z = ~u(s, x), x)↔ p ∈ Y (16)

for G : Γ→ Y . We define

va = G∗(∂sa)

vx = G∗(∂x)

vα, vβ , vγ , vδ ∈ {va, vx}
vσ, vµ, vν , vτ , vω ∈ {va, vx, wi}

where {wi} is the aforementioned normal frame. We also define

σ(ω) :=

{
0 ω 6= x

1 ω = x
(17)

be an operator on indices.

We now define h, the induced metric on Y by nature of being embedded in Mn+1, as well as h = x2h.
Assuming ui = O(x2) and F(ui) = 1 (verified in the next section §3.4), we have from §13.2

hab := g(G∗(∂sa), G∗(∂sb))

= δab +O(x2)

F(hab) = 1

hax := g(G∗(∂sa), G∗(∂x))

= O(x3)

F(hax) = −1

hxx := g(G∗(∂x), G∗(∂x))

= 1 +O(x2)

F(hxx) = 1

Note that h = g
∣∣∣
Y

is the complete metric for Y , while h = g
∣∣∣
Y

, is the compactified metric (we use x, not xY

here). Moreover, {vα} = {va, vx} is a basis for TY , with α taking on any of the x and a subscripts.

Example. The compactified metric on Hn+1 is x2 dx
2+dy21+···+dy2n

x2 = dx2 + dy2
1 + · · ·+ dy2

n which is just the
standard Euclidean metric.

3.4 Maximum principle argument

For γ ↪→ ∂M compact, consider an ε-tubular neighborhood Nε(γ) ⊆ ∂Mn. WLOG assume that γ is
connected, and localize about some p ∈ γ. The goal is to show that for u(s, x) = ui(s, x)N i(s, x) and
∀x < x0 sufficiently small, we have C = C(x0) such that

|ui(s, x)| ≤ Cx2

3.4.1 Model Case: M = Hn+1

In this case, one can form an envelope of geodesic copies of Hn as hemispheres to act as a boundary. This
argument is historic, originally due to Anderson. We choose to present another argument inspired by [14].

15



Let HSn(R) ⊆ Hn+1 be the half-sphere of radius R which is a geodesic copy of Hn ⊆ Hn+1. Imagining
Hn+1 ⊆ Rn+1 and hence HSn ⊆ Rn+1, we can shift the center to the right by x to make a new surface,

HSn(R, x) = (x+HSn(R)) ∩Hn+1

For x = δR, this is a hypersurface with H = δ lying inside Hn+1. In fact, each of the principle curvatures of
this surface is equal to δ

n , so HSn(R, δR) is in fact an m-convex surface with

Km = κ1 + · · ·+ κm =
m

n
δ

for any of the m principal curvatures. We use HSn(R, δR) as a barrier around Y (see picture 4). Represent

Figure 4: Picture of barrier and envelope argument

HSn(R, δR) graphically over the boundary cylinder ΓSn−1 = ∂HSn(R, δR)× R+ as

HSn(R, δR) = expg(v(s, x)Nn−1(s))

where N
n−1

(s) is a normal to ∂HSn(R, δR) ⊆ Rn = ∂Hn+1. In these coordinates we have

v(s, x) =
√
R2 − (x+ δR)2 −R

√
1− δ2

= − δ

R2(1− δ2)3/2
x+O(x2)

and such a construction holds for any δ > 0. We can repeat this construction about any p ∈ γ such that
∂HSn(R, δR) lies tangent to γ for R = R(p) sufficiently small. Now consider the envelope

E = ∂

(⋃
p

HSn(R(p), δR(p), p)

)

E is now a barrier for Y . Let u(s, x) = ui(s, x)N i(s, x). The maximum principle for m-mean convex
submanifolds (cf. [20], [29]) then gives that about any p,

|ui(s, x)| ≤ |v(s, x)|
≤ Cδx
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where C = C(p). In particular at x = δ, we get

|ui(s, δ)| ≤ Cδ2

Noting that γ is compact and repeating this construction for all δ > 0 sufficiently small, we have

|ui(s, x)| ≤ Cx2

for all x sufficiently small, and some C uniform in p ∈ γ.

3.4.2 M general PE manifold

We outline the argument as follows:

� Find ε0 sufficiently small so that when we expand

g =
dx2 + k(s, x)

x2

k(s, x) = k0(s) +R

||R|| ≤ Cx2 (18)

for all x < ε0. (18) is a tensor bound in C1
g (see §3.5)

� Let ρ be the radius such that Nρ(γ) ⊆ ∂M is embedded, i.e. the normal bundle is embedded. Let
R = ρ/2. Consider Z := HSn(R, δR) for δ < min(ε0, ρ/2) and note that by (18), we have that each of
the principle curvatures satisfy

κi(Z) =
δ

n
+ E(ε)

=⇒ Km(Z) =

m∑
i=1

κi(Z) =
m

n
δ + E(ε)

E(ε) ≤ Kε2

=⇒ Km(Z)
∣∣∣
x=δ
≥ c0δ

The idea being that because k(s, x) is even up to order m ≥ 2, Km(Z) is the same up to quadratic
error. Thus, a barrier which is m-mean strictly convex with M = Hn+1 is still m-mean strictly convex
for M a general PE manifold.

� Consider the envelope Eδ,R(γ) defined by

Eδ,R(γ) := ∂

(⋃
p∈γ

HSn(R(p), δR(p), p)

)
where HSn(R, δR, p) denotes the above construction based at a point p ∈ γ. The same m-mean convex
maximum principle tells us that Eδ,R(γ) is a barrier for Y

� Let v(s, x) be the graphical height function for the envelope over its boundary cylinder. As before,

v(s, x) = − δ

R2(1− δ2)3/2
x+O(x2)

Then we have by the barrier arguments that

|ui(s, x)| ≤ C δ

R2
x

Choosing x = δ (recalling that R independent of δ), we have

|ui(s, δ)| ≤ Cδ2

for C independent of δ and p ∈ γ. Repeat for all δ > 0 sufficiently small to get

∃δ0 s.t. ∀x < δ0, |ui(s, x)| ≤ Cx2
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3.5 Showing v ∈ x2
⋂
k C

k,α
0

In this section, we demonstrate that u ∈ x2
⋂
k C

k,α
0 i.e. u is smooth and ui = x2f i for some {f i} such that

∀j, i, β ∃ Cijβ <∞ s.t. ||(x∂x)j(x∂sa)βf i||C0,α
0
≤ Cijα

for j, α arbitrary. Here, Ck,α0 is the Hölder space of functions in terms of the edge operators, {x∂x, x∂sa},
and

||f ||Ck,α0
:=

∑
j+|β|≤k

||(x∂x)j(x∂sa)βf i||0,α,0

where || · ||0,α,0 denotes the geometric Hölder norm on U given by

||f ||0,α,0 = sup
(s,x)∈U

|f(s, x)|+ sup
(s,x)6=(s̃,x̃)∈U

|f(s, x)− f(s̃, x̃)|(x+ x̃)α

(|x− x̃|α + ||s− s̃||αg )

where (s, x) are fermi coordinates and ||s− s̃||g denotes the distance with respect to the compactified metric.
We use Ck,α to denote the standard Hölder space with respect to the Euclidean metric. Finally, for any
metric space, (M, g), we denote

||f ||C0,α
g

:= sup
p 6=q

|f(p)− f(q)|
||p− q||αg

3.5.1 Showing u ∈ C1,α
0

Let p0 = (s, z, x) = (s0, u(s0, x0), x0), with x0 sufficiently small. We consider rescaled minimal graphs (see
figure 5) by changing coordinates

F0 : (s, x, z) 7→ (σ, ξ, η) :=

(
s− s0

x0
,
x

x0
,
z − u(s0, x0)

x0

)
Pulling back the metric by this diffeomorphism, we have

Figure 5: Visualization of rescaling with u = u(σx0 + s0, x0ξ)

F ∗0 (g) = F ∗0

(
dx2 + k(s, x, z)

x2

)
=
dξ2 + x2

0k(x0σ + s0, x0ξ, x0η + u(s0, x0))

ξ2
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We expand

k(s, x, z) = kab(s, x, z)ds
adsb + kai(s, x, z)ds

adzi + kij(s, x, z)dz
idzj

x2
0k(xjσ + s0, x0ξ, x0η + u(s0, x0)) = kab(x0σ + s0, x0ξ, x0η + u(s0, x0))dσadσb

+ kai(x0σ + s0, x0ξ, x0η + u(s0, x0))dσadηi

+ kij(x0σ + s0, x0ξ, x0η + u(s0, x0))dηidηj

So that for values of ||σ|| ≤ 1, 1
2 ≤ ξ ≤

3
2 , ||η|| < 1

2 , and x0 < ε, we have

F ∗0 (g) =
dξ2 + k(s0, 0, 0)

ξ2
+O(x0)

here, we’ve used that x0 < ε and |z| ≤ 1
2x0, which allows for the above expansion. In particular, we note

that

ξ2F ∗0 (g) = x−2
0 F ∗0 (g)

= dξ2 + k(s0, 0, 0) +O(x0)

= dξ2 + dσ2
1 + · · ·+ dσ2

m−1 +O(x0)

The minimal surface then becomes

Y0 := F0(Y )

(s, x, u(s, x)) 7→ (σ, ξ, η) =

(
s− s0

x0
,
x

x0
,
u(x0σ + s0, x0ξ)− u(s0, x0)

x0

)
=

(
s− s0

x0
,
x

x0
, O(x0)

)
since ξ and η are bounded. Recall the statement of Allard’s regularity theorem:

Theorem (Allard). Suppose we have a varifold V = v(Y m, θ) ⊆ Rn+1, U an open set in Rn+1, η > 0,
ρ0 > 0, and p > 0, such that for all a ∈ spt||V || and Bρ(a) ⊆ U with ρ < ρ0, we have

1 ≤ θ µ a.e.

ω−1
m ρ−m||V ||(Bρ(a)) ≤ 1 + η(

ρp−m
�
Bρ(a)

|H|p
)1/p

≤ η

where H is the generalized mean curvature of the varifold and p > n. Then up to a linear isometry of Rn+1,
V is given graphically by F = (F 1, . . . , Fn+1−m) on with

ρ−1 sup |F |+ sup |DF |+ ρ1−m/p sup
a 6=b

|DF (a)−DF (b)|
|a− b|1−m/p

≤ Cη1/(2m+2)

with C = C(m,n, p)

Remark Allard Regularity is truly a euclidean theorem, so in order to apply it, we must compute mean
curvature and mass density with respect to the euclidean metric on the (σ, ξ, η) coordinates, which we denote
as

geuc = dσ2
1 + · · ·+ dσ2

m−1 + dξ2 + dη2
1 + · · ·+ dη2

n+1−m

We verify the three conditions:

� θ ≥ 1 due to Y being graphical
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� By our assumption (13)

∀δ > 0, ∃x∗ > 0, s.t. ∀x0 < x∗

ω−1
m ρ−m||VY0,x

−2
0 F∗0 (g)||(Bρ(a)) ≤ 1 + δ

But we’ve seen that
x−2

0 F ∗0 (g) = geuc +O(x0)

in (s, x, z) coordinates. Thus

ω−1
m ρ−m||VY0,geuc ||(Bρ(a)) ≤ ω−1

m ρ−m||VY0,x
−2
0 F∗0 (g0)||(Bρ(a)) +O(x0)

≤ 1 + δ

for x0 (and hence x∗) sufficiently small

� We note that

HY0,euc = HY0,x
−2
0 F∗0 (g) +O(x0)

= HY0,ξ2F∗0 (g) +O(x0)

=
1

ξ

[
HY0,F∗0 (g) −mΠNY0∇(ln(ξ)) +O(x0)

]
=

1

ξ

[
−mΠNY0∇(ln(ξ)) +O(x0)

]
=⇒ |HY0,euc| ≤ C

1

ξ2

≤ C̃

having applied the formula for (generalized) mean curvature under a conformal change of metric. Here
we noted that HY0,F∗0 (g) = 0 + O(x0) and ξ is bounded. Also ΠNY0 denotes the projection onto
the normal bundle of Y0 with respect to F ∗0 (g). Thus HY0,euc is bounded, in this rescaled graphical
representation. This tells us that any p(

ρp−m
�
Bρ(a)

|H|p
)1/p

≤
(
ρp−mρmCp

)1/p
≤ Cρ

so choosing ρ = δ/C gives the desired bound.

Thus, Allard applies and we get the existence of a function

W = (W 1, . . . ,Wn+1−m) ∈ C1,α

for α = 1 − m/p > 0 with the above bounds. Of course, we already have a graphical description of Y0.
Letting

u0(σ, ξ) :=
u(x0σ + s0, x0ξ)− u(s0, x0)

x0

Then, up to an isometry (of euclidean space), q, we have W0 = q ◦ u0 and we get the same C1,α bounds for
u0. Note that we applied Allard with respect to (σ, ξ) coordinates. This gives

||u0(σ, ξ)||C1,α(σ,ξ) ≤ δ

but because we’re working with 1
2 ≤ ξ ≤

3
2 , the norm computed with (σ, ξ) is comparable to the C1,α

0 and

||u0(s, x)||C1,α
0
≤ δ

In our ball corresponding to 1
2 ≤ ξ ≤

3
2 .
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3.5.2 Revamped Schauder Bootstrapping

From the previous section, we have a graphical representation of Y0 in Fermi coordinates. We now consider
the metric induced on Y0 as a submanifold of Mn+1. Dropping the 0 subindex for brevity, we use the
previous sections to write the metric under the F0 diffeomorphism as

h = Id+M(∇u)

where all of the entries of M can be as small as needed by choosing δ appropriately in our C1,α bounds from
§3.5.1. Therefore

h
−1

= Id−M +M2 + · · · = Id−M +O(δ2)

Let H(u) denote the mean curavture of the surface given by the graph of u in the (σ, ξ, η) coordinates. Recall
the minimal surface system from Graham and Witten [12], adapted to (σ, ξ, η). Here, an a subindex denotes
σa, ξ denotes ξ, and i denotes ηi:

0 = ξH(u)k = ξ

[
ξ∂ξ −m+

1

2
ξLξ

] [
h
ξξ
giku

i
ξ + h

aξ
(gak + giku

i
a)
]

(19)

+ ξ2

[
∂b +

1

2
Lb

] [
h
ξb
giku

i
ξ + h

ab
(gak + giku

i
a)
]

− 1

2
x2h

ab
[
gab,k + 2gai,ku

i
b + gij,ku

i
au
j
b

]
− ξ2h

aξ
[gai,ku

i
ξ + gij,ku

i
au
j
ξ]

− 1

2
ξ2h

ξξ
[gij,ku

i
ξu
b
ξ]

for L = log(deth). Note that we have multipled by ξ in order to make this a 0 order differential equation
(i.e. can be written in terms of edge operators (ξ∇σa) and (ξ∂ξ)). Heavily referencing §13.2, we can write
the above as a quasilinear system of PDEs of the form

ξH(u)k = akαβi(ξ, σ)(ξ∂yα)(ξ∂yβ )ui + g(ξ∇u, ξ, σ)

where {yα} denote any of {σa, ξ}, g is some smooth function, and {akαβi} are uniformly elliptic. In particular,

akαβi = δαβδ
k
i +O(δ)

for 1
2 ≤ ξ ≤

3
2 . Alternatively, we frame this as

0 = ξ2∂2
αu

k +Kαβ
i (∇u, ξ, σ)∂α∂βu

i + bγi (∇u, ξ, σ)(∂γu
i) + F (∇u, ξ, σ)u+G(∇u, ξ, σ)

= [δαβξ
2 +Kαβ

i ]∂α∂βu
i + bγi ∂γu

i + Fu+G

for some coefficients Kαβ
i = O(δ) and bγi = O(δ) for each k. Here, {Kαβ

i } and {bγi } are both O(δ) in Cα(σ,ξ)
because of their dependence of ∇u and the fact that ||u(σ, ξ)||C1,α = δ. Moreover, F = G = 0 because the
minimal surface system is a divergence system, i.e. it can be written as a collection of equations each of the
form

div

(
~Aα ·

∂ui

∂yα

)
= 0

We now apply Schauder estimates using that the functions Kαβ
i (∇u, ξ, σ), Bγi (∇u, ξ, σ), and F (u, ξ, σ) are

all in Cα

||u(ξ, σ)||C2,α ≤ T (||u||C0,α + ||G||C0,α) = T (||u||C0,α)

See [8] section 5 or [27] for the proof of Schauder estimates in the systems case. We can further improve this:

||u||C0,α ≤ ||u||C1,α ≤ T̃ ||u||C0 = O(xj)
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having used first order Schauder estimates in the second inequality. We now iterate this argument to get
bounds on higher derivatives in terms of the rescaled variables, (σ, ξ). This ensures smoothness away from
x = 0 as well as bounds on higher derivatives in terms of constants independent of j. Note that in the above,
we’ve been working with standard Hölder norms in the (σ, ξ) variables and the Ck,α Hölder norms. But

again, because 1/2 ≤ ξ ≤ 3/2 we get comparable bounds for the Ck,α0 norms for the (s, x) coordinates.

We proved that for u0, there exists a δ (and hence x0) sufficiently small so that

u0(σ, ξ) ∈ x0

⋂
k

Ck,α0 ∀k ≥ 0

Undoing the definition of u0(σ, ξ) in terms of the original function u, we get

u(x0σ + s0, x0ξ) = x0u0(σ, ξ) + u(s0, x0)

Thus we actually have that u is regular at x = x0 in a neighborhood of radius x0. This construction holds
for all x0 sufficiently small, so we conclude

u ∈ x2
⋂
k

Ck,α0 ∀k ≥ 0

i.e.
u = x2f, ∀j, β, ∃ Cijβ <∞ s.t. ||(x∂x)j(x∂sa)βf i||C0,α ≤ Cijβ

3.6 Parametrix Argument

Having shown that

u ∈ x2
⋂
k

Ck,α0

we now want to show that
u ∈ x2

⋂
k

Ck,αb

i.e. for u = x2f , we have

∀j, |β| ∈ Z+, ∃ C̃ijβ s.t. ||(x∂x)j(∂sa)βf i||C0,α
0
≤ C̃ijβ

(note that we use ∂sa , not (x∂sa)!). To show this, we briefly recall relevant facts from microlocal analysis
and the theory of edge operators from [26]

� The space of conormal functions is

A :=
⋂
k

Ck,αb

� The space of polyhomogeneous function is

Aphg := {u(s, x) | u(s, x) ∼
∑

Re(zj)→∞

Nj∑
t=0

xzj log(x)taj,t(s) s.t. Nj <∞, aj,t ∈ C∞}

where for m > |β| > 0

∀ε > 0,
∣∣∣Dβ

u(s, x)−
∑

Re(zj)<m

Nj∑
t=0

xzj log(x)taj,t(s)

∣∣∣ = O(xm−|β|−ε)

i.e. the remainder and its derivatives (in x and sa variables) decay at a faster rate. In practice, we’ll
be dealing with zj real, positive, and integer valued.
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� We denote the space of edge operators, Ve, and the space of b-operators, Vb as

Ve = spanC∞(U){(x∂x), (x∂sa)}
Vb = spanC∞(U){(x∂x), ∂sb}

for U the neighborhood of Γ as defined in §2.6

� The weighted Hölder space of orders ` ∈ N, α ∈ (0, 1), and δ ∈ R are

xδΛ`,α0 := {u = xδv s.t. V1 · · ·Vjv ∈ Λ0,α
0 , ∀Vi ∈ Ve, j ≤ `}

where Λ0,α
0 = C0,α is the geometric Hölder space with norm

||f ||0,α,0 = sup |f |+ sup
(s,x)6=(s̃,x̃)

(x+ x̃)α|f(s, x)− f(s̃, x̃)|
|x− x̃|α + ||s− s̃||αg

We also define

xδΛ`,α,m0 = {u = xδv s.t. (V1 · · ·Vj)(Ṽ1 · · · Ṽk)v ∈ Λ0,α
0 , Vi ∈ Ve, Ṽi ∈ Vb, j ≤ `, k ≤ m}

� Ψm,E denotes pseudodifferential operators in the small calculus. Ψm,E
0 denotes the large calculus. Ψm,E

b

denotes the analogous calculus but with respect to the b-operators

� For L ∈ Ψm,E
0 an elliptic pseudodifferential operator, a parametrix, G ∈ Ψ−m,E0 , exists such that

LG = I −R1

GL = I −R2

where I is the identity and R1, R2 ∈ Ψ−∞,E are “residual” operators. Here, m is the order of the
principal symbol of L. Roughly speaking, Ri sends functions of any regularity into polyhomogeneous
functions.

We also recall a few relevant propositions from [26] adopted for our case of the index set E = {0,m+ 1}

� (Proposition 3.27) For A ∈ Ψm,E
0 , suppose ` ≥ m and δ > −1, then

A : xδΛ`,α0 → xδΛ`−m,α0

� (Proposition 3.28) For f ∈ Aphg, A ∈ Ψm,E
0 , we have Af ∈ Aphg

� (Proposition 3.30) For v ∈ Vb, A ∈ Ψm,E
0 , we have [v,A] ∈ Ψm,E

e

Remark Hereafter, we use O(xk) to denote a remainder term which lies in xkA, and o(xk) to a remainder
term, f , such that limx→0 x

−kf = 0 with convergence in A.

We now prove that u ∈ x2A. We argue as follows: for N i = ∂zi a basis for N(Γ) (zi are Fermi coordi-
nates for the normal bundle), we have u = uiN i and

0 = H(u) = H(0) + L0(u) +Q0(u)

=⇒ L0(u)i = −H(0)i −Q0(u)i

where L0 = JΓ is the Jacobi operator on Γ ⊆M and also the linearization of the mean curvature functional
about u = 0. Q0 is the quadratic remainder from the linearization and depends on {x∇u, x, s}, which
are parameters in the coefficients for our elliptic system of equations which we’ve bounded in the previous
section. Here Q0(u) = O(x4) because u = O(x2), and the superscript denotes the N ith component. We
have

L0(u) = ∆Γ(u) + ÃΓ(u)− (m+ E(x))u
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Here, ∆Γ is the Laplacian on Γ on the normal bundle computed with respect to the (ξ, σ) variables, Ã is the
Simons operator, a 0th order operator that is O(x2) (see §5), and E(x) = O(x2) is an error term coming
from the computation of trΓ[RM (·, u)·] as in the standard Jacobi operator. Let G be a parametrix for this
operator

GL = I −R
GL(u)i = ui − (Ru)i

= −(GH(0))i + (GQ)i

=⇒ ui = −(GH(0))i + (GQ)i + (Ru)i

= GQi + F i

where Ru is a residual term. One can compute H(0) = x2Hγ +O(x4) analytic in x and s. By Propositions
3.27 and 3.28, we have that GH(0) is O(x2) and polyhomogeneous. Moreover, because R is residual, we
have that Ru is polyhomogeneous. Finally by 3.27, we know that GQ = O(x4). With this, we can write

ui + (GH(0))i − (GQ)i = (Ru)i

and note that the left hand side is O(x2), so (Ru)i must be both O(x2). This tells us that F i := −(GH(0))i+
(Ru)i is O(x2) and polyhomogeneous. We now differentiate this equation to get

∂sau
i = ∂saF

i +G(x−1(x∂sa)Q) + [∂sa , G]Q

Again, ∂saF
i is O(x2) by polyhomogeneity. From our initial estimates, we have that x−1(x∂sa)Q = O(x3),

and by Proposition 3.27, G(x−1(x∂sa)Q) ∈ x3∩kCk,α0 . Similarly, by 3.30 and 3.27, we have that [∂sa , G]Q =

x4
⋂
k C

k,α
0 because Q = O(x4). This shows that

u ∈
⋂
k

x2Λk,α,10

We now proceed by induction. Assume that

u ∈ x2
⋂
k

x2Λk,α,j0

For α a multi-index of order j + 1, we write

∂sa1 · · · ∂saj+1
u = ∂αs u = ∂αs (GQi + F i) = ∂αs (GQi) + ∂αs (F i)

we automatically have that ∂αs F
i ∈ x2Λk,α,j0 for any k and j since F i is polyhomogenous. For the first term,

we write

∂αs = ∂sa∂
β
s , |β| = j

∂βs (GQi) =
∑

|γ|+|δ|=j

cγ [∂sγ1 , · · · , [∂sγj , G]]∂δsQ
i

where cγ is some integer valued coefficient reflecting the combinatorics of how many commutator terms we
get. By induction and the chain rule, we know that ∂δsQ

i is O(x4) for all δ. By repeated application of
Proposition 3.30, we know that the nested commutator term lies in Ψ−2,E

e . Then by Proposition 3.27 and
3.28, we can conclude that

cγ [∂sγ1 , · · · , [∂sγj , G]]∂δsQ
i ∈ x4

⋂
k

Ck,α0

so that

∂sa

(
cγ [∂sγ1 , · · · , [∂sγj , G]]∂δsQ

i
)

= x−1(x∂sa)
(
cγ [∂sγ1 , · · · , [∂sγj , G]]∂δsQ

i
)
∈ x3

⋂
k

Ck,α0
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adding the F i term we have

u ∈ x2
⋂
k

Λk,α,j+1
0

This completes the induction and we get

u ∈ x2
⋂
k,j

Λk,α,j0 = x2
⋂
k

Ck,αb = x2A

3.7 Expanding Mean Curvature Functional

We now compute the linearization of the mean curvature functional, H, on graphical submanifolds of the
form {~u(s, x)} from before. We first linearize about u0 = 0:

H(u) = H(0) + L(u) +Q(u)

so that in (19), we set 0 = zi = piα when evaluating h
αβ

as abstract functions of (x, {zi}, {piα}) to be set
equal to (x, {ui}, {uiα}). Here, Q(u) is an expression that’s at least quadratic in the components of {u, x∇u}
and depends smoothly on s. Because u ∈ x2A, we have Q(u) ∈ x4A. Note that H(0) is the mean curvature
of the graph corresponding to ~u(s, x) = 0, which is just Γ = R+ × γ. A short computation gives

H(0) = H{u=0}

= [x2Hi
γ +Ri]N i

Ri = O(x4)

F(Ri) = 1

where Hi
γ are the components of the mean curvature of the boundary submanifold, computed with the

compactified metric restricted to the boundary. In particular, we note that

Ri =

{
Ri4x

4 + · · ·+Rin+2x
n+2 +Rixn+2 log(x) +O(xn+3 log(x)) n even

Ri4x
4 + · · ·+Rin+2x

n+2 +O(xn+3) n odd
(20)

With this, we note that

L = (Jacobi operator evaluated at {u = 0} graph)

= ∆{u=0} + Ã{u=0} + Tr[RM (·, )·] = ∆Γ + ÃΓ + Tr[RM (·, )·]

for Ã the Simons operator. Here, let

u = uiN i = ûiN̂i

ûi = x−1ui, N̂i := xN i

Note that g(N̂i, N̂i) = 1 +O(x2) on Γ. This choice of notation is so that geometric operators with respect to
g act more naturally on ûi as opposed to ui due to the choice of normalization. Following the work of [11]
(corollary 2.8) along with §13.4, we can write

L(u) = [(x∂x)2 − (m− 1)(x∂x)−m](ûi)(N̂i) + E(x−1u)i(xN̂i)

where E is an error term that is at most second order in Vb operators and has O(x2) coefficients and
analogously to (20) can only have xk log(x) terms at k ≥ n+ 2. Thus E(u)i = O(x3). Via §13.4, we see that
Ã{u=0}(u) = fiN̂i where fi = O(x3). With this, we begin our iteration at

H(u) = 0 = H(0) + L(u) +Q(u)

= x2Hγ + [(x∂x)2 − (m− 1)(x∂x)−m](ûi)N̂i +O(x4)
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3.8 Iteration Argument

Having extracted the linear term and shown that the remainder is O(x2), we write

L(u) = −H(0)−Q(u)

= −xHi
γN̂i −Q(u)−R0

= [−xHi
γ +O(x3)]N̂i

Hence

((x∂x)2 − (m− 1)(x∂x)−m)(ûi)N̂i = −xHi
γN̂i + [−Q(u) +O(x4)]N̂i

=⇒ ((x∂x)2 − (m− 1)(x∂x)−m)(ûi) = −xHi
γ +O(x4)

we factor
((x∂x)2 − (m− 1)(x∂x)−m) = (x∂x + 1)(x∂x −m)

and use integrating factors of x−2, x−m−1, to conclude

ûi =
1

2(m− 1)
Hi
γx+O(x3)

This is valid when m ≥ 3 since we absorb Kxm into O(x3). Converting back to ui = xûi, this process gives
an explicit formula for ui2(s):

Lemma. The minimal submanifold, Y m, can be described as a graph over Γ = ∂Y × [0, ε) via

Y ∩ {0 ≤ x < ε} = {exp(γ(s),x)(u(s, x)) | 0 ≤ x < ε, γ(s) ∈ γ}

where u(s, x) = ui(s, x)N i = ui(s, x)∂zi and

ui(s, x) =
1

2(m− 1)
Hi
γx

2 +O(x3)

Where ∂zi is a Fermi coordinate basis for the normal bundle with respect to the compactified metric and Hγ

is the mean curvature of γ ⊆ ∂M , and m ≥ 2.

We now want to iterate this argument to get an even expansion up to m, with a potential log term when m
is odd.

Proof of Theorem 3.1:
We first do m even. Assume the inductive hypothesis of

ûi = pi2k−1(x) + f i(x), f i(x) = o(x2k−1) 2k < m

where pi2k−1 is an odd polynomial in x of order 2k− 1 with coefficient depending smoothly on s and f i ∈ A.
Further assume

H(pi2k−1N̂i) = O(x2k+1) = [ai2k+1x
2k+1 + o(x2k+1)]N̂i

We have established the base case, k = 0 with pi0 = 0 and ai2 = 1
2(m−1)H

i
γ . For higher values of k, we can

expand
H([pi2k−1 + f i]N̂i) = H((pi2k−1N̂i) + Lpi2k−1N̂i

(f iN̂i) +Qp2k−1N̂i
(f iN̂i)

Abbreviate L2k−1 := Lpi2k−1N̂i
. This is the linearized operator (i.e. Jacobi Operator) corresponding to

the graph of {u = pi2k−1N̂i}. Then using the fact that pi2k−1 = O(x) produces a graphical asymptotically
hyperbolic manifold with odd coefficients up to at least order x2, we have as before

L2k−1 = IL2k−1
+ TL2k−1

IL2k−1
= [(x∂x)2 − (m− 1)(x∂x)−m]

TL2k−1
: xkA → xk+2A

=⇒ L2k−1(f iN̂i) = [(x∂x)2 − (m− 1)(x∂x)−m](f i)N̂i + o(x2k+1)
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where “IL2k−1
” stands for the indicial operator of the linearization at p2k−1 and TL2k−1

is the remainder.

Finally, Q2k−1(f iN̂i) := Qpi2k−1N̂i
(f iN̂i) will be at least x2 times the order of f i and hence of order o(x2k+1).

Thus

0 = H(ûiN̂i) = H([pi2k−1 + f i]N̂i)

= H(pi2k−1N̂i) + L2k−1(f iN̂i) +Q2k−1(f iN̂i)

= ai2k+1x
2k+1N̂i + [(x∂x −m)(x∂x + 1)f i]N̂i + o(x2k+1)

Rearranging and matching vector components, we get

(x∂x + 1)(x∂x −m)f i = −ai2k+1x
2k+1 + o(x2k+1)

as before, we perform an integrating factor for (x∂x + 1) first and then (x∂x −m)

x−m−1(x∂x −m)f i = −
ai2k+1

2k + 1
x2k−m + o(x2k−m)

∂x(x−mf i) = −
ai2k+1

2k + 1
x2k−m + o(x2k−m) (21)

f i = −
ai2k+1

(2k −m+ 1)(2k + 1)
x2k+1 +Kxm + o(x2k+1)

we see that the denominators are never 0 when m is even. Note that K is the constant from evaluating
x−mf at some point x = x0 small but non-zero. This shows that we can continue to induct and get the next
even term in our expansion as long as 2k < m.

When 2k = m, the above process shows that f i = K ′xm+1 + O(xm+1) and we can continue the expan-
sion but the expansion is no longer even. Converting back to ui = xûi, we have

m even =⇒ ui =
1

2(m− 1)
Hi
γx

2 + · · ·+ uimx
m + uim+1x

m+1 +O(xm+2)

i.e. F(ui) = 1. In particular our remark about (20) shows that when m = n even, there is no xn log(x) term
because xk log(x) error terms occur for k ≥ n+ 1 in the iteration.

When m is odd, most of the proof remains the same. However, when 2k = m − 1, we see that 21 be-
comes

∂x(x−mf i) = −a
i
m

m
x−1 + o(x−1)

x−mf i = K − aim
m

log(x) + o(log(x))

f i = Kxm − aim
m
xm log(x) + o(xm log(x))

so a log term appears in this case. After setting

pi2k+1 = pi2k−1 −
aim
m
xm log(x) +Kxm

we can continue the iteration without log terms but we lose evenness of the expansion. Converting back to
ui, we conclude

m odd =⇒ ui =
1

2(m− 1)
Hi
γx

2 + · · ·+ uim+1x
m+1 + U ixm+1 log(x) + um+2x

m+2 +O(xm+3)

which is again, the statement of F(ui) = 1.

As a consequence of these computations we get the following result about the induced metric on Y
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Corollary 3.1.2. The induced metric on Y satisfies for

F(hαβ) = (−1)σ(α)+σ(β)

hxx = 1 +O(x2)

hxa = O(x3)

hab = δab +O(x2)

where σ(α) is as in equation (17).

Remark We can take the analysis further for m = n even:

Corollary 3.1.3. For m = n even,

[hab]
log,n+1 = 0

[hxx]log,n = 0

[hxx]log,n+1 = 0

[
√

deth]log,n+1 = 0

This follows from the explicit formula for va and vx in (31) and holds for all coefficients K in the Kxn log(x)

term of (3). Note that hab and
√

deth may have an xn log(x) term.

4 Parity of Second Fundamental Form

In this section we aim to prove the following theorem:

Theorem 4.1. Suppose that Y m ⊆ Mn+1 minimal with h = g
∣∣∣
TY

even up to order xm. Let p ∈ Y and

A : Sym2(TY )→ N(Y ) denote the second fundamental form, and let {wi(s, x)} be the frame for the normal
bundle described in §13.3. Define

Tγδi;α1···αp := g
(

(∇vα1
· · · ∇vαpA)(vγ , vδ), wi

)
where αi can take on any of the indices {s1, . . . , sm−1, x}. Let q denote the number of “x”s among the
indices {γ, δ, α1, . . . , αp}, then we have

∀i, F(Tγδi;α1···αp) = (−1)q

We notate the following

Aαβ = g(∇FαFβ) (22)

Γ̃στω := g(∇vσvτ , vω) (23)

hαβ(t) := g(Fα, Fβ) (24)

where ∇ is the connection with respect to g. We also define Aαβi, the components of Aαβ , and A
i

αβ and Γ̃
ω

στ

by raising the tensors appropriately. Finally, we let the indices {σ, τ, ω, µ} denote any vector in the basis for
TM = TY ⊕NY , i.e. vσ, vτ , vω ∈ {vsa , vx, wi} and similarly with Fα ∈ {Fa, Fx} ⊆ TYt. For example

Γ̃αβi = g(∇vαvβ , wi)

Note that

Aαβ = Γ̃
j

αβwj

for α, β denoting vα, vβ ∈ TY .
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4.0.1 Lemmas for theorem 4.1

We start by writing the tangent basis for Y in fermi decomposition

va = G∗(∂sa) = ∂sa + uia∂zi + u[Γ
b

ai∂sb + Γ
j

ai∂j + Γ
x

ai∂x]

vx = G∗(∂x) = ∂x + uix∂zi + u[Γ
a

xi∂sa + Γ
j

xi∂zi ]

Similarly, recall the parity of the coefficients for our normal frame: (cf. section §13.2 and lemma 13.3)

wi = cai (s, x)∂sa + cxi (s, x)∂x + cji (s, x)∂zj

F(cai ) = 1

F(cxi ) = −1

F(cji ) = 1

Let Γστω denote the christoffel symbols in the basis of {∂sa , ∂x, ∂zi}, with respect to g, in a tubular neigh-
borhood of Γ = γ × R+, parameterized by (s, x, z).

Lemma 4.2. We have

∀p ∈ Y, F
(

Γστω

∣∣∣
p∈Y

)
= (−1)q (25)

where q is the number of indices among σ, τ , ω that are equal to x

Proof: First note that via the fermi coordinate decomposition

Γxxb = Γxxi = 0

And also
Γαiβ = g(∇∂yα∂zi , ∂yβ ) = −g(∂zi ,∇∂yα∂yβ ) = −Γαβi

and so it suffices to consider Γ··i, Γaxb, Γabx, and Γabc. The proof of the result comes from the splitting
of the ambient metric under Graham-Lee Normal form in a tubular neighborhood of the boundary (i.e. on
∂M × [0, ε)):

g = dx2 + k(x, s, z)

Here, k(x, s, z) is a 2-tensor such that k(x, s, z)(∂x, ·) ≡ 0. Moreover k(s, x, z) expands as

n+ 1 even =⇒ k(s, x) = k0 + x2k2 + · · ·+ kn−1x
n−1 + knx

n + kn+1x
n+1 +O(xn+2)

n+ 1 odd =⇒ k(s, x) = k0 + x2k2 + · · ·+ knx
n +Kxn log(x) + kn+1x

n+1 +O(xn+2)

where each ki = ki(s, z) is a 2-tensor. ki(s, z) can also be expanded up to order zm in z since z =
(z1, . . . , zn+1−m) is a system of fermi coordinates and γ is Cm+1,α embedded in ∂M . so we can expand

ki(s, z) = ki,0(s) + ki,1(s)z + · · ·+ ki,p(s)z
m +O(zm+1)

for any z. Evaluating this on Y (i.e. z = u(s, x)), we see that k(s, x, u(s, x)) is a tensor that is even in x up
to order xm+1. With this and the Koszul formula, one can directly show the parity statements in (25) hold
in a tubular neighborhood of γ × [0, ε) ⊆ ∂M × [0, ε).

We now extend this to compute the Christoffel’s in the basis of {va, vx, wi}: Let Γ̃ be as in (23) and

Γ̃
ω

στ the raised versions of these christoffels by the induced metric on Y .

Lemma 4.3. For Γ̃σµω as above evaluated on Y , we have that

∀p ∈ Y, F
(

Γ̃σµω

∣∣∣
p∈Y

)
= (−1)q

where q the number of x’s among the indices σ, µ, ω.
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Proof: Again, this boils down to recording parity of the coefficients of {va, vx, wi} in the basis of ∂sa , ∂x, ∂zi .
We’ll compute the first christoffel and leave the remainder to the reader

∇vavb = ∇∂sa (∂sb + ujb∂zj + uΓ
σ

bj∂yσ )

+ uia∇∂zi (∂sb + ujb∂zj + uΓ
σ

bj∂yσ )

+ uΓ
σ

ai∇∂yσ (∂sb + ujb∂zj + uΓ
σ

bj∂yσ )

= A1 +A2 +A3

We have

A1 = Γ
ω

ab∂yω + ujab∂zj + ujbΓ
σ

bj∂yσ + uΓ
σ

bj,a∂yσ + uΓ
σ

bjΓ
ω

aσ∂yω

A2 = uia

[
Γ
ω

ib∂yω + ujbΓ
ω

ij∂yω + uΓ
σ

bj,i∂yσ + uΓ
σ

bjΓ
ω

iσ∂yω

]
A3 = uΓσai

[
Γ
µ

σb∂yµ + uib,σ∂zj + ujbΓ
ω

σj∂yω + uσΓ
µ

nj∂yµ + uΓ
µ

bj,σ∂yµ + uΓµbjΓ
τ
σµ∂yτ

]
One can now compute using lemma 4.2 that

F(g(Ai, ∂sc)) = 1

F(g(Ai, ∂zj )) = 1 =⇒ F(ujg(Ai, ∂zj )) = 1

F(g(Ai, ∂yµ)) = (−1)σ(µ) =⇒ F(uΓµcig(Ai, ∂yµ)) = 1

=⇒ F(g(Ai, vc)) = 1

which verifies that (Γabc) = 1. The remaining symbols proceed similarly.

Finally, we establish a short lemma about the metric in the basis of {va, vx, wi}:

Wαβ = g(vα, vβ), bWαi = g(vα, wi), W ij = g(wi, wj)

and W
γδ

is defined as the inverse.

Lemma 4.4. For W as above, we have

F(W γδ) = F(W
γδ

) = (−1)p

where p is the number of x’s among γ and δ

Proof: This comes from taking the decomposition of the normal, {wi} and tangent frames, {vα, vx} for NY ,
TY , as given in section §13.2 and section §13.3, and then noting that parity is preserved under inversion.

As a result of this, we define
Γ
ω

σµ := W
ων

Γσµω

and conclude

Corollary 4.4.1.
F(Γ

ω

σµ) = (−1)p

where p the number of x’s among the indices σ, µ, ω

4.1 Proof of theorem 4.1

We prove theorem 4.1
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Theorem. Suppose that Y m ⊆ Mn+1 minimal with h = g
∣∣∣
TY

even up to order xm. Let p ∈ Y and

A : Sym2(TY )→ N(Y ) denote the second fundamental form, and let {wi(s, x)} be the frame for the normal
bundle described above. Define

Tγδi;α1···αp := g
(

(∇vα1
· · · ∇vαpA)(vγ , vδ), wi

)
where αi can take on any of the indices {sa, x}. Let q denote the number of “x”s among the indices
{γ, δ, α1, . . . , αp}, then we have

∀i, F(Tγδi;α1···αp) = (−1)q

Proof: The base case is an application lemma 4.3 as

Aαβi = Γ̃αβi

=⇒ F(Aαβi) = F(Γ̃αβi) = (−1)σ(α)+σ(β)

Now from here, we prove the theorem by induction for

g((∇vα1
· · · ∇vαnA)(vγ , vδ), wi)

where {vδ, vγ , vαi} ∈ {vα, vx}. Assume the parity statement holds for n− 1. We compute

(∇vα1
· · · ∇vαnA)(vγ , vδ) = ∇⊥vα1

[(∇vα2
· · · ∇vαnA)(vγ , vδ)]

− (∇vα2
· · · ∇vαnA)(∇‖vα1

vγ , vδ)

− (∇vα2
· · · ∇vαnA)(vγ ,∇

‖
vα1

vδ)

= I1 + I2 + I3

here ∇‖ = ∇Y is the connection on TY and ∇⊥ is the connection on NY (both using h). Let pn−1 denote
the number of x’s among the indices {α2, . . . , αn, γ, δ}. For any index, ω, recall the σ(ω) notation 17. We
have

F(g(I1, wi)) = F
(
g(∇⊥vα1

[(∇vα2
· · · ∇vαnA)(vγ , vδ)], wi)

)
= F

(
vα1

g((∇vα2
· · · ∇vαnA)(vγ , vδ), wi)− g((∇vα2

· · · ∇vαnA)(vγ , vδ),∇
⊥
vα1

wi)
)

By the inductive hypothesis, we have

F
(
vα1

g((∇vα2
· · · ∇vαnA)(vγ , vδ), wi)

)
= (−1)σ(α1)+pn−1

And similarly

∇⊥vα1
wi = Γ̃

k

α1iwk

so that

F(g((∇vα2
· · · ∇vαnA)(vγ , vδ),∇

⊥
vα1

wi)) = F(Γ̃
k

α1i)F(g((∇vα2
· · · ∇vαnA)(vγ , vδ), wk))

= (−1)σ(α1)+pn−1

again by the inductive hypothesis and lemma 4.3. I2 and I3 proceed analogously. This finishes the induction.
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5 Asymptotics for the variational vector field

Having established an expansion for u, we want to show the analogous expansion for our variational vector

fields Ṡ := F∗(∂t)
∣∣∣
t=0

and S̈ = ∇F∗(∂t)F∗(∂t)
∣∣∣
t=0

. We first need to fix a frame for the normal bundle.

Lemma. For any p ∈ γ and a neighborhood N(p) ⊆ M , there exists a frame {w1, . . . , wn+1−m} for N(Y )

which is orthonormal on (γ, g
∣∣∣
γ
) such that

g(wi, ∂x) = O(x) and odd up to order m− 1

g(wi, ∂sa) = O(x2) and even up to order m+ 2

g(wi, ∂rj ) = δij +O(x2) and even up to order m

Alternatively, we phrase this as

wi = cai (s, x)∂sa + cxi (s, x)∂x + cji (s, x)∂zj

F(x−2cai ) = 1

F(cxi ) = −1

F(cji ) = 1

This is done by taking a normal frame for γ ⊆ ∂M , translating it to the interior so that the frame is constant
in x, and projecting onto TY ⊥. See (13.3) in the appendix. With this frame, we prove

Theorem 5.1. Consider Ṡ = φ̇i(s, x)wi(s, x) and S̈ = φ̈i(s, x)wi(s, x) be the first and second variational
vector fields for a family of minimal submanifolds {Yt}t≥0 with Y as in §2. Then

F(φ̇i) = 1

F(φ̈i) = 1

Moreover, when m = n even, there are no xn log(x) or xn+1 log(x) terms.

The theorem says that in a good (x-dependent!) frame for the normal bundle, we have a polyhomogeneous
expansion to all orders which is even up to order m (m+ 1) for m even (odd). The idea is that Ṡ satisfies a
homogeneous Jacobi equation since Y0 is minimal, and S̈ satisfies an inhomogeneous Jacobi Equation since
{Yt} is a variation through minimal submanifolds. We leverage these equations to deduce a polyhomogeneous
expansion of φ̇i and φ̈i by doing the analogous PDE analysis for the minimal surfaces system as in section
§3.

5.1 Jacobi Operator in full codimension

By definition, Yt := expY (St) and Ṡ = ∂tSt

∣∣∣
t=0

. Given that {Yt} is a family of minimal submanifolds, Ṡ lies

in the kernel of the Jacobi operator

J(X) = ∆⊥YX + Ã(X) + Tr[RM (·, X)·]

Here ∆⊥Y denotes the laplacian on the normal bundle, Ã(X) denotes the Simons’ operator on Y , and
Tr[RM (·, X)·] is a trace of the ambient Riemann curvature tensor over TY . As we showed in section §3.7,
we have

Proposition 1. For Y m ⊆Mn+1 as in our setup, the Jacobi operator decomposes as

J(φiwi) = [(x∂x)2 − (m− 1)(x∂x)−m](φi) wi +Ri({φj})wi

where
R : xδCk+2,α

0 (Y )→ xδ+2Ck,α0 (Y )

is an error term
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In particular, if we expand R

R =
∑
p,β

rp,β(s, x)(x∂x)p(x∂s)
β

for β a multi-index, then rp,β = O(x2) and F(rp,β) = 1. Because we have φ̇i = O(1), we see that the same
PDE analysis and iteration argument as in section §3.8 gives

F(φ̇i) = 1

as desired.

Remark Note that if we choose to expand Ṡ in powers of x, we lose parity

Ṡ = Ṡ0(s) + xṠ1(s) + x2Ṡ2(s) + . . .

Ṡi ∈ TpM, p ∈ Y

i.e. both even and odd terms appear! This is because N(Y ) “tilts” with x so a priori, we have no parity of
Ṡ in powers of x with x-independent vectors, {Ṡk(s)}.

5.2 Regularity and Parity of S̈

Proposition 2. Let {Yt} ⊆ Mn+1 be a family of minimal of m-dimensional minimal submanifolds. Let
Y = Y0 and h denote a compactified metric on Y . Then for

Yt = {exph,p(St(p)ν(p)) | p ∈ Y }

The second variation of mean curvature is given by

d2

dt2
Ht = J⊥Y (S̈) +Q⊥(Ṡ)

where Q⊥ is a quadratic differential functional in Ṡ and F(Q⊥(Ṡ)) = 1

The details and the verification that

Q⊥(Ṡ) = Qi(s, x)wi

F(Qi) = 1

are shown in the appendix §13.8. By the same work with Ṡ, this immediately gives

Theorem 5.2. Let {Yt} ⊆ Mn+1 be a family of minimal of m-dimensional minimal submanifolds. Let
Y = Y0 and h denote a compactified metric on Y . Then for

Yt = {exph,p(St(p)) | p ∈ Y }

with St(p) ∈ NY for all t and {wi} the normal basis described in 13.3, we have

S̈ =
d2

dt2

∣∣∣
t=0

St = S̈iwi

Moreover
F(S̈i) = 1

and when m = n even, there are no xn log(x) or xn+1 log(x) terms.

Having shown that {ui}, {φ̇j}, and {φ̈k} have polyhomogeneous expansions, we want to the variations of
renormalized volume. To do this, we first review the mechanics of finite part evaluation
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6 Mechanics of Finite Part Evaluation

When computing variations of renormalized volume, we encounter integrals of the form

I(z) =

�
Y

zpb(x, s)xz−jdAY

for b having a polyhomogeneous expansion in x (after pulling back to Γ) and i ≥ 0, j ∈ {0, 1, 2}. We write

I(z) =

(�
Y ∩{x<δ}

+

�
Y ∩{x≥δ}

)
zpb(x, s)xz−jdAY = I1(z, δ) + zpI2(z, δ)

for some 1� δ > 0, where we’ve pulled out the factor of zp in the {x ≥ δ}. As before, I2(z) is holomorphic
because the integral is over x ≥ δ. In particular

FP
z=0

zpI2(z, δ) =

{
I2(0, δ) p = 0

0 p ≥ 1

We further assume the following expansions (after pulling back to Fermi coordinates)

dAY =

√
deth

xm
dx ∧ dAγ√

deth =

m+2∑
k=0

qj(s)x
k + Q̃(s)xm log(x) +Q(s)xm+1 log(x) +O(xm+2 log(x))

b(x, s) =

m+2∑
k=0

bj(s)x
k + B̃(s)xm log(x) +B(s)xm+1 log(x) +O(xm+2 log(x))

i.e. if a xd log(x)q term manifests, it can occur only when d ≥ m. This accounts for both even and odd

expansion of u(s, x) and {hαβ} as in §3. I1 expands as

I1(z, δ) = zp
� δ

0

�
γ

xz−m−j

m+2∑
`=0

∑
k+j=`

bkqjx
`

 dsdx
+ zp

� δ

0

�
γ

xz−m−j
[
(q0B̃ + Q̃b0)xm log(x) + (b0Q+ b1Q̃+ q0B + q1B̃)xm+1 log(x)

]
dsdx

+ zp
� δ

0

�
γ

xz−m−j
[
(b1Q+ b2Q̃+ q1B + B̃q2)xm+2 log(x)

]
dsdx

+ zp
� δ

0

�
γ

O(x log(x))dsdx

Observe that

FP
z=0

zp
� δ

0

�
γ

O(x log(x))dx =

{
C(δ) p = 0

0 p ≥ 1

for some finite constant C(δ). It remains to compute

FP
z=0

I1(z, δ) = FP
z=0

zp
m+2∑
k=0

ck

� δ

0

xz+k−m−jdx

+ FP
z=0

zp
2∑
k=0

c∗m+k

� δ

0

xz+k−m−j log(x)dx
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for

ck =

�
γ

 ∑
`+j=k

b`qj

 dVγ , 0 ≤ k ≤ m+ 2

c∗m =

�
γ

[
q0B̃ + Q̃b0

]
dAγ

c∗m+1 =

�
γ

[
b0Q+ b1Q̃+ q0B + q1B̃

]
dAγ

c∗m+2 =

�
γ

[
b1Q+ b2Q̃+ q1B + B̃q2

]
dAγ

Integrating,

I1(z, δ) = zp
(
cm+j−1

δz

z
+ c∗m+j−1

δz((z log(δ)− 1)

z2
+ F (δ, z)

)
where F (δ, z) is holomorphic near z = 0. In particular

FP
z=0

zpF (δ, z) =

{
F (δ, 0) p = 0

0 p ≥ 1

FP
z=0

zp
δz

z
=


log(δ) p = 0

1 p = 1

0 p > 1

FP
z=0

zp
δz(z log(δ)− 1)

z2
=


log(δ)2

2 p = 0

0 p = 1

−1 p = 2

0 p ≥ 3

Note that a xd log(x) term in the expansion of I1 leads to higher order poles. We summarize this work as

Lemma 6.1. Consider integrals of the form

I(z) =

�
Y

zpb(x, s)xz−jdAY

for b and dAY having polyhomogeneous expansions in x and p ≥ 0, j ∈ {0, 1, 2}. Moreover, assume that
xd log(x)q terms only manifest when d ≥ m and q = 1, or d ≥ m+ 3. Then we have that

FP
z=0

I(z) =



C(δ) + F (δ, 0) + I2(0, δ) + cm+j−1 log(δ) + c∗m+j−1
log(δ)2

2 p = 0

cm+j−1 p = 1

−c∗m+j−1 p = 2

0 p ≥ 3

for the coefficients {ck} listed above

Remark:

� This calculation illustrates the following key point: when at least one factor of z appears, the
finite part can be expressed as an integral over the boundary. We will refer to this process
from here on as localization.

� In the future we write
B = [b(x, s)]log,k

to indicate the xk log(x) term
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� Taking b(x, s) = 1 and p = 0 demonstrates how to compute the renormalized volume of Y via Riesz
regularization

� While the result for p = 0 seems to depend on δ, one can show that by changing δ → δ′ and keeping

track of boudary terms from the intermediate integral
� δ′
x=δ

, the result is independent of δ. This is
done out for b(x, s) = 1 in §13.5

7 Renormalized Volume for Y ⊆Mn+1

Let xY be a special bdf on (Y, h) considered as its own asymptotically hyperbolic manifold with metric even
to high order. In this section, we prove the following:

Theorem 7.1. Let Y m ⊆ Mn+1 minimal, satisfying the conditions §3 and xY a special bdf on Y . Let x a
special bdf on M , inducing the same conformal infinity on Y . We have that

FP
z=0

�
Y

xzY dAY =


FP
z=0

�
Y
xzdAY m even

�
γ
p(s)dAγ(s) + FP

z=0

�
Y
xzdAY m odd

where p(s) is some function on the boundary determined by u2(s) = 1
2(m−1)Hγ(s) and its derivatives.

This theorem says that for even dimensional manifolds, we can use either a special bdf on Y , which is labeled
as xY , or the almost special bdf, x, on Mn+1. Recall that a special bdf, x, satisfies

||dx||2g = gxx = 1

where g = x2g. We want to find a special bdf, xY , for Y , such that

||d log(xY )||2h = hαβx−2
Y dxY (vα)dxY (vβ) = 1

where {vα} is the pushforward of the coordinate basis for TY defined in 13.2 and h = g
∣∣∣
Y

. As in [1], [11]

and [12], we begin with a bdf on Y written as

xY (x) = xeω(s,x)

where

ω(s, x) =

∞∑
k=0

ωk(s)xk

such an expansion was shown in [11]. We now enforce 1 = ||d log(xY )||2h:

1 = hαβe−2ωx−2[eωdx(vα) + xeωdω(vα)][eωdx(vβ) + xeωdω(vβ)] (26)

= h
αβ

[dx(vα) + xdω(vα)][dx(vβ) + xdω(vβ)]

As in [11], the above equation shows that ω1 = 0, and in general that ω has an even expansion to high
order. When m is even, the first non-trivial odd coefficient occurs at xm+1, with potentially an xm log(x)
in the codimension 1 case. When m is odd, there may be xm log(x) and xm+1 log(x) terms. In both cases,

the first odd order term in (26) comes from the first odd order terms in the expansion of {hαβ}. To summarize:

Lemma: Let Y m ⊆Mn+1 be a minimal submanifold. There exists a bdf xY : Y → R+ such that

xY (s, x) = xeω(s,x)

with
F(ω) = 1

We now prove theorem 7.1
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7.1 Equivalence of Renormalized Volume of Y n ⊆Mn+1, m even

Let x be a special bdf on M and xY a special bdf for Y . We compute the following difference
�
Y

(xz − xzY )dAY = FP
z=0

�
Y

xz(1− eω(s,x)z)dAY =

�
Y

(zω +O(z2))dAY

= FP
z=0

�
Y

zωdAY =

�
γ

[ω(s, x)
√

deth](m−1)

=

�
γ

0 = 0

having used that

F(
√

deth) = 1, F(ω) = 1, =⇒ F
(
ω(s, x)

√
deth

)
= 1

so [ω(s, x)
√

deth](m−1) = 0. Note that the first and second variation of renormalized volume can also be
computed with x instead of xY . The proof uses the same techniques as showing that these variations are
independent of the choice of conformal infinity, which is done in §9.3.

7.2 Anomly for Renormalized Volume of Y n ⊆Mn+1, m odd

When m is odd, the two definitions of renormalized volume using x and xY are not equal. This is discussed
in [12] among other sources, but we compute the anomaly here using Riesz Reguarlization:

FP
z=0

�
Y

xz(1− eω(s,x)z)dAY =

�
γ

[ω(s, x)
√

deth](m−1) =

�
γ

(m−1)/2∑
k=0

ω2k(s)q(m−1)−2k(s)

Because m is odd, this sum may be non-zero and the renormalized volume depends on the choice of bdf. We
note that for 2k < m+ 1 the coefficients of {ω2k(s)} and q2k(s) are determined by u2(s) = 1

2(m−1)Hγ(s) via

the iterative procedure used to show their existence (see §3.8). As a result,

V(Y ) = FP
z=0

�
Y

xzdAY +

�
γ

p(s)dAγ

where p(s) is a function determined by u2(s) = 1
2(m−1)Hγ(s) and its derivatives.

8 Variational Formulae

We derive formulae for the first and second variations of minimal submanifolds Y m ⊆Mn+1. Following [2],
let {Yt} be a one-parameter family of minimal submanifolds and assume each Yt ∩ {x < δ} is embedded for
some small δ > 0. From equation (2) and section §3, we can write for m even

u(s, x) = uiN i

ui(s, x) = ui2(s)x2 + ui4(s)x4 + · · ·+ uim(s)xm + uim+1(s)xm+1 +O(xm+2)

Ṡ = Ṡiwi

Ṡi(s, x) = Ṡi0(s) + Ṡi2(s)x2 + · · ·+ Ṡim(s)xm + Ṡim+1x
m+1 +O(xm+2)

and analogously for m odd with some xm+1 log(x) terms potentially.

Theorem 8.1. Let {Yt} ⊆ Mn+1 be a one-parameter family of m-dimensional minimal submanifolds for
m < n + 1 and with Yt=0 = Y . Further suppose that for some δ > 0, for all t > 0 sufficiently small,
Yt ∩ {x < δ} is embedded in {x < δ}, and that

Yt ∩ U = Im

(
expY (St)

∣∣∣
x<δ

)
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for St ∈ N(Y ). If 0 is not in the L2 spectrum of the Jacobi operator, JY , and Ṡ = d
dtSt

∣∣∣
t=0

is a bounded

Jacobi field (w.r.t. g), then the first variation of renormalized volume is given by

DV
∣∣∣
Y

(Ṡ) =

�
γ

[dx(Ṡ)
√

deth](m)dAγ

where dAY =

√
deth
xm (dAγ ∧ dx). Furthermore,

D2V
∣∣∣
Y

(Ṡ, S̈) =



�
γ

(
− [dx(Ṡ)2

√
deth](m+1) + [dx(S̈)

√
deth]m m even

− 1
2

[
||Ṡ||2 · ||∇x||2

√
deth

](m+1)

+ 1
2

[
||Ṡ||2∆x

√
deth

](m) )
dAγ

�
γ

(
− [dx(Ṡ)2

√
deth](m+1,log) + [dx(S̈)

√
deth]m m odd

−[dx(Ṡ)2
√

deth](m+1) + 1
2 (||Ṡ||2∆x

√
deth)(m)

− 1
2 (||Ṡ||2||∇x||2

√
deth)(m+1) − (||Ṡ||2||∇x||2

√
deth)(m+1,log)

)
dAγ

(27)

Remark

� These formulae show that variations of renormalized volume depend only on the following geometric
quantities: the volume form, the special bdf, x, and the variational vector fields.

� The condition of 0 6∈ σ(JY ) guarantees that the moduli space of smooth minimal submanifolds with
smooth boundary curves is a Banach space. The proof is analogous to the one in [2], assuming that Y
is embedded in a neighborhood of the boundary.

� The first variation formula holds as long as Y = Y0 is minimal, and the remaining {Yt} have the same
embedding and asymptotic expansion properties, i.e. they are not required to be minimal, as long as
we have parity results for Ṡ. The second variation formula requires minimality

Corollary 8.1.1 (Codimension 1). For Y n ⊆Mn+1 with n even, Ṡ = φ̇ν for ν a unit normal to Y w.r.t g,
the formulae above become

DA
∣∣∣
Y

(φ̇) = −(n+ 1)

�
γ

φ̇0(s)un+1(s)dAγ(s)

D2A
∣∣∣
Y

(φ̇) =

�
γ

−(n+ 1)φ̈0un+1 + (1− n)φ̇0(s)φ̇n+1(s)

+ φ̇0(s)2 [(n− 1)(n− 2)− 4(3n− 1)u2un+1(s) + TrTγ(kn+1,0)] dAγ(s)

(28)

DA
∣∣∣
Y

(φ̇) =

�
γ

[
− (n+ 1)φ̇0(s)un+1(s) + F1(φ̇0, u2)

]
dAγ(s)

D2A
∣∣∣
Y

(φ̇) =

�
γ

−(n+ 1)φ̈0un+1 + (1− n)φ̇0(s)φ̇n+1(s)

+ φ̇0(s)2 [(n− 1)(n− 2)− 4(3n− 1)u2un+1(s) + TrTγ(kn+1,0)]

− φ̇0(s)
[
4(n+ 2)φ̇0(s)u2(s)U(s) + Φ̇(s)

]
+ F2(φ̈0, φ̇0, u2) dAγ(s)

(29)

Remark As we’ll see in the proof, F1 and F2 are actually polynomials in the coefficients {u2, . . . , un},
{φ̇0, . . . , φ̇n}, and {φ̈0, . . . , φ̈n}. As shown in 3.8, these coefficients are determined by the derivatives of
u2(s), φ̇0(s), and φ̈0(s), respectively. Thus, F1 and F2 are differential operators that only depend on γ
(which determines u2), φ̇0, and φ̈0, the “Dirichlet data” of Y , Ṡ, and S̈.

Specializing to the case of m = 2 and n+ 1 = 3, we have
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Corollary 8.1.2. For the set up as above with Y 2 ⊆ H3, we have

DA
∣∣∣
Y

(φ̇) = −3

�
γ

φ̇0u3dAγ

D2A
∣∣∣
Y

(φ̇) =

�
γ

(
−3φ̈0u3 − φ̇0φ̇3 − 20u2u3φ̇

2
0

)
dAγ

Note that the formula for D2A
∣∣∣
Y

(φ̇) is a correction to the formula in [2].

9 Proof of Variational Formulae

9.1 First Variation

Recall our set up: For Y mt ⊆ Mn+1 a family of minimal submanifolds with ∂Yt = γt, we describe these via
Fermi coordinates off of Y with respect to gY :

F (t, p) := expp(St(p))

with St ∈ N(Y ). We will write Ft(p) = F (t, p) when we want to emphasize that we’re working over a fixed
p. We compute

V(Y ) = FP
z=0

�
Y

xzdAY

DV
∣∣∣
Y

(Ṡ) : =
d

dt
V(Yt)

∣∣∣
t=0

= FP
z=0

d

dt

�
Y0

F ∗t (xz)F ∗t (dAt) = FP
z=0

�
Y0

zxz−1(p)dx(Ṡ(p))dA0

= FP
z=0

�
Y0

zxz−1dx(Ṡ)dA0

=

�
γ

[dx(Ṡ)
√

deth](m)

where in the third line we use d
dtF

∗
t (dAt)

∣∣∣
t=0

= 0 from the minimal surface condition, and

d

dt
F ∗t (xz) = zxz−1dx(Ṡ)

Note that because we’re only taking an mth term, the above result holds for both m even and m odd. When
m is odd only xm+1 log(x) terms appear, which doesn’t affect the (m)th order term.

9.2 Second variation

The second variation is derived using the same procedure

D2V
∣∣∣
Y

(X) =
d2

dt2
FP
z=0

�
Yt

xzdAt = FP
z=0

d2

dt2

�
Y0

x(F (t, p))zF ∗t (dAt)

Differentiating under the integral, we get

D2V
∣∣∣
Y

(X) = FP
z=0

[�
Y0

[z(z − 1)xz−2ẋ2 + zxz−1ẍ]dA+ 2

�
Y0

zxz−1ẋ
d

dt
F ∗t (dAt)

∣∣∣
t=0

+

�
Y0

xz
d2

dt2
F ∗t (dAt)

∣∣∣
t=0

]
where ẋ and ẍ are equal to

di

dti
x(F (t, p)), i = 1, 2
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Note that d
dtF

∗
t (dAt)

∣∣∣
t=0

vanishes when Y0 is minimal. Hence

D2V
∣∣∣
Y

= FP
z=0

[�
Y0

[
z(z − 1)xz−2ẋ2 + zxz−1ẍ

]
dAY +

�
Y0

xz
d2

dt2
F ∗t (dAt)

∣∣∣
t=0

]
= FP

z=0
[I1(z) + I2(z)]

9.2.1 I1 Computation

We compute the finite part of the first integral I1 = A1 +B1.

FP
z=0

A1 = FP
z=0

�
Y

z(z − 1)xz−2ẋ2dA

= FP
z=0

z2

�
xz−2ẋ2dAY − FP

z=0

�
Y

zxz−2(dx(Ṡ))2dAY

=

�
γ

−
[
(dx(Ṡ))2

√
det(h)

](m+1,log)

−
[
(dx(Ṡ))2

√
det(h)

](m+1)

using the techniques in (6). For B1, we write this as

B1 =

�
Y

zxz−1ẍ =

�
Y

zxz−1dx(S̈)

=

�
γ

[dx(S̈)

√
det(h)]m

Thus we have

FP
z=0

I1 = FP
z=0

(A1 +B1) =

�
γ

(
−[(dx(Ṡ))2

√
det(h)](m+1,log) − [dx(Ṡ)2

√
deth](m+1) + [dx(S̈)

√
det(h)]m

)
dAγ

9.2.2 I2 Computation

We compute

I2 = FP
z=0

�
Y

xz
d2

dt2
F ∗t (dAt)

∣∣∣
t=0

We know from a variety of sources (e.g. [4]) that for a geodesic variation

d2

dt2
F ∗t (dAt) = 〈∇⊥Ṡ,∇⊥Ṡ〉 − Ric⊥(Ṡ, Ṡ)− |〈A(·, ·), Ṡ〉|2 + divY (S̈)

where ∇⊥ denotes the connection on the normal bundle, A denotes the second fundamental form, Ric⊥ is
the trace over TY ⊆ TM of the ambient Riemann curvature applied to elements in N(Y ). We first integrate
by parts on the divergence term and get

�
Y

xzdivY (S̈)dAY =

�
γ

xz〈S̈, n̂〉dAγ −
�
Y

zxz−1〈∇Y x, S̈〉

Again, the boundary term vanishes because we first assume Re(z) � 0. For the second term, ∇Y x ∈ TY
and as we show in §13.8, S̈ ∈ NY , so this term vanishes automatically.

We now handle the remaining terms

〈∇⊥Ṡ,∇⊥Ṡ〉 − Ric⊥(Ṡ, Ṡ)− |〈A(·, ·), Ṡ〉|2

This is the quadratic form for the corresponding Jacobi operator

JYX = ∆⊥X + Ric⊥(X, ·) + Ã(X)
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where
Ã(X) = g((∇vαvβ)N , X)hαγhβδ(∇vγvδ)N

is the Simons operator. Because we consider a variation among minimal submanifolds, we have JY (Ṡ) = 0.
In order to get the integrand in the form of the Jacobi operator, we integrate by parts and gain a boundary
term which contributes to our second variation. Thus�

Y

xz
(
〈∇⊥Ṡ,∇⊥Ṡ〉 − Ric⊥(Ṡ, Ṡ)− |〈A(·, ·), Ṡ〉|2

)
dAy = A1 +A2 +A3

We now integrate by parts on the first term in our original expression for I2 and get

�
Y

xz〈∇⊥Ṡ,∇⊥Ṡ〉 = −
�
Y

zxz−1
m∑
i=1

∂i(x)〈Ṡ,∇iṠ〉 −
�
Y

xz
m∑
i=1

〈Ṡ,∇i∇iṠ〉+

�
γ

xz
m∑
i=1

〈Ṡ,∇iṠ〉

= −
�
Y

zxz−1
m∑
i=1

∂i(x)〈Ṡ,∇iṠ〉 −
�
Y

xz〈Ṡ,∆⊥Ṡ〉

where we sum over an orthonormal frame of TY m, {e1, . . . , em} with respect to g
∣∣∣
Y

. The last integral in the

first line vanishes because x
∣∣∣
γ
≡ 0 when Re(z) � 0. The second integral in the second line combines with

A2 and A3 to yield 0 because Ṡ is a Jacobi field. Thus

I2 =

�
Y

xz
d2

dt2
F ∗t (dAt) = −FP

z=0

�
Y

zxz−1
m∑
i=1

∂i(x)〈Ṡ,∇iṠ〉dAY

Integrating the first term by parts again, we get

−
�
Y

zxz−1
m∑
i=1

∂i(x)〈Ṡ,∇iṠ〉dAY = −1

2

�
Y

zxz−1
m∑
i=1

∂i(x)∂i||Ṡ||2

=
1

2

�
Y

z||Ṡ||2∂i
(
xz−1∂i(x)

)
− 1

2
FP
z=0

�
γ

zxz−1
∑
i

∂i(x)||Ṡ||2

Again, the integral over γ vanishes because Re(z) � 0 and x
∣∣∣
γ
≡ 0. We take the remaining integral and

expand it as

1

2

�
Y

z||Ṡ||2
∑
i

∂i
(
xz−1∂i(x)

)
=

1

2

�
Y

z||Ṡ||2
∑
i

[(z − 1)xz−2(∂i(x))2 + xz−1∂2
i (x)]

=
1

2

�
Y

z||Ṡ||2
[
(z − 1)xz−2||∇x||2 + xz−1∆x

]
Note that when we write ∆x and ∇x, we consider x as a function restricted to Y and compute the laplacian
and gradients with respect to bases on TY with the complete metric g. Now we localize and get

FP
z=0

I2(z) = FP
z=0

�
Y

xz
d2

dt2
F ∗t (dAt)

=
1

2
FP
z=0

�
Y

z(z − 1)xz−2||Ṡ||2||∇x||2dVY +
1

2
FP
z=0

�
Y

zxz−1||Ṡ||2∆xdAY

so that

FP
z=0

I2 = −1

2

�
γ

[
||Ṡ||2||∇x||2

√
deth

]m+1,log

− 1

2

�
γ

[
||Ṡ||2 · ||∇x||2

√
deth

](m+1)

dAγ

+
1

2

�
γ

[
||Ṡ||2∆x

√
deth

](m)

dAγ
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9.2.3 Putting it Together

We add the two integrals and get for

D2V
∣∣∣
Y

(Ṡ, Ṡ) =

�
γ

−[dx(Ṡ)2
√

deth](m+1,log) + [dx(S̈)
√

deth]m − [dx(Ṡ)2
√

deth](m+1)

+
1

2

[
(||Ṡ||2∆x

√
deth)(m) − (||Ṡ||2||∇x||2

√
deth)(m+1) − (||Ṡ||2||∇x||2

√
deth)(m+1,log)

]
This shows that the second variation is computable in terms of the asymptotics of the metric and variational
vector fields along γ. This proves theorem 8.1 in the m is odd case. If m < n even or K = 0 in the expansion
(3) then equation (27) becomes

D2V
∣∣∣
Y

(Ṡ, Ṡ) =

�
γ

[dx(S̈)
√

deth]m − [dx(Ṡ)2
√

deth](m+1)

+
1

2

[
(||Ṡ||2∆x

√
deth)(m) − (||Ṡ||2||∇x||2

√
deth)(m+1)

]
This follows by the remarks on the F functional for m < n or when K = 0. In section 10, we show that even
in the case of m = n even, the above holds. This will conclude the full statement of theorem 8.1.

Having given formulas for first and second variation, we show that these are independent of the choice

of special bdf, and hence independent of the choice of representative of the conformal infinity, k0 = g
∣∣∣
γ
.

9.3 Conformal Invariance of Variational Formulae for even dimensional sub-
manifolds

We show the first and second variations for Y m ⊆ Mn+1 can be computed using x : M → R≥0 instead of
xY : Y → R≥0. The mechanics of the proof show that the variations of renormalized volume are independent
of the choice of special bdf, asssuming the induced conformal infinity is the same.

For the first variation, recall xY = xeω

FP
z=0

d

dt

�
Yt

(xz − xzω)dAYt = FP
z=0

d

dt

�
Yt

xz(1− ezω)dAYt

Note that dAYt is the area form with respect to the complete metric, g restricted to Yt, and hence in this
form is invariant, i.e. doesn’t depend on the choice of boundary representative. Pulling back, we get

d

dt

�
Yt

xz(1− ezω)dAYt =
d

dt

�
Y0

F ∗t (x)z(1− ezF
∗
t (ω))F ∗t (dAYt)

∣∣∣
t=0

=

�
Y

[zxz−1ẋ(1− ezω) + xz(−zω̇ezω)]dAY

again, d
dtF

∗
t (dAYt)

∣∣∣
t=0

= 0. For the first term

zxz−1ẋ(1− ezω) = z2xz−1ẋ(zω +O(z2)) = z2xz−1ẋω =⇒ FP
z=0

�
Y

zxz−1ẋ(1− ezω) = −
�
γ

[ẋω
√

deth]log,m

= 0

The vanishing of this integral is seen in that ẋ = O(x) and F(ẋ) = −1 so that

[ẋω
√

deth]log,m = [ẋ]log,mω0
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but then for m < n, [ẋ]log,m = 0 by the regularity and expansion of φ̇i. When m = n, one makes explcit use
of the expansion of ν in §?? to show that this is 0. For the second term, we get

FP
z=0
− z

�
Y

xzω̇ezωdAY = FP
z=0
− z

�
Y

xzω̇(1 + zω +O(z2))dAY

= FP
z=0

�
Y

[−zxzω̇ − z2ωω̇xz +O(z3)]dAY

=

�
γ

−[ω̇
√

deth](m−1) + [ωω̇
√

deth]log,m−1

where we’ve again noted that all quadratic terms in z vanish under finite part evaluation at z = 0 from
lemma 6.1. Both integrands satisfy F = 1 so the above m− 1 terms vanish.

The second variation proceeds similarly, making use of the F functional for m < n and the expansion
of ν when m = n even. For m odd, renormalized volume is not conformally invariant. Using the above
process, one could compute how the first and second variations depend on the initial choice of bdf.

Having derived formulae for first and second variations, we simplify it for codimension 1 submanifolds.

In this case,
√

deth and h
αβ

are tractable in terms of the coefficients {uik}. Similarly, terms involving Ṡ and

S̈ simplify with Ṡ = φ̇ν and S̈ = φ̈ν. In particular, ν(x, s), the unit normal to Y n ⊆Mn+1 (with respect to
the complete metric), is computable in terms of {uik}.

10 Codimension 1 case

For Y n ⊆Mn+1, we write
Ṡ = φ̇ν

where φ̇ = O(1) and g(ν, ν) = 1. In this section, we compute ν explicitly and show

Theorem 10.1. For {Y nt } ⊆Mn+1 a family of minimal hypersurfaces, we have

DV(Y ) = −(n+ 1)

�
γ

φ̇0(s)un+1(s)ds

for n even and

DV(Y ) = −
�
γ

(
[(n+ 1)un+1(s) + U(s)]φ̇0(s) + F (φ̇0(s), u2(s))

)
ds

for n odd.

Now recall kn+1 = [k(s, z = 0, x)]n+1 from (3). We have

Theorem 10.2. For {Y nt } ⊆Mn+1 a family of minimal hypersurfaces, we have

D2V(Y ) =

�
γ

−(n+ 1)φ̈0un+1 + (1− n)φ̇0φ̇n+1 + φ̇2
0 [(n− 1)(n− 2)− 4(3n− 1)u2un+1 + TrTγ(kn+1,0)]

for n even and

D2V(Y ) =

�
γ

−(n+ 1)φ̈0un+1 + (1− n)φ̇0φ̇n+1 + φ̇2
0 [(n− 1)(n− 2)− 4(3n− 1)u2un+1 + TrTγ(kn+1,0)]

− φ̇0

[
4(n+ 2)φ̇0u2U + Φ̇

]
+ F (φ̈0, φ̇0, u2)

for n odd.
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10.1 Computing the normal

As in §3.2, let f : U ⊆ ∂M → γ be a map in fermi coordinates. Let p = f(s) and {ea(s) = γa(s) = ∂sa} be
a frame for Tpγ in some neighborhood of p× {0}. Translate this to all of γ × [0, ε) = Γ. Complete the basis
with ∂x and N(s, x) = ∂z a normal coordinate for Γ such that N(s, 0) = N(s) a unit normal for γ ⊆ ∂M .
Then let

G(s, x) = expΓ(u(s, x)N(s, x))

which in Fermi coordinates of (s, x, z) can be written as

G(s, x) = (s, x, z = u(s, x))

The tangent space is spanned by

va = G∗(∂sa) = ∂sa + Γ
b

az∂sb + Γ
x

az∂x + ua(s, x)∂z

vx = G∗(∂x) = ∂x + ux(s, x)∂z + uΓ
a

xz∂sa + uΓ
z

xz∂z

having noted that Γ
x

xz = 0 in the second line. Now we can compute the normal to Y , ν, by projecting onto
the tangent basis. We have

ν̃ = ∂z − h
ab
g(∂z, va)vb − h

ax
g(∂z, va)vx

− hxag(∂z, vx)va − h
xx
g(∂z, vx)vx

= ∂z −
∑
a

(ua +Ra)va − (ux +Rx)vx

= (1− u2
x + R̃z)∂z −

∑
a

(ua + R̃a)∂a − (ux + R̃x)∂x

where

R̃z

∣∣∣
z=u(s,x)

= O(x4), F
(
x−2R̃z

∣∣∣
z=u(s,x)

)
= 1

R̃a

∣∣∣
z=u(s,x)

= O(x4), F
(
x−2R̃a

∣∣∣
z=u(s,x)

)
= 1

R̃x

∣∣∣
z=u(s,x)

= O(x3), F
(
x−2R̃x

∣∣∣
z=u(s,x)

)
= −1

The F(·) statements actually say that R̃z, R̃a are even to order n+ 2, and R̃x odd to order n+ 1. Moreover,
note that in this decomposition

g(ν̃, ν̃) = 1 +O(x2), F(g(ν̃, ν̃)) = 1

so that if we normalize, we get

ν =
ν̃√
g(ν̃, ν̃)

= cz∂z + cx∂x + ca∂sa

such that

cz = 1 + R̃z, F(x−2R̃z) = 1

cx = −ux + R̃x = O(x), F(x−2R̃x) = −1

ca = −ua + R̃z = O(x2), F(x−2R̃a) = 1

In particular, because u lacks xn log(x), xn+1 log(x) terms, we see that cz, cx, and ca lack xn log(x),
xn+1 log(x) terms.
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10.2 First variation, codimension 1, even

We now apply the first variation formula, and the expansion for Ṡ = φ̇ν

DV(Y ) =

�
γ

[dx(Ṡ)
√

deth](n) = −
�
γ

[φ̇(ux + R̃x)
√

deth](n)

since n is even and F(φ̇) = F(
√

deth) = 1, while F(ux) = F(x−2R̃x) = −1, we have that

[φ̇(ux + R̃x)
√

deth](n) = [φ̇ux

√
deth](n) + [φ̇R̃x

√
deth](n)

= [φ̇]0[ux]n[
√

deth]0 + [φ̇]0[R̃x]n[
√

deth]0

Now we compute

[φ̇]0[ux]n[
√

deth]0 = φ̇0(n+ 1)un+1

Here, we’ve noted that [
√

deth]0 = 1. Thus

DV(Y ) = −(n+ 1)

�
γ

φ̇0(s)un+1(s)ds

This proves theorem 10.1 in the even case.

Recall that for Y n ⊆ Mn+1 non-degenerate, any φ̇0(s) ∈ C∞c (γ) can be extended to a Jacobi field, φ̇,
on all of Y (see §13.6) for which we can define φt = tφ̇ and hence Yt. In this case, we have:

Corollary 10.2.1. If Y n ⊆ Mn+1 is a nondegenerate minimal submanifold and a critical point for renor-
malized volume with n even, then un+1(s) ≡ 0.

When Y is degenerate, the set of {φ̇0(s)} which can be extended to an L2 Jacobi field on all of Y are
orthogonal to a finite dimensional kernel (cf §13.6 and [2] for details).

Remark As seen in §3.8, u2(s) determines the coefficients {u2k(s)}n/2k=2 via the minimal surface system.
We think of these terms as “local” in the sense that they are determined by the boundary γ, which deter-
mines u2(s) = 1

2(n−1)Hγ(s). By contrast, un+1(s) is not determined by u2(s), and hence is “global”. The

rest of the expansion of u(x, s) is determined by γ and un+1(s) and continuing the iteration. In a loose
sense, un+1(s) represents the Neumann data in the Dirichlet-to-Neumann type problem we’ve posed: given
γm−1 ⊆ ∂M , find Y m ⊆ Mn+1 minimal with ∂Y = Y ∩ ∂Mn+1 = γ. The Dirichlet data is γ, and the
Neumann data is the first undetermined term in the series expansion, un+1(s). Thus, for nondegenerate
critical points of renormalized volume, the Neumann data is exactly 0.

Taking a different perspective, we see that if Y is non-degenerate, then the renormalized volume func-
tional determines the dirichlet to neumann map of γ → un+1 for any γ ⊆ ∂M ! Formally, we recall notation
parallel to that of [2] - let M(M) denote the moduli space of minimal hypersurfaces of M intersecting ∂M
in a Cm+2,α submanifold, γ = ∂Y = Y ∩ ∂M .

Corollary 10.2.2. Let Y n ⊆ Mn+1 a nondegenerate minimal submanifold. Let U ⊆ M(M) be any open
subset with U 3 Y . Then V : U → R determines un+1

Globally, V :M→ R determines γ → un+1 for any pairing of (Y, γ) with Y minimal.

10.3 Codimension 1, First variation, odd

We demonstrate that the first variation is not as transparent when n is odd. We compute

[φ̇(ux + R̃x)
√

deth](n)
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where

ux = 2u2(s)x+ · · ·+ (n− 1)un−1(s)xn−2 + [(n+ 1)un+1(s) + U(s)]xn + (n+ 1)U(s)xn log(x) +O(xn+1)

φ̇ = φ̇0(s) + · · ·+ φ̇n−1(s)xn−1 + φ̇n+1(s)xn+1 + Φ̇(s)xn+1 log(x) +O(xn+2)

R̃x(x, s) = R̃x,3(s)x3 + · · ·+ R̃x,n+3(s)xn+3 + Rx(s)xn+3 log(x) +O(xn+4)√
deth(s, x) = q0(s) + · · ·+ qn−1(s)xn−1 + qn+1(s)xn+1 +Q(s)xn+1 log(x) +O(xn+2)

We can already see that there are many combinations that multiply to form an xn term, e.g.

2u2φ̇0qn−1, R̃x,3φ̇0qn−3, . . .

however, we can write the nth term as

[φ̇(ux + R̃x)
√

deth](n) = [(n+ 1)un+1(s) + U(s)]φ̇0 + P ({φ̇2k}(n−1)/2
k=0 , {u2k}(n−1)/2

k=1 , {R̃x,2k+1}(n−1)/2
k=1 , {q2k}

(n−1)/2
k=0 })

Clearly, P is determined by terms of order n− 1 or lower, so we write

F (φ̇0(s), u2(s)) := P ({φ̇2k}(n−1)/2
k=0 , {u2k}(n−1)/2

k=1 , {R̃x,2k}(n−1)/2
k=0 , {q2k}

(n−1)/2
k=0 })

noting implicitly that {R̃x,2k+1}(n−1)/2
k=1 is determined by {u2k}(n−1)/2

k=1 , which follows from the construction
in §10.1.

Remark From hereon, we will use F (φ̇0, u2) to denote a polynomial function of {φ̇0, φ̇2, . . . , φ̇n−1} and
{u2, u4, . . . , un−1}. In §3.8, we showed that φ̇2k(s) and u2k(s) are determined by φ̇0(s) and u2(s), respec-
tively, for 2k ≤ n − 1. Because of this, we can think of F as a non-linear differential operator acting on φ̇0

and u2. We will make a slight abuse of notation and write “F (φ̇0, u2)” wherever such a function appears, as
opposed to having a distinct labeling for each such function of (φ̇0, u2). We will make the same convention
for functions R(u2), which are the same as F (φ̇0, u2) when there is no φ̇0 dependence. We will also use such
convention for functions F (φ̈0, φ̇0, u2) when there is dependence on {φ̈0, . . . , φ̈n}.

We conclude

DV(Y ) = −
�
γ

(
[(n+ 1)un+1(s) + U(s)]φ̇0(s) + F (φ̇0(s), u2(s))

)
dAγ

proving theorem 10.1 in the odd case.

10.4 Codimension 1, Second variation, Even

The formula of interest is

D2V
∣∣∣
Y

(Ṡ, Ṡ) =

�
γ

−[dx(Ṡ)2
√

deth](n+1,log) − [dx(Ṡ)2
√

deth](n+1)

+
1

2

[
(||Ṡ||2∆x

√
deth)(n) − (||Ṡ||2||∇x||2

√
deth)(n+1)

]
− 1

2
(||Ṡ||2||∇x||2

√
deth)(n+1,log) + [dx(S̈)

√
deth]n

= I1 + I2 + I3 + I4 + I5 + I6

We’ll look at each of the summands individually.
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10.4.1 I1

As in §9.3, we have

dx(Ṡ)2 = [−ux + R̃x]2φ̇2 = O(x2)

=⇒ [dx(Ṡ)2
√

deth](n+1,log) = [dx(Ṡ)2](n+1,log) · [
√

deth]0

= [dx(Ṡ)2](n+1,log)

= [(−ux + R̃x)2]n+1,log · φ̇2
0

having used that F(φ̇) = 1 and has no xn log or xn+1 log(x) terms. The same holds for u and F(x−2R̃x) = −1,
so we see that

[(−ux + R̃x)2]n+1,log = [u2
x]n+1,log = 0

hence
I1 = 0

10.4.2 I2

In this case, similar reasoning holds and we see that

[dx(Ṡ)2
√

deth]n+1 = [(−ux + R̃x)2]n+1 · φ̇2
0

= [u2
x]n+1 · φ̇2

0

= 4u2un+1φ̇
2
0

so

I2 = −
�
γ

4(n+ 1)u2un+1φ̇
2
0

10.4.3 I3

For the second term, we have

I2 =
1

2

�
γ

[||Ṡ||2∆x
√

deth](n)

recall the notation of {yα} denoting any coordinate of {sa, x}, and that ∆ = ∆Y represents the laplacian on
Y with respect to the complete (induced) metric, h. We decompose√

deth ∆x = xn∂yα(
√

dethhαβ∂yβx) = xn∂yα(x2−n
√

deth h
αβ
∂yβx)

= x2∂sa(
√

deth h
ax

) + (2− n)x
√

deth h
xx

+ x2∂x(
√

deth h
xx

)

hence

[||Ṡ||2∆x
√

deth](n) = [φ̇2∂sa(
√

deth h
ax

)](n) + (2− n)[φ̇2
√

deth h
xx

](n+1) + [φ̇2∂x(
√

deth h
xx

)](n)

From our previous work, h
ax

is O(x3) and is odd up to order (n+ 1). This tells us that ∂sa(
√

deth h
ax

) is
odd up to order (n+ 1) and O(x3) and so because F(φ̇2) = 1, we have that

[φ̇2∂sa(
√

deth h
ax

)](n) = 0

For the second term, we do the same analysis as before: φ̇2, h
xx

,
√

deth all satisfy F(·) = 1, so any (n+ 1)st
term must come from the (n + 1)st term in one of the factors multiplied by the 0th order term in the
remaining factors. We get

(2− n)[φ̇2
√

deth h
xx

](n+1) = (2− n)[2φ̇0φ̇n+1 + φ̇2
0(h

xx

n+1 + qn+1)]
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For the last term of [φ̇2∂x(
√

dethh
xx

)](n), we know that F(∂x(
√

deth h
xx

)) = −1 because both F(
√

deth) =
F(h

xx
) = 1 and so the derivative of their product is O(x) and satisfies F(·) = −1. On the other hand

F(φ̇2) = 1. Thus the nth term of the product can only come from the nth term of ∂x(
√

deth h
xx

) paired

with the 0th order term of φ̇2. Recall from corollary 3.1.3 that
√

deth h
xx

has no xn+1 log(x) term. Thus

[φ̇2∂x(
√

deth h
xx

)](n) = (n+ 1)φ̇2
0(qn+1 + h

xx

n+1)

since q0 = h
xx

0 = 1. Thus

I3 =

�
γ

(2− n)φ̇0φ̇n+1 +
3

2
φ̇2

0(qn+1 + h
xx

n+1)

10.4.4 I4, even

For the third term

I3 = −1

2

�
γ

[||Ṡ||2 · ||∇x||2
√

deth](n+1)

We expand using

||∇x||2 = hxx(1 + uiΓxxi)
2 + 2hxauiΓxai(1 + uiΓxxi)

+ habuiΓxaiu
jΓxbj

||Ṡ||2 = x−2φ̇2

From (??) and corollaries 3.1.2, 3.1.3, we see that F(x−2||∇x||2) = 1. Similarly, F(x2||Ṡ||2) = 1. Thus

[||Ṡ||2||∇x||2
√

deth](n+1) = [φ̇2(x−2||∇x||2)
√

deth]n+1

= [φ̇2]n+1[x−2||∇x||2]0[
√

deth]0 + [φ̇2]0[x−2||∇x||2]n+1[
√

deth]0

+ [φ̇2]0[x−2||∇x||2]0[
√

deth]n+1

Moreover, by the vanishing orders of ui and Γxai and Γxxi, we have that

[x−2||∇x||2]0 = 1

[x−2||∇x||2]n+1 = [h
xx

]n+1 = h
xx

n+1

Similarly,

[φ̇2]0 = φ̇2
0

[φ̇2]n+1 = 2φ̇0φ̇n+1

[
√

deth]0 := 1

[
√

deth]n+1 := qn+1

From this, we get that

[||Ṡ||2||∇x||2
√

deth](n+1) = 2φ̇0φ̇n+1 + φ̇2
0(h

xx

n+1 + qn+1)

This gives

I4 =

�
γ

−φ̇0φ̇n+1 −
1

2
(h
xx

n+1 + qn+1)φ̇2
0
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10.4.5 I5

As in I4, we have that

||Ṡ||2||∇x||2
√

deth = φ̇2(x−2||∇x||2)
√

deth

=⇒ [||Ṡ||2||∇x||2
√

deth]log,n+1 = [φ̇2]log,n+1[x−2||∇x||2]0[
√

deth]0

+ [φ̇2]0[x−2||∇x||2]log,n+1[
√

deth]0 + [φ̇2]0[x−2||∇x||2]0[
√

deth]log,n+1

We first recall that [φ̇]log,n+1 = 0 which gives

[φ̇2]log,n+1 = 0

we also note that

x−2||∇x||2 = h
xx

(1 + uiΓxxi)
2 + 2h

xa
uiΓxai(1 + uiΓxxi)

+ h
ab
uiΓxaiu

jΓxbj

=⇒ [x−2||∇x||2]log,n+1 = [h
xx

]log,n+1 = 0

=⇒ [x−2||∇x||2]0 = [h
xx

]0 = 1

by the vanishing order of the other expression and again from corollary 3.1.3 that hxx has no xn+1 log(x)

term. Finally, from the same remark, we see that [
√

deth]log,n+1 = 0. Thus

I5 = 0

10.4.6 I6

We compute

[dx(S̈)
√

deth]n = [φ̈dx(ν)
√

deth]n

= φ̈0[−ux + R̃x]n[
√

deth]0

= −(n+ 1)un+1φ̈0

This comes from section §10.1 where

ν = cz∂z + cx∂x + ca∂sa

cx = −ux +Rx

F(x−2Rx) = 1

Since ux = O(x) and is odd, the nth order term of (φ̈dx(ν)
√

deth) can only come from the 0th order terms

of φ̈ and
√

deth and the nth order term of cx. This is precisely because F(φ̈) = F(
√

deth) = 1. Thus

I6 =

�
γ

−(n+ 1)φ̈0un+1dAγ

10.4.7 The Full Expression, Even Case

Together,

D2V(Y ) =

�
γ

−(n+ 1)φ̈0un+1 + (1− n)φ̇0φ̇n+1 + φ̇2
0

[
(h
xx

n+1 + qn+1)− 4(n+ 1)u2un+1

]
in the codimension 1 case. In §13.7, we show by a more careful analysis that

h
xx

n+1 + qn+1 = (n− 1)(n− 2)− 8(n− 1)u2un+1 + TrTγ(kn+1,0)
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and so the final formula is

D2V(Y ) =

�
γ

−(n+ 1)φ̈0un+1 + (1− n)φ̇0φ̇n+1 + φ̇2
0 [(n− 1)(n− 2)− 4(3n− 1)u2un+1 + TrTγ(kn+1,0)]

In particular, noting that I1 = I5 = 0, this finishes the proof of theorem 8.1 and theorem 10.2 in the even
case.

10.5 Codimension 1, Second Variation, Odd

Note that when n is odd, there is no xn log(x) or xn+1 log(x) terms in equation (3). So terms of the form
[·]log,n, [·]log,n+1 will only come from [u]log,n, [u]log,n+1 or [φ̇]log,n, [φ̇]log,n+1. Recall that the formula is given
by

D2V
∣∣∣
Y

(Ṡ, Ṡ) =

�
γ

−[dx(Ṡ)2
√

deth](n+1,log) − [dx(Ṡ)2
√

deth](n+1)

+
1

2

[
(||Ṡ||2∆x

√
deth)(n) − (||Ṡ||2||∇x||2

√
deth)(n+1)

]
− 1

2
(||Ṡ||2||∇x||2

√
deth)(n+1,log) + [dx(S̈)

√
deth]n

= I1 + I2 + I3 + I4 + I5 + I6

where [f(x, s)](n+1,log) denotes the coefficient of the xn+1 log(x) term for f(x, s).

10.5.1 I1

Similar to the even case,

I1 = −
�
γ

[dx(Ṡ)2
√

deth](n+1,log)dAγ = −
�
γ

[φ̇2(ux + R̃x)2
√

deth](n+1,log)

From the expansions used in the first variation formula, adapted to the odd case, we have

φ̇2 = φ̇0(s)2 + · · ·+ 2φ̇0(s)φ̇n+1(s)xn+1 + 2Φ̇(s)φ̇0(s)xn+1 log(x) + . . .

(ux + R̃x)2 = 4u2(s)2x2 + · · ·+ 4[(n+ 1)un+1(s) + U(s) + R̃x,n−1]u2(s)xn+1 + 4(n+ 1)u2(s)U(s)xn+1 log(x) + . . .√
deth(x, s) = q0(s) + · · ·+ qn+1(s)xn+1 +Q(s)xn+1 log(x) + . . .

so the xn+1 log(x) coefficient of the product is

[φ̇2(ux + R̃x)2
√

deth](n+1,log) = φ̇0(s)24(n+ 1)u2(s)U(s)q0(s) = 4(n+ 1)u2(s)U(s)φ̇0(s)2

Together,

I1 = −
�
γ

4(n+ 1)u2(s)U(s)φ̇0(s)2dAγ(s)

10.5.2 I2

Again, similar to the even case:

I2 = −
�
γ

[dx(Ṡ)2
√

deth](n+1)dAγ = −
�
γ

[φ̇2(ux + R̃x)2
√

deth](n+1)

As in the first variation for n odd, there are many terms in this integrand which combine to give an n+ 1st
term because n+ 1 is even. However, we isolate the terms which involve un+1, U , φ̇n+1, and Φ and combine
the lower order terms:

I2 = −
�
γ

(
4[(n+ 1)un+1(s) + U(s)]u2(s)φ̇0(s)2 + F (φ̇0, u2)

)
dAγ(s)
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10.5.3 I3, odd

Here,

I3 =

�
γ

1

2
(||Ṡ||2(∆x)

√
deth)(n)dAγ(s)

=

�
γ

[φ̇2∂sa(
√

deth h
ax

)](n) + (2− n)[φ̇2
√

deth h
xx

](n+1) + [φ̇2∂x(
√

deth h
xx

)](n)

Write the first term as F (φ̇0, u2) as no (n+ 1)st or (n+ 1, log) coefficients appear. We compute the middle
and last terms as follows:

[φ̇2
√

deth h
xx

](n+1) = 2φ̇0φ̇n+1q0h
xx

0 + φ̇2
0qn+1h

xx

0 + φ̇2
0q0h

xx

n+1 + F (φ̇0, u2)

[φ̇2∂x(
√

deth h
xx

)](n) = [φ̇2∂x(
√

deth)h
xx

+ φ̇2
0

√
deth ∂x(h

xx
)](n)

= φ̇2
0((n+ 1)qn+1 +Q+ (n+ 1)h

xx

n+1 + h
xx

) + F (φ̇0, u2)

using

h
xx

= h
xx

0 (s) + h
xx

2 (s)x2 + · · ·+ h
xx

n+1(s)xn+1 + h
xx

(s)xn+1 log(x) + . . .√
deth(x, s) = q(s) + · · ·+ qn+1(s)xn+1 +Q(s)xn+1 log(x) + . . .

Combining the two lower order polynomials and noting q0 = 1 = h
xx

0 , we find

I3 =
1

2

�
γ

(
2(2− n)φ̇0φ̇n+1 + φ̇2

0[3(qn+1 + h
xx

n+1) +Q+ h
xx

]) + F (φ̇0, u2(s))
)
dAγ

10.5.4 I4, odd

Again, n + 1 is even so there will be many lower order terms. Thus we decompose the integrand into the
principal part with (n+ 1)st order terms and the remainder

I4 =
1

2

�
γ

−(||Ṡ||2||∇x||2
√

deth)n+1 = −1

2

�
γ

(x−2φ̇2||∇x||2
√

deth)n+1

Write this again as

I4 = −1

2

�
γ

(
φ̇2

0[h
xx

n+1 + qn+1] + 2φ̇0φ̇n+1 + F (φ̇0, u2(s))
)
dAγ

10.5.5 I5, odd

We compute

I5 = −1

2

�
γ

(||Ṡ||2||∇x||2
√

deth)(n+1,log) = −1

2

�
γ

(φ̇2x−2||∇x||2
√

deth)(n+1,log)

Extracting the xn+1 log(x) terms is straightforward similar to the previous sections,

I5 = −1

2

�
γ

φ̇2
0[h

xx
+Q] + 2φ̇0Φ̇

having noted that
[x−2||∇x||2](n+1,log) = [h

xx
](n+1,log) =: h

xx
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10.5.6 I6, odd

In parallel with the even case, we have

[dx(S̈)
√

deth]n = [φ̈dx(ν)
√

deth]n

= −(n+ 1)φ̈0un+1 + F (φ̈0, u2)

So that

I6 = −(n+ 1)

�
γ

φ̈0un+1 + F (φ̈0, u2)

10.5.7 The Full Expression, Odd Case

In summary, we proved that

D2V(Y ) =

�
γ

−(n+ 1)φ̈0un+1 + φ̇2
0

[
(qn+1 + h

xx

n+1)− 4(n+ 2)u2U − 4(n+ 1)u2un+1

]
+

�
γ

φ̇0

[
(1− n)φ̇n+1 − Φ̇

]
+ F (φ̇0, u2)dAγ

As with the even case, we compute in §13.7

h
xx

n+1 + qn+1 = (n− 1)(n− 2)− 4(3n− 1)u2un+1 + TrTγ(kn+1,0) + F (φ̇0, u2)

for some function F . This yields

D2V(Y ) =

�
γ

−(n+ 1)φ̈0un+1 + (1− n)φ̇0φ̇n+1 + φ̇2
0 [(n− 1)(n− 2)− 4(3n− 1)u2un+1 + TrTγ(kn+1,0)]

− φ̇0

[
4(n+ 2)φ̇0u2U + Φ̇

]
+ F (φ̈0, φ̇0, u2)

We’ve written things more suggestively to reflect the parallels with the even dimensional formula. This
finishes the proof of 10.2 in the odd case.

As an application of our second variation formula, we consider an even minimal submanifold, Y , flowed
by an isometry to produce {Yt}. Such a family has constant renormalized volume so D2V(Y ) = 0.

11 Application: Variation via Killing Vectors in Hn+1

In this section, we let M = Hn+1 with

g =
dx2 + (dy2

1 + · · ·+ dy2
n)

x2

In particular K = 0 and kn+1 = 0 in (3), so we can make the corresponding simplifications to the first and
second variational formulae. Consider the killing vector fields {∂yi} to applied to these formula - we prove

Proposition 3. For n even, Y n ⊆ Hn+1 minimal with closed boundary, ∂Y = γ, and graphical expansion
given by u(s, x) as in theorem 3.1, we have

〈u2, un+1〉L2(γ)

Vol(γ)
= − (n− 1)(n− 2)

2(n2 − 6n+ 1)

In particular, when n = 2, we see

Corollary 11.0.1. For Y 2 ⊆ H3,
〈u2, u3〉L2(γ) = 0
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For n odd, we have

Proposition 4. For n odd, Y n ⊆ Hn+1 minimal with closed boundary ∂Y = γ, and graphical expansion
given by u(s, x) as in theorem 3.1, we have that

−2(n2 − 6n+ 1)〈u2, un+1〉L2(γ) + 8〈u2, U〉L2(γ) = (n− 1)(n− 2)Vol(γ)−B(u2)

where B(u2) denotes a boundary integral over γ with integrand determined by u2.

11.1 Proof: Codimension 1, even

We reference the expansion for the normal vector in §10.1 and take

St := φ̇ktν

φ̇k := 〈∂yk , ν〉

where 〈·, ·〉 denotes the inner product on Hn+1 with respect to the compactified metric. Here, {yk} are the

directions which are not x in the metric expansion g =
dx2+dy21+···+dy2n

x2 , and hence ∂yk is a killing vector.
Using, g = geuc we compute:

ν =
1√

1− ||∇u||2 + ||∇u||4

[
(1− ||∇u||2)∂z −∇u

]
= K(x, s)

(
[1− habuaub − 2uauxh

ax − u2
xh

xx
]N − [uah

ab − uxh
xb

]∂sb + [−uah
ax − uxh

xx
]∂x

)
= K(x, s)

(
n−1∑
b=0

db(x, s)∂sb +D(x, s)N − (ux +Rx)∂x

)
where ∂sa is identified with F∗(∂sa) via an abuse of notation. From this decomposition, we see that

F(K) = 1, K = 1 +O(x2)

F(db) = 1, db = O(x2)

F(D) = 1, D = 1 +O(x2)

F(x−2Rx) = −1, Rx = 2u2x+O(x3)

We now compute

φ̇k =

[
n−1∑
b=0

db(s, x)〈∂yk , ∂sb〉+D(x, s)〈∂yk , N〉

]
K(x, s)

From which:

(φ̇k)0 = 〈∂yk , N〉D0 = 〈∂yk , N〉

(φ̇k)n+1 =

n−1∑
b=0

[db(s, x)]n+1[〈∂yk , ∂sb〉]0 + [D(x, s)]n+1[〈∂yk , N〉]0 + [〈∂yk , N〉]0[K(x, s)]n+1

We compute

[db]n+1 = [uah
ab − uxh

xb
]n+1

= [ub]n+1

= ∂sbun+1

Similarly

[D]n+1 = [1− habuaub − 2uauxh
ax − u2

xh
xx

]n+1

= −[u2
xh

xx
]n+1

= −4(n+ 1)u2un+1

53



And finally

K(x, s) =
1√

1− ||∇u||2 + ||∇u||4

=⇒ [K]n+1 = −1

2
[1− ||∇u||2 + ||∇u||4]n+1

=
1

2
[||∇u||2]n+1

= 2(n+ 1)u2un+1

This tells us

(φ̇k)n+1 =

n−1∑
b=0

[db(s, x)]n+1[〈∂yk , ∂sb〉]0 + [D(x, s)]n+1[〈∂yk , N〉]0 + [〈∂yk , N〉]0[K(x, s)]n+1

=

n−1∑
b=0

(∂sbun+1)〈∂yk , ∂sb〉 − 2(n+ 1)u2un+1〈∂yk , N〉

Finally, we note that φ̈ = 0, so we have

D2V(Ṡk, Ṡk)
∣∣∣
Y

= 0

D2V(Ṡk, Ṡk)
∣∣∣
Y

=

�
γ

(1− n)(φ̇k)0(φ̇k)n+1 + (φ̇k)2
0[(n− 1)(n− 2)− 4(3n− 1)u2un+1]

=

�
γ

(1− n)〈∂yk , N〉

[
n−1∑
`=0

〈∂yk , (∂s`un+1)∂s`〉 − 2(n+ 1)〈∂yk , N〉un+1u2

]
+ 〈∂yk , N〉

2
[(n− 1)(n− 2)− 4(3n− 1)u2un+1]

Summing over k = 1, . . . , n and combining terms, we finally obtain�
γ

u2un+1 = − (n− 1)(n− 2)

2(n2 − 6n+ 1)
·Vol(γ)

proving the proposition.

11.2 Proof: Codimension 1, odd

The expression for φ̇k are the same in the odd dimensional case,

φ̇k =

[
n−1∑
b=0

db(s, x)〈∂yk , ∂sb〉+D(x, s)〈∂yk , N〉

]
K(x, s)

and we compute

(φ̇k)0 =

[
n−1∑
b=0

(db)0〈∂yk , ∂sb〉+ (D)0〈∂yk , N〉

]
(K)0

=

[
n−1∑
b=0

0 · 〈∂yk , ∂sb〉+ 1 · 〈∂yk , N〉

]
· 1

= 〈∂yk , N〉

However

(φ̇k)n+1 =

[
n−1∑
b=0

(db)n+1〈∂yk , ∂sb〉+ (D)n+1〈∂yk , N〉

]
(K)0

(D)0〈∂yk , N〉(K)n+1 +R(u2)
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where R(u2) denotes a polynomial in {u2, . . . , un−1} as with our convention for F . We compute

(φ̇k)n+1 =

[
n−1∑
b=0

(∂sbun+1 +R(u2))〈∂yk , ∂sb〉+Dn+1〈∂yk , N〉

]
+ 〈∂yk , N〉(K)n+1 +R(u2)

recall the expansion of

u = u2x
2 + · · ·+ un+1x

n+1 + Uxn+1 log(x) +O(xn+2)

D(x, s) = 1− habuaub − 2uauxh
ax − u2

xh
xx

Further noting that F(h
ab

) = F(h
xx

) = 1 and h
ax

= O(x3), we have

[D]n+1 = −4u2[(n+ 1)un+1 + U ] +R(u2)

Similarly,

K(x, s) =
1√

1− ||∇u||2 + ||∇u||4

=⇒ [K]n+1 =
1

2
[||∇u||2 = 2(n+ 1)u2un+1 +R(u2)

in the same way that was deduced for the even case. With this, we have

(φ̇k)n+1 =

[
n−1∑
b=0

(∂sbun+1)〈∂yk , ∂sb〉 − 2u2[(n+ 1)un+1 + U ]〈∂yk , N〉

]
+R(u2)

for some conglomerate lower order term R(u2). According to our second variation formula for odd dimension
submanifolds §8.1, we also need the xn+1 log(x) coefficient, Φ̇, of φ̇k:

Φ̇k = (φ̇k)n+1,log

=

[
n−1∑
b=0

(db)n+1,log〈∂yk , ∂sb〉+ (D)n+1,log〈∂yk , N〉

]
(K)0 +

[
n−1∑
b=0

(db)0〈∂yk , ∂sb〉+ (D)0〈∂yk , N〉

]
(K)n+1,log

=

[
n−1∑
b=0

(db)n+1,log〈∂yk , ∂sb〉+ (D)n+1,log〈∂yk , N〉

]
(K)0 + 〈∂yk , N〉(K)n+1,log

We immediately see that

(db)n+1,log = (∂sbU)

(D)n+1,log = −4(n+ 1)u2U

(K)n+1,log = 2(n+ 1)u2U

so that

Φ̇k =

[
n−1∑
b=0

Ub〈∂yk , ∂sb〉 − 2(n+ 1)u2U〈∂yk , N〉

]

Now using the formula for second variation, we have

0 = D2V(Y )(φ̇k, φ̇k)

=

�
γ

(1− n)(φ̇k)0(φ̇k)n+1 + φ̇2
0[(n− 1)(n− 2)− 4(3n− 1)u2un+1]− (φ̇k)0

[
4(n+ 2)(φ̇k)0u2U + Φ̇k

]
+R(u2)
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Summing over k and combining terms, we get

0 =

�
γ

(n− 1)(n− 2) + 2(n2 − 6n+ 1)u2un+1 − 8u2U +R(u2)

=⇒ (n− 1)(n− 2)Vol(γ) = −
[�

γ

2(n2 − 6n+ 1)u2un+1 − 8u2U +R(u2)

]
which parallels the even case up to an error term R(u2). This proves the theorem.

12 Conclusion

We proved formulae for the first and second variation of renormalized volume for Y m ⊆Mn+1 minimal and
of arbitrary codimension. In codimension 1, these formulae include un+1 and U(s), which can be thought of
as the Neumann data in a Dirichlet-To-Neumann type problem of determining Y from γ, the boundary data.
The first variation for renormalized volume then shows that V determines the map γ → un+1. While the
variation formulae are most clear for m even, the formulae for m odd are defined up to a boundary integral
that depends only on the Dirichlet data of φ̇0 and γ, as well as the choice of bdf. In particular, we have
found a natural class of conformal invariants to the pair of submanifolds (γ, Y ), namely the integrals in the
variational formulas themselves. Our analysis depended on the following facts: the metric is asymptotically
hyperbolic and even in x up to high order. In full generality, our results apply to manifolds which are
conformally compact, with a metric that splits as in (2) where k(x, s) is as in (3). This includes if M is PE
or M = Hn+1/Γ for Γ a convex cocompact subgroup of isometries of hyperbolic space as in [2].

There are several directions in which this research can progress further

� We look for more applications of the second variation formula, especially §3 and the orthogonality
result when n = 2.

� In §9.3, we noted that the first and second variations are conformally invariant. It remains to ask if this
is because the integrand is conformally invariant itself or if the integrand is the sum of a conformally
invariant term plus a divergence term which integrates to zero. In the case of codimension 1 for n
even, we can write

DA
∣∣∣
Y

(φ̇) =

�
γ

φ̇0(s)un+1(s)dAγ(s) =

�
γ

P1(φ̇0)

D2A
∣∣∣
Y

(φ̇) =

�
γ

−(n+ 1)φ̈0un+1

+
(

(1− n)φ̇0(s)φ̇n+1(s) + φ̇0(s)2 [(n− 1)(n− 2)− 4(3n− 1)u2(s)un+1(s)]
)
dAγ(s)

=

�
γ

P1(φ̈0) + φ̇0P2(φ̇0)

where P1 and P2 are measure-valued operators on the Dirichlet data for the variational vector field, i.e.
φ̇0. The question then becomes if these operators are conformally invariant. There is a long history
of conformally invariant geometric operators, including the conformal laplacian, Paneitz operator [25],
and GJMS operators [10]. We also recognize Graham and Zworski’s work on conformally invariant
differential operators on PE spaces via scattering matrix theory [13]. We hope to place the P1 and P2

operators above into one of these frameworks.

� We are also interested in characterizing nondegenerate critical points of renormalized area. Following
[18], Alexakis and Mazzeo show that minimizers of renormalized area Y 2 ⊆ H3 with fixed asymptotic
boundary γ are themselves minimal surfaces [2]. They prove this with geometric arguments, and we
ask if the information of un+1 = 0 is enough to show this analytically for the case of hypersurfaces in
arbitrary dimension.
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� Given the connections between minimal surfaces and solution to the Allen-Cahn equation, we ask
if a theory of renormalized energy for functions in asymptotically hyperbolic spaces could exist. It
would be interesting to see what the condition of un+1(s) ≡ 0 translates to on the function side of the
Allen-Cahn-Minimal-Surface correspondence.

� Fine and Herfray [7] have investigated renormalized area in setting of Xn, the boundary of a PE
extension, Mn+1. Given γ ⊆ X a curve, there exists a unique extension, Y 2 ⊆ Mn+1, such that Y
meets γ orthogonally. Moreover, Y is characterized by being a critical point of renormalized area, and
γ is a conformal geodesic. With our first variation equation in the n-even, codimension 1 case, it would
be interesting to leverage the condition of un+1 = 0 to see if a similar constraint on the boundary
manifold γ arises.

13 Appendix

13.1 Metric on TM

We construct a frame for all of TM = TΓ ⊕ NΓ using Fermi coordinates on Γ. Coordinatize our space as
follows: Let p ∈ γ ⊆ ∂M be labeled by geodesic normal coordinates on γ about some base point p0, i.e.

p = f(s) := expp0(saEa)

for {Ea} an ONB at p0 spanning Tγ. We then coordinatize Γ as points (s, x)↔ (f(s), x) ∈ γ × [0, ε). Then
for U(Γ) ⊆M sufficiently small, we define

W : B1(0)m−1 × [0, ε)×B1(0)n+1−m →M

W (s, x, z) := exp(f(s),x)(z
iXi)

for {Xi} an ONB for N(Γ). Both exponential maps are taken with respect to g restricted to γ and Γ
respectively. Abusing notation slightly, we define

gij := g(W∗(∂zi),W∗(∂zj )) = δij + [Γ
j

ai + Γ
i

aj ]s
a + [Γ

j

xi + Γ
i

xj ]x+O(zizj , sasb, sax, zix, zisa, x
2) (30)

gab := g(W∗(∂sa),W∗(∂sb)) = δab + [Γ
b

ka + Γ
a

kb]z
k + [Γ

a

bx + Γ
b

ax]x+O(zizj , sasb, sax, zix, zisa, x
2)

gai := g(W∗(∂sa),W∗(∂zi)) = [Γ
i

ca + Γ
a

ci]s
c + [Γ

i

cx + Γ
x

ci]x+O(zizj , sasb, sax, zix, zisa, x
2)

gax := g(W∗(∂sa),W∗(∂x)) = 0

gix := g(W∗(∂zi),W∗(∂x)) = 0

gxx := g(W∗(∂x),W∗(∂x)) = 1

where Γ
·
·· are the Christoffel symbols for γ× [0, ε) ⊆ ∂M× [0, ε) equipped with dx2 +k0(s, z), i.e. g evaluated

to lowest order in x. For the first 3 expansions, see [22] among other sources. The last 3 equations follow
because the metric splits along the x direction:

g = dx2 + k = dx2 + [k0 +O(x2, s2, z2, sx, sz, xz)]

i.e. the metric is block diagonal with a 1× 1. Recall the index notation

a, b, c, d↔ sa, sb, sc, sd

i, j, k, `↔ zi, zj , zk, z`

i, j, k, `↔ wi, wj , wk, w`

α, β, γ, δ ↔ {yα, yβ , yγ , yδ} ⊆ {sa, x}
σ, µ, ν, τ, ω ↔ {yσ, yµ, yν , yτ , yω} ⊆ {sa, x, zi}

We will also often conflate ∂sa , ∂x, ∂zi with their pushforwards by W as well. Given our asymptotics for gµν
in terms of s, z, and x, we can evaluate at z = u(s, x) to derive asymptotics for a frame for TY .
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13.2 Metric on TY

We construct a frame for TY and derive an expansion for the metric, g
∣∣∣
Y

, in this frame. Recall the map

G : Γ→ Y ↪→M

G(s, x) = W (s, z = u(s, x), x) = (F (s, u(s, x), x)

We consider the frame for TY given by

va := G∗(∂sa) = ∂sa + uia∂zi + ui[Γ
c

ai∂sc + Γ
x

ai∂x + Γ
j

ai∂zj ]

vx = G∗(∂x) = ∂x + uix∂zi + ui[Γ
c

xi∂sc + Γ
x

xi∂x + Γ
j

xi∂zj ]

where again, Γ
·
·· are christoffels with respect to g in the {∂sa , ∂x, ∂zi} basis. We’ve also notationally identified

∂sa , ∂x, and ∂zi with their pushforwards by W . We will denote the above as

G∗(∂yα) = ∂yα + uiα∂zi + Γ
µ

αi∂yµ

The induced metric is then given by

hab = gab + gaju
j
b + ujΓ

µ

bjgaµ (31)

+ uiagbi + uiau
j
bgij + uiau

jΓ
d

bjgid

+ uiΓ
σ

ai[gσb + ujbgzσ + ujΓ
µ

bjgµσ]

hax = ukxgka + ukΓ
ω

xkgaω

+ uia[ukxgik + ukΓ
ω

xkgiω]

+ uiΓ
σ

ai[gσx + ukxgkσ + ukΓ
ω

xkgωσ]

hxx = 1 + u`Γ
x

x`

+ ukxu
`
xgk` + ukxu

`gkτΓ
τ

x`

+ ukΓ
x

xk + u`xu
kΓ

ω

xkgω` + uku`Γ
ω

xkΓ
τ

x`gωτ

using the metric notation of section §4. As a point of notation, we let vα ∈ {va, vx} so that {vα} is a basis
for TY , with α taking on the x and a subscripts. Now assume m is even. Evaluating at s = 0 and z = u(s, x)
and using equation 30 and lemma 25 applied to the symbols {Γσωτ} by converting from g → g, we get that

hab

∣∣∣
(s=0,z=u,x)

= δab +O(x2), F
(
hab

∣∣∣
(s=0,z=u,x)

)
= 1

hax

∣∣∣
(s=0,z=u,x)

= O(x3), F
(
hax

∣∣∣
(s=0,z=u,x)

)
= −1

hxx

∣∣∣
(s=0,z=u,x)

= δij +O(x2), F
(
hxx

∣∣∣
(s=0,z=u,x)

)
= 1

13.2.1 The T matrix

We use the previous section to define a frame for TM using the decomposition TM = TY ⊕NΓ, which holds
at points p ∈M with x < ε. Consider the map

R : U(Γ)→ U(Y )

R(s, z, x) = W (s, z + u(s, x), x)

and define
T := R∗(g)
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so that

T =

T xx T xa T xj
T ax T ab T aj
T ix T ib T ij


where each entry is g(R∗(∂·), R∗(∂·)). We recall the index notation (see equation (15)) of

{vσ} = {va, vx, vi} = {R∗(∂sa), R∗(∂x), R∗(∂zi)}

which is a frame for all of TM for x < ε small. We compute T in these coordinates as Tσρ := g(vσ, vρ).
Note that Tαβ have been computed in the previous section §13.2. For the new entries, we have

T ij = gij

T ia = gai + ujagij + uiΓ
σ

ajgiσ

T ix = gxi + ukxgik + ukΓ
ω

xkgωi

and immediately from 30 and lemma 25, we get that

T ij

∣∣∣
z=u

= δij +O(x2), F(T ij) = 1

T ia

∣∣∣
z=u

= O(x4), F(x−2T ia) = 1

T ix

∣∣∣
z=u

= O(x3), F(x−2T ix) = −1

we can also invert the metric and get the same asymptotics and F(·) values.

13.3 Projected basis for the normal bundle

We prove the following, again abusing notation by writing ∂(·) for W∗(∂(·)) where needed:

Lemma. For any p ∈ γ and a neighborhood U(p) ⊆M , there exists a frame {w1, . . . , wn+1−m} for N(U(p)∩
Y ) which is orthonormal with respect to g on γ such that for m even (odd)

g(wi, ∂x) = O(x), F(g(wi, ∂x)) = −1

g(wi, ∂sa) = O(x2), F(g(wi, ∂sa)) = 1

g(wi, ∂zj ) = δij +O(x2), F(g(wi, ∂zj )) = 1

in fact, g(wi, ∂sa) is even up to m+ 2 (m+ 3) when m is even (odd).

Proof: For notational brevity, we handle m even, noting that all m related indices will be shifted up by 1

when m is odd by 3.1. Recall the frame for TY = span{va, vx} as given in 13.2. Now setting N
k

:= W∗(∂zk)
for notation, we define

wk := ΠN(Y )N
k

= W∗(∂zk)−ΠTY (W∗(∂zk))

= W∗(∂zk)−
[
h
ab
g(va,W∗(∂zk))vb + h

ax
(va,W∗(∂zk))vx

]
−
[
h
xb

(vx,W∗(∂zk))vb + h
xx

(vx,W∗(∂zk))vx

]
Now using §13.2 and (30), we get

g(wi, ∂x) = O(x), F(g(wi, ∂x)) = −1 (32)

g(wi, ∂sa) = O(x2), F(g(wi, ∂sa)) = 1

g(wi, ∂zj ) = δij +O(x2), F(g(wi, ∂zj )) = 1
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using the established parity of the metric coefficients. Note that the {wk} are not normalized but we compute
using (32) and §13.2.1

g(wk, wk) = ck(x, s)

= 1 +O(x2)

F(ck) = 1

so we define
wk =

wk√
g(wk, wk)

which still obeys (32).

13.4 Simons Operator

In this section, we compute the Simons operator for Y , the graph over Γ given by u(s, x) where ||u(s, x)|| =
O(x2) and is even in x up to order m. Note that this includes u = 0, corresponding to the boundary cylinder
Γ = γ × R+. In particular, we show that the Simons operator is O(x2) in its leading coefficient. Recall our
notation of {vα} = {va, vx} for a basis of TY . Then

Ã(X) = g((∇vαvβ)N , X)hαγhβδ(∇vγvδ)N

We have
X = Xjwj

where {wj = wj(x, s)} is the basis for N(Y ) as in 13.3. We compute

Ã(X) = Xj [g((∇vavb)N , wj)haγhbδ(∇vγvδ)N

+ g((∇vavx)N , wj)h
aγhxδ(∇vγvδ)N

+ g((∇vxvb)N , wj)hxγhbδ(∇vγvδ)N

+ g((∇vxvx)N , wj)h
xγhxδ(∇vγvδ)N ]

and we expand

(∇vαvβ)N = (Γ̃
σ

αβvσ)N = Γ̃
j

αβwj

We reference the following Christoffel symbols (computed following [11] and lemma 4.3)

Γ̃
i

ab = O(1), F(Γ̃
i

ab) = 1

Γ̃
i

ax = O(x) F(Γ̃
i

ax) = −1

Γ̃
i

xb = O(x) F(Γ̃
i

xb) = −1

Γ̃
i

xx = O(x2) F(Γ̃
i

xx) = 1

This immediately tells us that

g((∇vαvβ)N , wj) = O(x−2)

F
(
x2g((∇vαvβ)N , wj)

)
= 1

and so

Ã(X) = Xj [g((∇vαvβ)N , wj)h
αγhβδΓ̃

k

δγ)wk

= F j({Xk})wj = O(x2)wj
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i.e. F j is some linear function of {φ̇k} and

F j({Xk}) = f jk(s, x)Xk(s, x)

f jk(s, x) = O(x2)

F(f jk) = 1

where the last line holds by parity of the Christoffels and metric coeffiicents. This shows that the Simons
operator gives a quadratic error term that preserves parity.

13.5 Equivalence of Hadamard and Riesz Regularization

In this section, we demonstrate that Hadamard regularization and Riesz regularization are equal for m even
or odd

13.5.1 m even

Under Hadamard regularization, the renormalized volume is the constant term in the following expansion

V (Y ∩ {x > ε}) =

�
Y ∩{x>ε}

dA = a0ε
−m+1 + a2ε

−m+3 + · · ·+ am−2ε
−1 + am +O(ε log(ε))

Such an expansion follows because

�
Y ∩{x>ε}

dAY =

�
γ

�
ε<x<b

√
deth

xm
dVγdx+

�
x>b

dAY

=

�
γ

�
ε<x<b

(
h0(~s)x−m + (even terms) + hm−2(~s)x−2 +Rm(s, x))dx

)
dVγ +

�
x>b

dAY

=

m/2−1∑
k=0

ε2k−m+1c2k +Am +O(ε log(ε))

where we have used that the expansion of the volume form is even up until hm (cf corollary 3.1.3). In
addition, Rm(s, x) = O(log(x)) is the remainder term. We set

c2k :=
1

m− 2k − 1

�
γ

h2k(s)dAγ(s) 2k ≤ m

Am :=

�
γ

�
0≤x≤b

Rm(s, x)dxdVγ −
m/2−1∑
k=0

c2kb
−m+2k+1 +

�
x>b

dAY (33)

Note that Am is finite (recall that {x ≥ b} is a compact region) and actually independent of b. We denote

H

�
Y

dA := Am

Under Riesz regularization, consider the meromorphic function

ζ(z) :=

�
Y

xzdAY

=
a0

z − (−m+ 1)
+ · · ·+ am−1

z
+Dm +O(z)

We then define
R

�
Y

dA := FP
z=0

ζ(z)
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we compute this as�
Y

xzdAY =

�
Y ∩{x≤b}

xzdAY +

�
Y ∩{x>b}

xzdAY

=

�
γ

�
0≤x≤b

xz−m
√

dethdVγ ∧ dx+

�
Y ∩{x>b}

xzdAY

=

�
γ

�
0≤x≤b

(
h0(~s)xz−m + (even terms) + hm−2(~s)xz−2 +Rm(s, x)xz)dx

)
dAγ +

�
Y ∩{x>b}

xzdAY

where b� 1 so that we can use such an expansion. For the first integral, we write

�
γ

�
0≤x≤b

(
h0(~s)xz−m + (even terms) + hm−2(~s)xz−2)dx

)
dVγ ∧ dx =

m/2−1∑
k=0

a2k
bz−m+2k+1

z −m+ 2k + 1

having assumed Re(z)� 0 and setting

a2k :=

�
γ

h2k(s)dAγ(s) = (m− 2k − 1)c2k

Now we define

Dm(b, z) :=

�
γ

�
0≤x≤b

Rm(s, x)xz +

m/2−1∑
k=0

bz−m+2k+1 − 1

z −m+ 2k + 1
a2k +

�
Y ∩{x≥b}

xzdAY

=⇒
�
Y

xzdAY =

m/2−1∑
k=0

a2k

z −m+ 2k + 1
+Dm(b, z)

As before, one can compute that Dm(b, z) is finite, independent of b, and holomorphic at z = 0. We can
compute the finite part at z = 0 as

FP
z=0

�
Y

xzdAY =

m/2−1∑
k=0

a2k

−m+ 2k + 1
+Dm(b, 0)

=

m/2−1∑
k=0

b−m+2k+1

−m+ 2k + 1
a2k +

�
γ

�
0≤x≤b

Rm(s, x)dxdAγ(s) +

�
Y ∩{x≥b}

dAY

= −
m/2−1∑
k=0

b−m+2k+1c2k +

�
γ

�
0≤x≤b

Rm(s, x)dxdAγ(s) +

�
Y ∩{x≥b}

dAY

this is the same as (33) so that

H

�
Y

dA = R

�
Y

dA

13.5.2 m odd

Under Hadamard regularization, the renormalized volume is still the constant coefficient in the following
expansion

V (Y ∩ {x > ε}) =

�
Y ∩{x>ε}

dAY = a0ε
−m+1 + a2ε

−m+3 + · · ·+ am−2ε
−2 + ã log(ε−1) + am + o(1)

Such an expansion follows because�
Y ∩{x>ε}

dAY =

�
γ

�
ε<x<b

(
h0(~s)x−m + (even terms) + hm−1(~s)x−1 +Rm(s, x))dx

)
dVγ +

�
x>b

dAY

=

(m−1)/2−1∑
k=0

ε2k−m+1c2k + cm−1 log(ε−1) +Am +O(ε)
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where we used that for m odd, the expansion of the volume form is even up until hm+1, at which point the
xm+1 log(x) term also appears. Denote

c2k :=
1

m− 2k − 1

�
γ

h2k(s)dAγ(s), 2k ≤ m− 1

Am :=

�
γ

�
0≤x≤b

Rm(s, x)dxdVγ −
(m−1)/2−1∑

k=0

c2kb
−m+2k+1 + cm−1 log(b) +

�
x>b

dAY

H

�
Y

dA := Am

analogous to the even case. For Riesz regularization, we have

R

�
Y

dA := FP
z=0

ζ(z) = FP
z=0

�
Y

xzdA

and we want to show that this gives Am as above. Using the same expansion, we get�
Y

xzdAY =

�
γ

�
0<x<b

xz
√

det g

xm
dVγdx+

�
x>b

xzdAY

=

�
γ

�
0<x<b

(
h0(~s)xz−m + (even terms) + hm−1(~s)xz−1 + xzRm(s, x))dx

)
dVγ +

�
x>b

xzdAY

=

(m−1)/2∑
k=0

bz−m+2k+1

z −m+ 2k + 1
a2k +

�
γ

�
0<x<b

xzRm(s, x)dxdAγ +

�
x>b

xzdAY

for

a2k =

�
γ

h2kdAγ = (m− 2k − 1)c2k

as before. Then the same analysis as before gives us

FP
z=0

[�
γ

�
0<x<b

xzRm(s, x)dxdAγ +

�
x>b

xzdAY

]
=

�
γ

�
0<x<b

Rm(s, x)dxdAγ +

�
x>b

dAY

and also

(m−1)/2∑
k=0

bz−m+2k+1

z −m+ 2k + 1
a2k =

bz−m+1

z −m+ 1
a0 + · · ·+ bz−2

z − 2
am−3 +

bz

z
am−1

=⇒ FP
z=0

(m−1)/2∑
k=0

bz−m+2k+1

z −m+ 2k + 1
a2k =

b−m+1

−m+ 1
a0 + · · ·+ b−2

−2
am−3 + FP

z=0

(
bz

z

)
am−1

We now expand
bz

z
=

1

z
+ log(b) +O(z)

=⇒ FP
z=0

(
bz

z

)
= log(b)

and so

FP
z=0

�
Y

xzdAY =

�
γ

�
0≤x≤b

Rm(s, x)dxdAγ −
(m−1)/2−1∑

k=0

c2kb
−m+2k+1 + cm−1 log(b) +

�
x>b

dAY

thus
R

�
Y

dA = H

�
Y

dA

in the odd case. It is interesting to note that ζ(z) does have a pole at z = 0 in the odd case, in contrast
with the even case. Note that for m odd, renormalized volume depends on the choice of special bdf - see [1]
for details.
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13.6 Degeneracy of Minimal Hypersurfaces in Mn+1

In this section, we summarize the relevant results from section 4 of [2] on the degeneracy of a minimal
submanifold Y m ⊆M . For X ∈ N(Y ), recall the Jacobi operator:

JY (X) = ∆⊥Y (X) + Ã(X)− TrTY [R(·, X)·]

We can view JY as a map between weighted Hölder spaces

JY : xµΛ2,α
0 (N(Y ))→ xµΛ0,α

0 (N(Y ))

Moreover, the indicial roots of this operator are µ1 = −1 and µ2 = m. When −1 < µ < m, we know from
[26] that JY is Fredholm and index 0 in the codimension 1 case. A minimal submanifold Y m ⊆M is said to
be nondegenerate if the kernel of this map is just {0}. Again in the codimension 1 case, one can show that
any boundary variation of a nondegenerate submanifold, i.e.

γψ = {expp(ψ(p)N(p))}, ψ ∈ C∞(γ)

can be extended to a Jacobi field on Y , X = φ̇(p, x)ν(p, x), so that φ̇(p, 0) = ψ(p). This follows by an inverse
function theorem argument which is a direct adaption of the n = 2 case described in [26].

When Y is degenerate, LY is still index 0 but the kernel is a non-trivial finite dimensional space. We
consider the kernel of LY acting on functions ψ ∈ L2, i.e. such that ψ0 = 0,

K = {ψ | JY (ψ) = 0, ψ0 = 0}

Elements of K have the following asymptotic expansion:

ψ ∼

{
ψm+1(s)xm+1 + . . . m even

ψm+1(s)xm+1 + Ψ(s)xm+1 log(x) + . . . m odd

i.e. they vanish to order m+ 1. Consider

V = {f | ∃ψ ∈ K s.t. f = ψn+1}

which is also finite dimensional. Recall equation (28), i.e. for Y n a critical point of renormalized volume
and n even, we have �

γ

un+1(s)φ̇0(s)dAγ = 0

From the above, if φ̇0(s)↔ φ(s, x) a Jacobi field, and ψn+1(s)↔ ψ(s, x) an L2 Jacobi field, then

0 =

�
Y

JY (φ(s, x))ψ(s, x)dAY

=

�
Y

[(∆Y φ)ψ + |AY |2φψ − RicTY (ν, ν)φψ]dAY

=

�
Y

[(∆Y ψ)φ+ |AY |2ψφ− RicTY (ν, ν)ψφ]dAY −
�
γ

(n+ 1)(ψn+1)φ̇0dAγ

=

�
Y

JY (ψ)φ− (n+ 1)

�
γ

ψn+1φ̇0dAγ

= −(n+ 1)

�
ψn+1φ̇0dAγ

The equality in line three is most easily seen by switching to the compactified metric, keeping track of powers
of x, and integrating by parts twice. This tells us that φ̇0(s) must be orthogonal to all elements of V , i.e.
〈φ̇0(s), f〉L2(γ) = 0. This then tells us that any un+1 ∈ V lies in a finite dimensional space.
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13.7 Computing h
xx

n+1 and qn+1

In this section, we consider Y n ⊆ Mn+1 and compute the (n + 1)st coefficient for the metric coefficient
h
xx

(s, x) and the volume form prefactor q(s, x). We aim to show

Proposition. For Y n ⊆Mn+1 minimal, we have

h
xx

n+1 + qn+1 =

{
(n− 1)(n− 2)− 4(3n− 1)u2un+1 + TrTγ(kn+1,0) n even

(n− 1)(n− 2)− 4(3n− 1)u2un+1 + TrTγ(kn+1,0) +R(u2) n odd

where

kn+1,0 :=
1

(n+ 1)!

(
d

dx

)n+1

k(s, x, 0)
∣∣∣
x=0

Remark When M = Hn+1/Γ for Γ a coconvex subgroup, kn+1 = 0.

13.7.1 h
xx

n+1, even

Expansion by minors of the inverse yields

h
xx

=
1

deth
det({hab})

where a, b = 1, . . . , n− 1 are the coordinates corresponding to coordinates for s. Note that F(hab) = 1 via

va = ∂sa + Γ
α

azu∂yα + ua∂z

= ∂sa + Γ
b

azu∂sb + Γ
x

azu∂x + ua∂z

hab = gab + ubgaz + uΓ
β

bzgaβ

+ uagbz + uaubgzz + uauΓ
β

bzgzβ

+ uΓ
α

azgbα + ubuΓ
α

azgzα + u2Γ
α

azΓ
β

bzgαβ

where Γ
τ

σµ is the Christoffel symbol as in lemma 25. Similarly, we have that

deth = 1 + x2q2 + · · ·+ xnqn + xn log(x)Q+ xn+1qn+1 +O(xn+2 log(x))

=⇒ 1

deth
= 1 + (even terms up to order n)−Qxn log(x)− qn+1x

n+1 +O(xn+2)

Because F(det({hab})) = 1, we can compute

h
xx

n+1 =
(
[deth]−1

)
n+1
·
(
det({hab})

)
0

+
(
[deth]−1

)
0
·
(
det({hab})

)
n+1

= −qn+1 + (det{hab})n+1

Because F(hab) = 1, we use linearity of the determinant to get

(
det({hab})

)
n+1

=

n−1∑
a,b=1

∣∣∣∣∣∣
(h11)0 · · · (h1 (n−1))0

· · · (hab)(n+1) · · ·
(h(n−1) 1)0 · · · (h(n−1) (n−1))0

∣∣∣∣∣∣
but (hab)0 = δab so the above can be thought of as the identity matrix with the (i, j)th entry substituted
with hij . The determinant is then∣∣∣∣∣∣

1 · · · 0

· · · (hab)(n+1) · · ·
0 · · · 1

∣∣∣∣∣∣ =

{
1 i 6= j

(haa)n+1 a = b
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From the expansion of haa, we have

[haa]n+1 = [gaa]n+1 + 2[uΓ
a

azgaa]n+1

= [gaa]n+1 + 2[u]n+1 · [Γaazgaa]0

To compute gaa we first recall the expansion of k0(s, z) in

g = dx2 + k0(s, z) + x2k2(s, z) + · · ·+ kn(s, z)xn +K(s, z)xn log(x) + kn+1(s, z)xn+1

ki(s, z) = ki,0(s) + ki,1(s)z + · · ·+ ki,n/2(s)zn/2 +O(zn/2+1)

K(s, z) = K0(s) + k1(s)z + · · ·+ kn/2(s)zn/2 +O(zn/2+1)

when we evaluate at z = u = O(x2), we see that

[gaa]n+1 = [k0(s, z = u)(∂sa , ∂sa)]n+1 + [kn+1(s, z = u)(∂sa , ∂sa)]0

= [k0(s, z = u)(∂sa , ∂sa)]n+1 + kn+1,0(∂sa , ∂sa)

because F(u) = 1. Of course, from (30) or [22]

k0(s, z)(∂sa , ∂sb) = δab + [Γ
z

ab + Γ
z

ba]z +O(z2, sz, s2)

where Γ
·
·· are the Christoffels as in equation (30). When evaluated at z = u and s = 0, the O(z2, sz, s2)

terms will not contribute a n+ 1st term. Thus

[k0(s, z = u)]n+1 = −2Γγ,aazun+1

where Γγ,· denotes the restriction of the christoffels in lemma 4.2 restricted to Tγ. We leave the other term
as is and get

[gaa]n+1 = −2Γγ,aazun+1 + kn+1,0

Similarly
2(uΓ

a

az|Y )n+1 = 2un+1Γγ,aza = −2un+1Γγ,aaz

so that
[haa]n+1 = −4un+1Γγ,aaz + kn+1,0(∂sa , ∂sa)

With this, we get(
det({hab})

)
n+1

= (n− 1)2 − (n− 1) +

n−1∑
a=1

[−4un+1Γγ,aaz + kn+1,0(∂sa , ∂sa)]

= (n− 1)(n− 2)− 4un+1Hγ,k0 + TrTγ(kn+1,0)

Now using the fact that Hγ,k0 = 2(n− 1)u2, we get

h
xx

n+1 = −qn+1 + (n− 1)(n− 2)− 8(n− 1)u2un+1 + TrTγ(kn+1,0)

13.7.2 h
xx

n+1 + qn+1, odd

Via the same reasoning as in the even case, we have that

h
xx

n+1 + qn+1 = (det{hab})n+1 +R(u2)

where R is some function of u2 and its derivatives. Expanding this determinant and using multilinearity, we
have

(det{hab})n+1 =

n−1∑
a,b=1

∣∣∣∣∣∣
(h11)0 · · · (h1 (n−1))0

· · · (hab)(n+1) · · ·
(h(n−1) 1)0 · · · (h(n−1) (n−1))0

∣∣∣∣∣∣+R(u2)

so that (
det({hab})

)
n+1

= (n− 1)(n− 2)− 8(n− 1)u2un+1 + TrTγ(kn+1,0) +R(u2)

=⇒ h
xx

n+1 + qn+1 = (n− 1)(n− 2)− 8(n− 1)u2un+1 + TrTγ(kn+1,0) +R(u2)
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13.8 Second variation of Mean Curvature - Parity for S̈

In this section, we compute the second variation of mean curvature for a family of minimal surfaces {Yt}
and prove theorem 5.2 and proposition 2

Theorem. Let {Yt} ⊆ Mn+1 be a family of minimal of m-dimensional minimal submanifolds. Let Y = Y0

and h denote a compactified metric on Y . Then for

Yt = {exph,p(St(p)ν(p)) | p ∈ Y }

and {wi} the normal basis described in section §13.3, we have

S̈ =
d2

dt2

∣∣∣
t=0

St = S̈iwi

and F(S̈i) = 1.

Proposition. Let {Y mt } ⊆ Mn+1 be a family of minimal of m-dimensional minimal submanifolds. Let
Y = Y0 and h denote a compactified metric on Y . Then for

Yt = {exph,p(St(p)) | p ∈ Y }

The second variation of mean curvature is given by

d2

dt2
Ht = J⊥Y (S̈) +Q⊥(Ṡ)

where Q⊥ is a quadratic differential functional in Ṡ and

Q⊥(Ṡ) = Qi(s, x)wi

F(Qi) = 1

We first show that S̈ ∈ NY , we then sketch the proof of how one computes Q⊥(Ṡ) in codimension 1.

13.8.1 Normality of S̈

We first show that S̈ = ∇FtFt
∣∣∣
t=0
∈ NY since Ft is a normal variation. Recall that the image of σp(t) =

F (p, t) is a geodesic curve starting at p. We write

F∗(∂t)
∣∣∣
q=σp(t)

= Ft

∣∣∣
q=σp(t)

= A(t)τ(t)
∣∣∣
q=σp(t)

for τ(t) a unit normal tangent vector evaluated at q = Ft(p) on the path produced by Ft(p). We compute

S̈(p) = ∇FtFt
∣∣∣
t=0

= (A(t)τ(t))(A(t))
∣∣∣
t=0

τ(0) +A2(0)∇τ(t)τ(t)
∣∣∣
t=0

= Ȧτ

where the second term vanishes since ∇ττ = 0 since τ is the tangent vector to a geodesic curve. But
τ(0) ∈ NY , so S̈ ∈ NY .

13.8.2 S̈ Computation in codimension 1

For brevity, we sketch the proof in codimension 1. We have S̈ = (x−1φ̈)ν and can let ν(t) = ν(F (t, p)) be
a normal vector for Yt at the point F (t, p). By abuse of notation, we will absorb the prefactor of x−1 and
denote φ̈ = x−1φ̈, converting to the proper normalization at the end. We now compute

∇Ftν(t)
∣∣∣
t=0

= −∇Y φ̇ ∈ TY
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this follows since
g(ν(t), ν(t)) ≡ 1, g(ν(t), Fα) ≡ 0

for all t. We show

Proposition 5. For {Y nt } ⊆Mn+1 a family of minimal submanifolds and Ṡ = φ̇(s, x)ν, S̈ = φ̈ν, the second
variation of mean curvature is given by

d2

dt2
H(t)

∣∣∣
t=0

= JY (φ̈) +G ˙(φ,∇φ̇,D2φ̇) = 0

where F(φ̇) = F(G(φ̇,∇φ̇, φ̇)) = 1.

Proof: We compute

ḣαβ = −2φ̇Aαβ

ḧαβ = 4φ̇2(A ◦A)αβ + 2φ̈Aαβ − 2φ̇2Rαβνν + 2φ̇αφ̇β

A more lengthy computation shows that

Ȧαβ = ∇FtAαβ(t)

= [φ̇R(ν, vα, vβ , ν) + φ̇αβ − φ̇(A ◦A)αβ ]ν

−Aαβ(∇Y φ̇)

and also

hαβÄαβ = [JY (φ̈) +Q1(φ̇, φ̇) +Q2(φ̇ν,∇Y φ̇) +Q3(∇Y φ̇,∇Y φ̇)]ν − 4||A||2φ̇∇Y φ̇
Q1(φ̇, φ̇) = φ̇2T1(ν, ν)− 4φ̇2g(A(·,·), R(ν, ·, ·, ν))

Q2(φ̇,∇Y φ̇) = RicY (φ̇ν,−∇Y φ̇)

Q3(∇Y φ̇,∇Y φ̇) = 2g(Ã(∇Y φ̇),∇Y φ̇)

when φ̇ is a Jacobi field. In sum, we compute

d2

dt2
H(t)

∣∣∣
t=0

= ḧαβAαβ + 2ḣαβȦαβ + hαβÄαβ

= [4φ̇2〈A ◦A,A〉 − 2φ̇2〈R(ν, ·, ν, ·), A〉+ 2A(∇φ̇,∇φ̇)]

+ 4[φ̇2〈Rν,·,ν,·, A〉 − φ̇〈D2φ̇, A〉+ φ̇2〈A ◦A,A〉]
+ [JY (φ̈) +Q1(φ̇, φ̇) +Q2(φ̇ν,∇Y φ̇) +Q3(∇Y φ̇,∇Y φ̇)]

In particular, when φ̇ν is a Jacobi field, this equation is another proof that S̈ ∈ N(Y ). We reframe this as

d2

dt2
H(t)

∣∣∣
t=0

= JY (φ̈) +G ˙(φ,∇φ̇,D2φ̇)

where F(φ̇) = F(G(φ̇,∇φ̇, φ̇)) = 1.
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