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1 Introduction

Finding solutions to
x2 ≡ q mod p

is a well known problem, with a solution given by the Tonelli-Shanks algorithm.
Furthermore, for a prime p > 2, the solutions to

x2 ≡ q mod pk k ≥ 1

are uniquely determined by an application of Hensel’s lemma to the function
f(x) = x2 − q, for which f ′(x) = 2x 6≡ 0 assuming pk - x. However, in the case
that p = 2, hensel lifting from k = 1 to higher values fails as f ′(x) = 2x ≡ 0
mod 2. Thus another method is needed to determine the solutions to x2 ≡ q
mod 2k. We provide such a method for odd values of q, as well as a simple
classification of these residues for each value of 2k.

2 Main Claims

Let Qk denote the collection of odd residues modulo 2k. The following theorems
determine the structure of all residues modulo 2k in relation to residues modulo
2k−1 for k > 3.

Theorem 2.1 (Main Theorem 1). For k ≥ 3, odd quadratic residues are of the
form q = 8c + 1, and iterating through all values of c = {0, . . . , 2k−3 − 1} yields
all such odd quadratic residues.

Note that this implies that for 2k, there are 2k−3 odd quadratic residues, or
1/8 of all values in Z/2kZ.

Theorem 2.2 (Main Theorem 2). For each quadratic residue q and power k,
there are 4 distinct solutions to x2 = q mod 2k, {ai(q, k)}, such that

x ∈ {a1(q, k), a2(q, k), a3(q, k), a4(q, k)} = {a1(q, k), a2(q, k), 2k−a2(q, k), 2k−a1(q, k)}

with
a2(q, k) = 2k−1 − a1(q, k)
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Here I assume that the roots are ordered from least to greatest (which
amounts to the convention that a1(q, k) < a2(q, k)).

Theorem 2.3 (Main Theorem 3). Given a quadratic residue q mod 2k, then q
is a residue mod 2k+1 with

a1(q, k) = a1(q, k + 1) or a1(q, k) = a1(q + 2k, k + 1)

With these 3 theorem, all of the quadratic residues modulo powers of 2 and
the solutions to x2 ≡ mod 2k can be determined inductively starting with
k = 3.

3 Preliminary Lemmas

Lemma 3.1 (Residue Hierarchy). If qk is an odd quadratic residue of 2k, then
it is of the form

qk = qk−1 + c · 2k−1

for qk−1 a quadratic residue of 2k−1 and c = 0, 1.

Proof: Note that

r2 = qk mod 2k =⇒ r2 = qk + n · 2k, n ∈ N

=⇒ r2 mod 2k−1 = qk mod 2k−1

yet in that r ∈ Z is odd, we set qk−1 = qk mod 2k−1 which will be non-zero by
oddness, so that

r2 = qk−1 mod 2k−1

=⇒ qk = qk−1 + c · 2k−1 s.t. c = 0 or 1

because we always restrict 0 ≤ qk < 2k by convention.
Taking the base case of k = 3, we have 1 quadratic residue of q = 1, so from

the above lemma, we see that the number of quadratic residues can at most
double, i.e., the number of quadratic residues modulo 2k is at most, n = 2k−3,
which provides the correct upper bound for our first lemma.

Lemma 3.2 (Residue symmetry). For k ≥ 4, qk is an odd residue modulo 2k,
then so is qk + 2k−1.

Proof: Given that

∃r s.t. r2 ≡ qk mod 2k

(2k−2 − r)2 = 22k−4 − 2k−1r + r2 = 22k−4 − 2k−1(r + 1) + r2 + 2k−1

Noting that r + 1 is even, and that for k ≥ 4, 2k | 22k−4, so that

(2k−2 − r)2 ≡ 22k−4 − 2k
(
r + 1

2

)
+ r2 + 2k−1 ≡ qk + 2k−1 mod 2k
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Lemma 3.3 (Residue solution sets). For k ≥ 3 and qk odd, if r is a solution
to x2 ≡ qk mod 2k, then so are {2k − r, 2k−1 − r, 2k − 2k−1 + r}.

Proof: Note that

(2k − r)2 ≡ r2 mod 2k ≡ qk mod 2k

(2k−1 − r)2 ≡ 22k−2 − 2kr + r2 ≡ qk mod 2k

(2k − 2k−1 + r)2 ≡ (2k−1 − r)2 ≡ qk mod 2k

Using the fact that qk (and thus r) is odd, it is clear that these four solutions
are distinct.

4 Proof of Theorem 1

We prove theorem 3.1 by induction. The base case of k = 3 is true (see Appendix
for a table of the odd residues for the first few powers of 2k). Assume that
the odd quadratic residues modulo 2k are given by the set Qk = {8c + 1} for
0 ≤ c < 2k−3. Applying Lemma 4.1, we note that 8 | 2k for k > 3, so that

Qk+1 ⊆ {8c + 1}c=2k−2−1
c=0

∀q ∈ Qk, q ∈ Qk+1 or q + 2k ∈ Qk+1

but applying Lemma 4.2, we see that both q, q + 2k ∈ Qk+1, for all q ∈ Qk.

This implies that Qk+1 ⊇ {8c + 1}c=2k−2−1
c=0 , implying set equality. This verifies

the inductive hypothesis.

5 Proof of Theorem 2

Given that for each k, there are 2k−3 residues of the form {8c + 1}. We now
partition the odd integers in Z/2kZ, or rather (Z/2kZ)× by which residue their
square corresponds to. For each q ∈ Qk, there are at least four distinct solutions
to x2 ≡ q mod 2k, which account for at least

|Qk| ∗ 4 = 2k−3 ∗ 4 = 2k−1

elements of (Z/2kZ)×. Yet |(Z/2kZ)×| = 2k−1 so that we’ve accounted for all
elements of this group, meaning that to each odd residue, there are exactly 4
solutions to x2 ≡ q mod 2k. Moreover, they have the form as stated in Theorem
3.2 by applying Lemma 4.3
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6 Proof of Theorem 3

We have that

a1(q, k)2 ≡ q mod 2k =⇒ a1(q, k)2 = q + n · 2k, n ∈ N

If n is even, then
a1(q, k)2 = q + c · 2k+1, c ∈ N

=⇒ a1(q, k)2 ≡ q mod 2k+1

If n is odd, then

a1(q, k)2 = q + 2k + (n− 1) · 2k = q + 2k + c · 2k+1, c ∈ N

=⇒ a1(q, k)2 ≡ q + 2k mod 2k+1

Note that both such cases do occur (see Appendix).

7 Appendix

Below is a table of residues for 1 ≤ k ≤ 6.

Table 1: Powers of 2 greater than or equal to 8 and Their Respective Residues
and Solutions

P = 8 P = 16 P = 32
q ≡ 1 q ≡ 1 q ≡ 9 q ≡ 1 q ≡ 9 q ≡ 17 q ≡ 25
x = 1 x = 1 x = 3 x = 1 x = 3 x = 7 x = 5
x = 3 x = 7 x = 5 x = 15 x = 13 x = 9 x = 11
x = 5 x = 9 x = 11 x = 17 x = 19 x = 23 x = 21
x = 7 x = 15 x = 13 x = 31 x = 29 x = 25 x = 27

P = 64
q ≡ 1 q ≡ 9 q ≡ 17 q ≡ 25 q ≡ 33 q ≡ 41 q ≡ 49 q ≡ 57
x = 1 x = 3 x = 9 x = 5 x = 15 x = 13 x = 7 x = 11
x = 31 x = 29 x = 23 x = 27 x = 17 x = 19 x = 25 x = 21
x = 33 x = 35 x = 41 x = 37 x = 47 x = 45 x = 39 x = 43
x = 63 x = 61 x = 55 x = 59 x = 49 x = 51 x = 57 x = 53

With regards to theorem 3, we see that for q = 1, and P = 32, 64 (or rather
k = 5, 6), that a1(1, 5) = a1(1, 6). However, for q = 17, we have a1(17, 5) =
a1(17 + 32, 6) = a1(49, 6), so both cases do occur.
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