Odd Quadratic Residues modulo powers of 2 Write up 2017

Jared Marx-Kuo

June 21st, 2017

1 Introduction

Finding solutions to

$$
x^{2} \equiv q \quad \bmod p
$$

is a well known problem, with a solution given by the Tonelli-Shanks algorithm. Furthermore, for a prime $p>2$, the solutions to

$$
x^{2} \equiv q \quad \bmod p^{k} \quad k \geq 1
$$

are uniquely determined by an application of Hensel's lemma to the function $f(x)=x^{2}-q$, for which $f^{\prime}(x)=2 x \not \equiv 0$ assuming $p^{k} \nmid x$. However, in the case that $p=2$, hensel lifting from $k=1$ to higher values fails as $f^{\prime}(x)=2 x \equiv 0$ $\bmod 2$. Thus another method is needed to determine the solutions to $x^{2} \equiv q$ $\bmod 2^{k}$. We provide such a method for odd values of q, as well as a simple classification of these residues for each value of 2^{k}.

2 Main Claims

Let Q_{k} denote the collection of odd residues modulo 2^{k}. The following theorems determine the structure of all residues modulo 2^{k} in relation to residues modulo 2^{k-1} for $k>3$.
Theorem 2.1 (Main Theorem 1). For $k \geq 3$, odd quadratic residues are of the form $q=8 c+1$, and iterating through all values of $c=\left\{0, \ldots, 2^{k-3}-1\right\}$ yields all such odd quadratic residues.

Note that this implies that for 2^{k}, there are 2^{k-3} odd quadratic residues, or $1 / 8$ of all values in $\mathbb{Z} / 2^{k} \mathbb{Z}$.

Theorem 2.2 (Main Theorem 2). For each quadratic residue q and power k, there are 4 distinct solutions to $x^{2}=q \bmod 2^{k},\left\{a_{i}(q, k)\right\}$, such that
$x \in\left\{a_{1}(q, k), a_{2}(q, k), a_{3}(q, k), a_{4}(q, k)\right\}=\left\{a_{1}(q, k), a_{2}(q, k), 2^{k}-a_{2}(q, k), 2^{k}-a_{1}(q, k)\right\}$
with

$$
a_{2}(q, k)=2^{k-1}-a_{1}(q, k)
$$

Here I assume that the roots are ordered from least to greatest (which amounts to the convention that $\left.a_{1}(q, k)<a_{2}(q, k)\right)$.

Theorem 2.3 (Main Theorem 3). Given a quadratic residue $q \bmod 2^{k}$, then q is a residue $\bmod 2^{k+1}$ with

$$
a_{1}(q, k)=a_{1}(q, k+1) \text { or } a_{1}(q, k)=a_{1}\left(q+2^{k}, k+1\right)
$$

With these 3 theorem, all of the quadratic residues modulo powers of 2 and the solutions to $x^{2} \equiv \bmod 2^{k}$ can be determined inductively starting with $k=3$.

3 Preliminary Lemmas

Lemma 3.1 (Residue Hierarchy). If q_{k} is an odd quadratic residue of 2^{k}, then it is of the form

$$
q_{k}=q_{k-1}+c \cdot 2^{k-1}
$$

for q_{k-1} a quadratic residue of 2^{k-1} and $c=0,1$.
Proof: Note that

$$
\begin{gathered}
r^{2}=q_{k} \quad \bmod 2^{k} \Longrightarrow r^{2}=q_{k}+n \cdot 2^{k}, \quad n \in \mathbb{N} \\
\Longrightarrow r^{2} \bmod 2^{k-1}=q_{k} \bmod 2^{k-1}
\end{gathered}
$$

yet in that $r \in \mathbb{Z}$ is odd, we set $q_{k-1}=q_{k} \bmod 2^{k-1}$ which will be non-zero by oddness, so that

$$
\begin{gathered}
r^{2}=q_{k-1} \quad \bmod 2^{k-1} \\
\Longrightarrow q_{k}=q_{k-1}+c \cdot 2^{k-1} \text { s.t. } c=0 \text { or } 1
\end{gathered}
$$

because we always restrict $0 \leq q_{k}<2^{k}$ by convention.
Taking the base case of $k=3$, we have 1 quadratic residue of $q=1$, so from the above lemma, we see that the number of quadratic residues can at most double, i.e., the number of quadratic residues modulo 2^{k} is at most, $n=2^{k-3}$, which provides the correct upper bound for our first lemma.

Lemma 3.2 (Residue symmetry). For $k \geq 4, q_{k}$ is an odd residue modulo 2^{k}, then so is $q_{k}+2^{k-1}$.

Proof: Given that

$$
\begin{gathered}
\exists r \text { s.t. } r^{2} \equiv q_{k} \bmod 2^{k} \\
\left(2^{k-2}-r\right)^{2}=2^{2 k-4}-2^{k-1} r+r^{2}=2^{2 k-4}-2^{k-1}(r+1)+r^{2}+2^{k-1}
\end{gathered}
$$

Noting that $r+1$ is even, and that for $k \geq 4,2^{k} \mid 2^{2 k-4}$, so that

$$
\left(2^{k-2}-r\right)^{2} \equiv 2^{2 k-4}-2^{k}\left(\frac{r+1}{2}\right)+r^{2}+2^{k-1} \equiv q_{k}+2^{k-1} \quad \bmod 2^{k}
$$

Lemma 3.3 (Residue solution sets). For $k \geq 3$ and q_{k} odd, if r is a solution to $x^{2} \equiv q_{k} \bmod 2^{k}$, then so are $\left\{2^{k}-r, 2^{k-1}-r, 2^{k}-2^{k-1}+r\right\}$.

Proof: Note that

$$
\begin{gathered}
\left(2^{k}-r\right)^{2} \equiv r^{2} \quad \bmod 2^{k} \equiv q_{k} \quad \bmod 2^{k} \\
\left(2^{k-1}-r\right)^{2} \equiv 2^{2 k-2}-2^{k} r+r^{2} \equiv q_{k} \\
\bmod 2^{k} \\
\left(2^{k}-2^{k-1}+r\right)^{2} \equiv\left(2^{k-1}-r\right)^{2} \equiv q_{k}
\end{gathered} \bmod 2^{k} . ~ \$
$$

Using the fact that q_{k} (and thus r) is odd, it is clear that these four solutions are distinct.

4 Proof of Theorem 1

We prove theorem 3.1 by induction. The base case of $k=3$ is true (see Appendix for a table of the odd residues for the first few powers of 2^{k}). Assume that the odd quadratic residues modulo 2^{k} are given by the set $Q_{k}=\{8 c+1\}$ for $0 \leq c<2^{k-3}$. Applying Lemma 4.1, we note that $8 \mid 2^{k}$ for $k>3$, so that

$$
\begin{aligned}
Q_{k+1} & \subseteq\{8 c+1\}_{c=0}^{c=2^{k-2}-1} \\
\forall q \in Q_{k}, \quad q & \in Q_{k+1} \text { or } q+2^{k} \in Q_{k+1}
\end{aligned}
$$

but applying Lemma 4.2, we see that both $q, q+2^{k} \in Q_{k+1}$, for all $q \in Q_{k}$. This implies that $Q_{k+1} \supseteq\{8 c+1\}_{c=0}^{c=2^{k-2}-1}$, implying set equality. This verifies the inductive hypothesis.

5 Proof of Theorem 2

Given that for each k, there are 2^{k-3} residues of the form $\{8 c+1\}$. We now partition the odd integers in $\mathbb{Z} / 2^{k} \mathbb{Z}$, or rather $\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)^{\times}$by which residue their square corresponds to. For each $q \in Q_{k}$, there are at least four distinct solutions to $x^{2} \equiv q \bmod 2^{k}$, which account for at least

$$
\left|Q_{k}\right| * 4=2^{k-3} * 4=2^{k-1}
$$

elements of $\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)^{\times}$. Yet $\left|\left(\mathbb{Z} / 2^{k} \mathbb{Z}\right)^{\times}\right|=2^{k-1}$ so that we've accounted for all elements of this group, meaning that to each odd residue, there are exactly 4 solutions to $x^{2} \equiv q \bmod 2^{k}$. Moreover, they have the form as stated in Theorem 3.2 by applying Lemma 4.3

6 Proof of Theorem 3

We have that

$$
a_{1}(q, k)^{2} \equiv q \quad \bmod 2^{k} \Longrightarrow a_{1}(q, k)^{2}=q+n \cdot 2^{k}, \quad n \in \mathbb{N}
$$

If n is even, then

$$
\begin{aligned}
& a_{1}(q, k)^{2}=q+c \cdot 2^{k+1}, \quad c \in \mathbb{N} \\
& \Longrightarrow a_{1}(q, k)^{2} \equiv q \quad \bmod 2^{k+1}
\end{aligned}
$$

If n is odd, then

$$
\begin{gathered}
a_{1}(q, k)^{2}=q+2^{k}+(n-1) \cdot 2^{k}=q+2^{k}+c \cdot 2^{k+1}, \quad c \in \mathbb{N} \\
\Longrightarrow a_{1}(q, k)^{2} \equiv q+2^{k} \bmod 2^{k+1}
\end{gathered}
$$

Note that both such cases do occur (see Appendix).

7 Appendix

Below is a table of residues for $1 \leq k \leq 6$.
Table 1: Powers of 2 greater than or equal to 8 and Their Respective Residues and Solutions

$\mathrm{P}=8$	$\mathrm{P}=16$		$\mathrm{P}=32$			
$q \equiv 1$	$q \equiv 1$	$q \equiv 9$	$q \equiv 1$	$q \equiv 9$	$q \equiv 17$	$q \equiv 25$
$\mathrm{x}=1$	$\mathrm{x}=1$	$\mathrm{x}=3$	$\mathrm{x}=1$	$\mathrm{x}=3$	$\mathrm{x}=7$	$\mathrm{x}=5$
$\mathrm{x}=3$	$\mathrm{x}=7$	$\mathrm{x}=5$	$\mathrm{x}=15$	$\mathrm{x}=13$	$\mathrm{x}=9$	$\mathrm{x}=11$
$\mathrm{x}=5$	$\mathrm{x}=9$	$\mathrm{x}=11$	$\mathrm{x}=17$	$\mathrm{x}=19$	$\mathrm{x}=23$	$\mathrm{x}=21$
$\mathrm{x}=7$	$\mathrm{x}=15$	$\mathrm{x}=13$	$\mathrm{x}=31$	$\mathrm{x}=29$	$\mathrm{x}=25$	$\mathrm{x}=27$

$\mathrm{P}=64$							
$q \equiv 1$	$q \equiv 9$	$q \equiv 17$	$q \equiv 25$	$q \equiv 33$	$q \equiv 41$	$q \equiv 49$	$q \equiv 57$
$\mathrm{x}=1$	$\mathrm{x}=3$	$\mathrm{x}=9$	$\mathrm{x}=5$	$\mathrm{x}=15$	$\mathrm{x}=13$	$\mathrm{x}=7$	$\mathrm{x}=11$
$\mathrm{x}=31$	$\mathrm{x}=29$	$\mathrm{x}=23$	$\mathrm{x}=27$	$\mathrm{x}=17$	$\mathrm{x}=19$	$\mathrm{x}=25$	$\mathrm{x}=21$
$\mathrm{x}=33$	$\mathrm{x}=35$	$\mathrm{x}=41$	$\mathrm{x}=37$	$\mathrm{x}=47$	$\mathrm{x}=45$	$\mathrm{x}=39$	$\mathrm{x}=43$
$\mathrm{x}=63$	$\mathrm{x}=61$	$\mathrm{x}=55$	$\mathrm{x}=59$	$\mathrm{x}=49$	$\mathrm{x}=51$	$\mathrm{x}=57$	$\mathrm{x}=53$

With regards to theorem 3 , we see that for $q=1$, and $P=32,64$ (or rather $k=5,6)$, that $a_{1}(1,5)=a_{1}(1,6)$. However, for $q=17$, we have $a_{1}(17,5)=$ $a_{1}(17+32,6)=a_{1}(49,6)$, so both cases do occur.

