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The roles of loss aversion and inhibition among alternatives are examined in models of the similarity,
compromise, and attraction effects that arise in choices among 3 alternatives differing on 2 attributes.
R. M. Roe, J. R. Busemeyer, and J. T. Townsend (2001) have proposed a linear model in which effects
previously attributed to loss aversion (A. Tversky & D. Kahneman, 1991) arise from attention switching
between attributes and similarity-dependent inhibitory interactions among alternatives. However, there
are several reasons to maintain loss aversion in a theory of choice. In view of this, an alternative theory
is proposed, integrating loss aversion and attention switching into a nonlinear model (M. Usher & J. L.
McClelland, 2001) that relies on inhibition independent of similarity among alternatives. The model
accounts for the 3 effects and makes testable predictions contrasting with those of the Roe et al. (2001)
model.

Several interesting empirical discoveries have emerged from
studies of how people choose between several objects that differ
on two or more attributes. For example, someone might be given
a choice among three automobiles, varying in performance quality
and driving economy (Roe, Busemeyer, & Townsend, 2001).
Experimental investigations of human decision making in such
multialternative, multiattribute situations have revealed a series of
effects that raise challenges for traditional theories of rational
choice. These traditional theories are based on the normative
principle of independence of irrelevant alternatives (Debreu,
1960), which states that the relative preference of any two alter-
natives is independent of all other alternatives. Despite the intui-
tive appeal of this principle, a number of violations have been
discovered. Below, we describe three central effects that illustrate
these violations, called similarity, attraction, and compromise ef-
fects (Roe et al., 2001). The situations all arise in choice among
three alternatives defined by two attributes, as in the car example
above. A graphical representation of the positions of the various
alternatives within the two dimensional space defined by the
position of each alternative with respect to its value or attractive-
ness on each of the attributes is provided in Figure 1.

Most cases we consider involve the alternatives A and B in
Figure 1, which were preselected to be of equal binary preference,

such that P(A�A, B) � P(B�A, B): That is, the probability of
choosing A equals the probability of choosing B when these are the
only available choices. Each case also involves a single additional
alternative. All points on the negative diagonal in the figure (the
indifference line) are of equal binary preference; alternatives on
this line, including Se, Sc, and C, are indifferent alternatives with
respect to A and B. All those below the line (such as I) are inferior
alternatives of lesser binary preference relative to alternatives on
the indifference line. An inferior alternative with a value less than
another on one dimension and less than or equal to it on the other
dimension is dominated by that alternative (e.g., D, R, and F are
dominated by A).

1. Similarity effect: This effect arises when an indifferent com-
petitive option similar to A, such as either Se or Sc (the subscripts
e and c correspond to extreme and compromise, respectively,
relative to the options A and B) in Figure 1, is added to the set of
alternatives. The added alternative results in a change of the choice
probability between A and B in favor of the dissimilar alternative
(P(B�A, B, Sx) � P(A�A, B, Sx), x � c, e; Tversky, 1972; Sjoberg,
1977). This effect violates the principle that an irrelevant alterna-
tive (Sx) should not influence the relative probability of choice
between a specific pair of alternatives (A and B).

2. Attraction effect: When the third option (such as D, R, or F)
is dominated by the similar alternative (A), its introduction can
enhance the likelihood of choosing A over B, P(A�A, B, D) �
P(B�A, B, D) (Huber, Payne, & Puto, 1982; Simonson, 1989). In
some cases, one even finds that adding the choice option to the
response set increases the likelihood of choosing A compared with
the situation in which B was the only alternative (e.g., P(A�A, B,
D) � P(A�A, B)). Such a finding violates the so-called regularity
principle, which is implied by a large class of random utility
models (see, e.g., Marley, 1989). A further distinction is some-
times made between two types of dominated options, R and F
(called range and frequency decoys, respectively). The attraction
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effect has been shown to be larger with range decoys (Huber et al.,
1982).

3. Compromise effect: This effect arises when the third alterna-
tive (such as C in Figure 1) is an indifferent one positioned
halfway between A and B. In this condition, C tends to win over A
and B (P(C�A, B, C) � P(A�A, B, C) � P(B�A, B, C); Simonson,
1989; Tversky & Simonson, 1993).

An intensive effort to provide a causal explanation of choice
behavior that meets these challenges was undertaken by Tversky
and colleagues (Tversky, 1972; Tversky & Kahneman, 1991;
Tversky & Simonson, 1993). Consistent with the theory of choice
under uncertainty (Kahneman & Tversky, 1979, 1984), Tversky
and colleagues’ account of multialternative, multiattribute prefer-
ence is based on two central tenets: (a) Options are evaluated
relative to a reference frame, and (b) the value function for gains
and losses (advantages and disadvantages relative to the reference)
is S-shaped and asymmetric, with a higher slope in the loss domain
that conforms to the principle of loss aversion (Tversky & Kah-
neman, 1991; Tversky & Simonson, 1993). Within this model,
called the context-dependent advantage model, violations of the
independence of irrelevant alternatives principle occur because
decision makers treat all the alternatives in the option set as
reference points in the evaluation of each option.

Although the context-dependent advantage model accounts for
the attraction and compromise effects, Roe et al. (2001) have
recently shown that it fails to account for the similarity effect. It is
interesting to note that one of the first models of multiattribute,
multialternative choice, the elimination by aspects (EBA) model of
Tversky (1972), explains the similarity effect but not the attraction
and compromise effects. In their recent article, Roe et al. have
shown that a model for multialternative, multiattribute choice,
based on their decision-field theory (DFT; Busemeyer &

Townsend, 1993), accounts for all three effects. The model shares
a property of the EBA model (Tversky, 1972) in assuming that
decision makers attend to only one of the attributes (or aspects)
that differentiate the alternatives at a time, sampling the aspects at
random.

The model also shares with the context-dependent advantage
model the principle that the input into the choice evaluation is
driven by valances, which are computed contrasts between the
options. However, the Roe et al. (2001) model differs from the
context-dependent advantage model in that it does not rely on
nonlinear and asymmetric value functions for gains and losses. As
we discuss in detail below, it relies instead on the use of a
distance-dependent lateral inhibition mechanism within a linear
dynamical system in which alternatives with negative activations
can boost the activation of similar competitors. This is perhaps the
most interesting and provocative aspect of their model because it
suggests that apparent loss aversion on the part of human subjects
may be an emergent property of decision dynamics. For this
reason, we refer to the Roe et al. model as the DFT model with
distance-dependent inhibition (DFTDDI).

In the present article, we offer an alternative to the DFTDDI

model that also accounts simultaneously for the similarity, attrac-
tion, and compromise effects. Our approach, which arises within
our leaky, competing accumulator (LCA) model of perceptual
choice (Usher & McClelland, 2001), shares many of the same
principles of the DFTDDI model but differs from it in its assump-
tions about competitive interactions among alternatives and loss
aversion. Two considerations motivate our alternative treatment of
these issues. First, we argue that the mechanism used by Roe et al.
(2001) does not provide a unified account for all the situations in
which loss aversion is found in decision making (Tversky &
Kahneman, 1991). Second, the attraction effect arises in the DFTDDI

model because it relies on a completely linear dynamical system in
which activations below 0 are allowed to propagate to other units,
thereby allowing a dominated alternative to boost the activation of
a similar competitor via an “inhibitory” (i.e., negative-valued)
connection. As we also review below, the propagation of activa-
tions below 0 is not allowed in the LCA model or in many other
models of perceptual choice because it has undesired computa-
tional consequences. We address these considerations by showing
that it is possible to account for the three effects in a version of an
LCA model that incorporates stochastic attention switching and
relies directly on loss aversion instead of distance-dependent in-
hibition and propagation of negated inhibition.

The model we propose addresses the point raised by Roe et al.
(2001) that no single model incorporating loss aversion has here-
tofore simultaneously addressed the similarity effect together with
the attraction and compromise effects. By retaining the core prin-
ciples of the LCA model, it also builds a bridge between efforts to
understand multialternative, multiattribute choice on the one hand
and perceptual identification on the other. As we show below, the
model also makes distinct predictions from the DFTDDI model,
allowing for clear tests to be carried out that will discriminate
between these alternative approaches. In what follows, we first
review the DFTDDI model and then consider how it accounts for
the three effects. We go on to present in more detail some reactions
to this account, thereby motivating our alternative account based
on the use of LCAs, attention switching, and loss aversion. We
then proceed to demonstrate how the model accounts for the

Figure 1. Illustration of the choice alternatives characterized by their
values on two dimensions associated with the attributes that distinguish the
alternatives. The alternatives might be automobiles, and the attributes
might be performance quality and driving economy. Each alternative is
defined as a point in this two dimensional space, consisting of a value or
attractiveness with respect to each attribute within the normalized interval
(0, 1), corresponding to the attractiveness of the alternative with respect to
the attribute. The negative diagonal in the figure corresponds to the
indifference line along which there is a perfect trade-off of attractiveness,
so that when the choice is restricted to two alternatives on this line, each
has a choice probability of .5.

758 USHER AND MCCLELLAND



similarity, attraction, and compromise effects. Finally, we discuss
the contrasting predictions made by the different models, indicat-
ing how they can be distinguished by future experiments.

The DFTDDI Model

The DFTDDI model was developed within DFT, which has been
successfully applied to a wide range of decision-making situations
(Busemeyer & Townsend, 1993; Diederich, 1997, 2003; Diederich
& Busemeyer, 1999; Roe et al., 2001; for a survey, see Busemeyer
& Diederich, 2002). As with some other DFT models, it relies on
leaky integration of information. As Roe et al. (2001) noted, the
model can be viewed as a neural network with four layers. The first
layer corresponds to the input attribute values, which feed via
weights into units at Level 2 that correspond to the two choice
alternatives. An attentional mechanism stochastically selects be-
tween the attribute units, so that only one attribute (determined
randomly) provides input to Level 2 at each time step. Level 3
computes valences for each by subtracting the average Level 2
activation of the two other alternatives from its own Level 2
activation. As the attention switches between the attributes, the
valences vacillate from positive to negative values. Level 4 is the
choice layer, which performs a leaky integration of the varying
input from Level 3; the leaky integration is sometimes called an
Ornstein–Uhlenbeck diffusion process1 and is used in several other
models including those of Busemeyer and Townsend (1993), Died-
erich (1997), and Usher and McClelland (2001). Competition
between the options occurs at Level 4 and is mediated by bidirec-
tional inhibitory connections with strengths that are assumed to be
distance dependent. That is, the strengths of the inhibitory con-
nections among units in the fourth layer decrease as the distance
between them, in the attribute space shown in Figure 1, increases.
In support of this, it is suggested that an inhibition function that
decreases monotonically with distance (dissimilarity) is consistent
with the computation of contrast in early sensory processing. Two
different rules for selecting a response are considered: According
to the external stopping rule, some event independent of the state
of the decision-making process determines the time at which the
choice is made, and the choice unit that has the highest activation
at the given time is selected. According to the internal stopping
rule, a unit is selected if it is the first to reach a response criterion.
Roe et al. (2001) indicated that both approaches produce similar
results. Because the external stopping rule is the basis of their main
graphs, we focus on that case in our own simulations.

Central to understanding the way in which the DFTDDI model
accounts for the similarity and compromise effects is the pattern of
correlation among the activations of the response units. In cases in
which three alternatives on the indifference line are used, the net
input to each alternative always averages out to 0. By itself, this
would lead to equal choice among all three alternatives, if it were
not for the effects of correlations. The more two units are tempo-
rally correlated in their activation dynamics, the more they come to
share the same opportunities for choice, leading to a choice ad-
vantage for alternatives that are relatively uncorrelated with other
alternatives. In conjunction with the random alternation of atten-
tion between the attributes, this leads, as in the EBA model, to the
similarity effect. Because of the attentional switching, the activa-
tions of similar options such as A and a similar alternative (Se or
Sc) tend to rise and fall together, as they are activated and deac-

tivated together by the supporting attributes. When the stopping
rule indicates it is time to make a choice, it will usually be the case
that the correlated alternatives are both more active than the other,
uncorrelated one or the correlated alternatives will both be less
active. In the first case, they split between them the opportunity to
be chosen, whereas in the second case, the uncorrelated alternative
will be chosen, thereby producing the similarity effect. The com-
promise effect is also explained with regard to correlations be-
tween activations of choice units. This time, however, this corre-
lation is induced not by the alternating attribute input but by the
distance-dependent inhibition. The inhibition is higher between the
middle or compromise option C and the two more extreme alter-
natives A and B than it is between the extreme alternatives A and
B themselves. As a result, the activation of the compromise alter-
native becomes anticorrelated with the activation of the two ex-
treme alternatives, thereby leading them to become correlated with
each other. Once again, choice probability is split between the
correlated alternatives, resulting in a compromise advantage.

The DFTDDI model gives a very different explanation for the
attraction effect. What happens in the model is that the dominated
alternative D has a negative valance input (averaged over the
dimensions). As a result, the activation of the unit for this alter-
native quickly becomes negative. At this point, this alternative
sends positive activation to the other alternatives. This is because
a negative activation, when multiplied by a negative connection
weight, produces a positive resulting activation. The effect of this
negative activation on the similar alternative A is greater than the
effect on B because of the distance dependence. Thus, A receives
more boosting than B, accounting for the attraction effect.

Reactions to the DFTDDI Account

The DFTDDI model accounts for a set of phenomena that have
previously been thought to require the use of a loss-averse value
function. As such, it is intriguing and provocative. Loss-averse
behavior arises in the model as an emergent consequence of a
dynamic decision-making process based on principles Roe et al.
(2001) attributed to the underlying neural computation. Because
much of our previous work explored emergent consequences of
neural networks (in place, e.g., of explicit rules, as in Rumelhart,
McClelland, & the PDP Research Group, 1986), we find ourselves
quite sympathetic to the approach. Yet, in this particular case, it
may be worth considering further the merits of retaining loss
aversion as an explicit contributing factor in explaining human
choice behavior. We first summarize, following Tversky and Kah-
neman (1991), the need for loss aversion in multiattribute choice,
pointing out that the “emergent” loss aversion produced by distant-
dependent activation by negated inhibition does not cover all
choice situations exhibiting this property. Although other features
might be introduced into the DFT to address the remaining situa-
tions, thus far the coverage is incomplete, and the mechanisms that

1 A diffusion process is a statistical process that tracks the evolution
through time of a random variable subjected to perturbation by noise. The
standard, or Wiener, diffusion process describes a perfect integration of the
perturbations, such that they are simply summed over time to determine the
state of the variable. In the Ornstein–Uhlenbeck diffusion, the random
variable is also affected by a decay term that attracts the variable toward a
baseline, with a force proportional to its deviation from it.
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have been proposed are not without difficulties. We then examine
the use of distance-dependent inhibition by negated activation
itself, suggesting reasons why we see this mechanism as problem-
atic. That background leads us to present our own model, similar
to the DFTDDI but incorporating loss aversion explicitly rather
than relying on distant-dependent activation by negated inhibition.
This is consistent with Tversky and Kahneman’s (1991) position
of loss aversion as a basic principle grounded in the fact that “the
asymmetry of pain and pleasure is the ultimate justification of loss
aversion in choice” (p. 1057).

Loss Aversion in Multiattribute Choice

A large number of studies indicate that loss aversion is a general
principle underlying decision making in a wide range of contexts.
We focus here on studies involving choice between options char-
acterized by several attributes, ignoring studies of risk and mon-
etary equivalents (but see, e.g., Kahneman & Tversky, 2000).
Consider the following three situations.

The endowment/status-quo effect: Rather fight than switch?
Three groups of participants are offered a choice between two
objects of roughly equal value (a mug and a chocolate bar), labeled
here as A and B. One group is first offered the A object and then
the option to exchange it for the B object. The second group is
offered the B object followed by the option to exchange it for A.
The control group are simply offered a choice between the two
objects. The results reported by Knetsch (1989) are striking.
Whereas the control participants chose the two objects in roughly
equal fractions (56% vs. 44%), 90% of the participants in either of
the groups that were first offered one of the objects preferred to
keep it rather than exchange it for the other one (see also Samuel-
son & Zekhauser, 1988). This effect is directly explained by
Tversky and Kahneman (1991) by appeal to the loss-aversion
function. Because losses are weighted more than gains, partici-
pants who evaluate their choices with the already-owned object
serving as the reference point decline the exchange. For the control
participants, either the values may be computed relative to the
neutral reference (Tversky & Kahneman, 1991), or each option can
be used as a reference for the other options (Tversky & Simonson,
1993). In either case, there is no reference bias, consistent with the
nearly equal choice fractions in this case.

Preference for improvements over trade-offs. Participants are
offered the possibility to exchange an option they just received (the
reference) for one of two more valuable options of roughly equal
value, A and B. For half of the participants, the reference is similar
to but of less value than A (e.g., option F in Figure 1), and for the
other half, the reference is similar to but of less value than B. The
majority of participants (more than 65%) preferred to exchange the
reference object for the similar option that dominates it (Tversky &
Kahneman, 1991). This follows the principle that losses are
weighted more heavily than gains because the similar choice
involves a small improvement, whereas the dissimilar choice in-
volves a trade-off in which a large gain is outweighed by a large
loss.

Advantages and disadvantages: Small ones are preferred over
large. Participants imagine making a choice between two items
(jobs), A and B, to replace a reference item (a present job that is
being terminated). Again, for half of the participants, the reference
is similar to A, and for the other half, it is similar to B. Unlike the

case just considered, the reference is not a dominated option.
Instead, it is a relatively extreme option on the indifference line
with the similar and dissimilar alternatives. For example, the
reference similar to A would correspond to Se in Figure 1. Also,
note that the reference itself cannot be chosen; it is described as no
longer available. Even in this case, most participants (about 70%)
chose the option similar to the reference. Tversky and Kahneman
(1991) explained this finding, too, by appeal to loss aversion. The
similar option involves small gains and losses, whereas the distant
one involves large gains and losses. Because losses are weighted
more than the corresponding gains, the combination of the larger
gain and loss is less preferred than the combination of the smaller
gain and loss.

In summary, the three effects described above, along with the
compromise and attraction effects, are all directly explained by
loss aversion. We have already discussed how the compromise and
attraction effects can be addressed in the DFTDDI model; we now
consider the three additional effects. The model can address the
improvement/trade-off effect, without assuming an explicit asym-
metric value function as proposed by Tversky and Kahneman
(1991), because it can be viewed simply as an instance of the
attraction effect. The dominated reference option boosts the acti-
vation of the similar option, via distance-dependent activation by
negated inhibition. However, this mechanism cannot account for
the endowment/status-quo effect. Distance-dependent activation
by negated inhibition cannot be responsible for the tendency for
participants to prefer the owned object: Because distance is sym-
metric, the two objects must inhibit each other to an equal extent.
Instead, some other principle must be applied to address loss
aversion in this situation. Busemeyer and Townsend (1993) ac-
counted for this effect by proposing that the initial preference state
for the owned alternative is greater than that for the other, not
owned, alternative. Although such an account deserves consider-
ation, it is worth noting that justification for assuming that there is
an initial preference for the owned alternative is not clear, unless
one appeals to something very much like loss aversion. Even as an
implementation of loss aversion, the proposed mechanism may not
be robust enough to account for all instances of the effect. The
impact of the initial preference will diminish and eventually vanish
as a decision maker deliberates (Busemeyer & Townsend, 1993).2

Thus, the appeal to an initial preference for the owned object may
not account for the effect in situations in which the participants are
given time to deliberate before deciding, as in Knetsch and Sinden
(1984). In their experiment, participants were first given a gift (a
lottery ticket) and were then told that they would have the option
to keep the gift (and play in the lottery) or exchange it for a cash
amount. A control group was offered the option of buying the
lottery ticket for the same cash amount. Participants were then
invited to leave the room in which the choice was offered and to
stop at a “cash desk” outside to discuss the options before final-
izing their decision. This procedure was adopted so that partici-

2 For example, the effect of the initial preference vanishes over time in
the simulation illustrated in Figure 7 of Busemeyer and Townsend (1993),
in which the response criterion is assumed to increase with the time
deadline. Even if the deadline was not increased, any effects of initial
preference will necessarily be located at the fast part of the reaction time
distribution.
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pants would not influence each other in their choices. However, it
also seems to ensure that the participants are given considerable
time to deliberate, which should allow the initial preference state
to dissipate. Similar considerations arise in an intriguing example
of the status-quo effect lasting over several years in choices among
alternative car insurance policies in New Jersey and Pennsylvania
(Kahneman, Knetsch, & Thaler, 1991). These problems do not
arise in the approach we advocate, in which loss aversion operates
to provide a stable preference for the previously owned alternative,
without erosion of the effect over time.

Finally, let us consider the advantage–disadvantage situation.
Here, the reference is not dominated by the other options, as it is
in the improvement/trade-off case; so, its valence is not generally
negative and does not boost the activation of the similar option by
negated inhibition. Moreover, the previously held job is not avail-
able as a choice alternative; so, it is not clear that it should actually
be treated as an option in the decision process. If it were treated as
an option, then for consistency with the DFTDDI model’s account
of the status-quo effect, this option should receive an initial pos-
itive preference, but this would if anything lead to inhibition of the
similar option. In the absence of such an initial positive preference,
the correlation mechanism in the DFTDDI could operate to influ-
ence choices, but in this case, it would if anything reduce, rather
than enhance, choices of the similar alternative, as in the similarity
effect.3 Thus, if the DFTDDI theory is to account for the effect, it
would appear that yet another principle will have to be added to
address the data.4

In summary, work within the DFT does not rely on asymmetric
value functions and has instead offered a range of different mech-
anisms to account for several different scenarios that have been
used to motivate a direct appeal to the principle of loss aversion.
Thus, distance-dependent activation by negated inhibition ad-
dresses only some of the effects. We now consider further diffi-
culties with this mechanism.

Treatment of Distance Dependency in DFTDDI

One feature of the distance-dependent inhibition assumption
used in Roe et al. (2001) is that no specific function has been
introduced that specifies the exact way in which inhibition varies
with distance between alternatives. This approach has the advan-
tage of avoiding unnecessary overspecification. At the same time,
it introduces considerable model freedom, and there are reasons for
uncertainty about the existence of a satisfactory distance-
dependent function that obeys the stated principle: “The basic idea
is that the strength of the lateral interconnection between a pair of
options is a decreasing function of the distance between the two
options” (Roe et al., 2001, p. 374). In the main simulations of the
similarity, attraction, and compromise effects presented in Figures
4, 7, and 12 in Roe et al., the value of the inhibition between
options A and similar options (Se and D) was set to the same value
as that between option A and the compromise option C (.025);
lesser inhibition was used only for more distant alternatives (the
strength of inhibition between B and any of A, Se, D, R, and F was
set to .001). Thus, the inhibition between alternatives A and C is no
less than that between alternative A and more proximal options (S
and D), even though alternative C is shown as lying quite a bit
farther from A than any of the other mentioned alternatives (see
Figure 1). The absolute differences used in Figure 1 are arbitrary,

and the compromise and similarity effects are generally obtained
in quite distinct experiments. Thus, we cannot be sure that alter-
native C in compromise studies is in fact less similar to the A and
B alternatives used there than the S alternatives in similarity
studies are to the A and B alternatives that they use. Even so, it is
potentially problematic for the DFTDDI account if it could produce
the right magnitudes for the various effects only when the com-
promise alternative C is effectively as close to both A and B as A
is to both of the S alternatives and the various dominated alterna-
tives D, R, and F.

In this context, it is worth noting that there is a tension in the
model between the accounts it offers for the similarity and the
compromise effects. The similarity effect decreases with the
strength of the lateral inhibition between the similar alternatives,
whereas the compromise effect increases with strength of lateral
inhibition between the compromise and noncompromise alterna-
tives. Thus, it is not clear that it will be possible to account for the
actual magnitudes of the compromise and similarity effects if the
alternatives in the compromise situation are far enough apart to
mandate lower inhibition than that operating between the similar
alternatives.

The points we have made in this section do not count as
conclusive arguments against the DFTDDI approach. It may be
possible to specify a particular, consistently applied function re-
lating distance to strength of inhibition that allows the similarity,
compromise, and attraction effects to be captured at the same time.
However, the DFTDDI approach combines the use of a distance-
dependent inhibition function with the propagation of negative
activation to account for the attraction effect. We now turn to
additional issues that arise in the reliance on propagation of neg-
ative activation.

Propagation of Negative Activations

The DFTDDI approach uses a completely linear dynamical sys-
tem, in which units can take on positive and negative activations,
both of which can propagate via interconnections. This allows the
development of closed-form mathematical solutions, which is
highly desirable. However, it contrasts with the practice in many
connectionist models and other biological neural network models.
A basic operating principle of most of these models is that they
make use of some form of nonlinearity in the function that deter-

3 Exactly what effect the inclusion of an alternative that cannot be
chosen might have on preferences is not clear. Two possibilities present
themselves. (a) When it comes time to choose, only the available alterna-
tives are considered. In this situation, the correlations between the refer-
ence object and the similar alternative would not influence choice proba-
bilities. (b) When it comes time to choose, all participating options are
considered, but if an unavailable option is chosen, the choice is rejected, so
that a second choice must be made. This would tend to produce a disad-
vantage for the similar option.

4 Busemeyer and Johnson (in press) have suggested that the DFTDDI can
account for this situation by incorporating a third attribute called avail-
ability to distinguish the reference from the available options. By virtue of
its unavailability, the reference would have a lower overall valance than the
other alternatives, causing it to become dominated and thereby allowing it
to activate the similar alternative by negated inhibition. This assumption is
not necessary in our approach, and we think it raises additional difficulties.
Space constraints prevent a fuller consideration.
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mines the output that the units in the network generate on the basis
of their inputs. In part, this is done because the computations that
can be performed by a neural network are severely limited unless
there is at least one intermediate layer of nonlinear units between
inputs and outputs (Rumelhart, Hinton, & McClelland, 1986). For
this reason, some type of nonlinearity is generally supposed as a
generic aspect of the framework. Many models are further influ-
enced by the fact that neurons communicate by sending action
potentials at some rate that is intrinsically bounded below by 0. To
achieve this, they may transform the net input they receive from
other units (a linear sum) according to a nonlinear function
bounded below by 0, or they may propagate the activation value on
the basis of the net input only if it is greater than or equal to 0. The
latter approach is used widely in the models of Grossberg (1988),
in a class of models called interactive activation models (McClel-
land & Elman, 1986; McClelland & Rumelhart, 1981) and in our
leaky, competing integrator model of perceptual identification
(Usher & McClelland, 2001).

In addition to the neural motivation, the propagation of negative
activations can have undesirable consequences in networks with
mutual inhibitory connections among units that stand for compet-
ing alternatives. The difficulty arises, for example, in the interac-
tive activation model of visual letter and word recognition (Mc-
Clelland & Rumelhart, 1981), in which there are units for letter
features in each of four display locations, units for letters in each
of the same display locations, and units for words that span the
four letter positions. Mutually inconsistent units within the same
level have mutually inhibitory connections (thus, e.g., units for
alternative letters in the first position are mutually inhibitory). In
this model, allowing the propagation of negative activations was
initially tried, but with deleterious consequences. One problem is
that the inhibition of a particular unit results in excitation by
negated inhibition of all of the unit’s competitors. For example,
activation of a word results in inhibition of all other words. If
initially all word units are at a resting activation of 0, there is no
problem, but as soon as one or a few words receive excitation from
the letter level, they then inhibit the vast majority of words, and as
their activations go below 0, they all suddenly begin to excite each
other because of activation by negated inhibition. They then all
become activated together, at which point they then inhibit each
other, creating an oscillation in which informational differences in
the patterns of activation are quickly eliminated. Note that the
problem does not arise if activations below 0 do not propagate.
Then, units that are excited can inhibit other units and excite units
for the letters they contain, but units that are inhibited below 0 do
not all send each other activation by negated inhibition.

The propagation of negative activations is not prevented in all
neural network models, and we do not wish to suggest that the idea
is somehow intrinsically incorrect. However, the same problem
with the propagation of negative activations that arises in the
interactive activation model would prove problematic for the
DFTDDI if it were extended to situations in which there are several
similar alternatives all simultaneously competing. In that case, the
problem of oscillations seen in the interactive activation model
would also arise. These considerations, when taken together with
the issues noted above, contribute to our suggestion that it may be
worth considering whether the phenomena captured by the DFTDDI

model could be captured in a model that does not rely on the
distance-dependent propagation of negative activations.

LCAs with Loss-Aversion Value Function

The model we explore here is based on the LCA model previ-
ously introduced (Usher & McClelland, 2001) to account for
perceptual identification in situations involving two or more
choice alternatives. This model shares many assumptions with the
DFTDDI model, including the use of leaky, competing units that
integrate intrinsically noisy or stochastic information. Our model
was intended as a simplification of a more complex neurophysio-
logical process that captures the dynamics of ensembles of neurons
thought to collectively represent psychological variables such as
the states of activation of the various alternatives in a choice
situation (see, e.g., Usher & Niebur, 1996). To address multialter-
native, multiattribute choice, we adopt a further assumption incor-
porated in multiattribute versions of the DFT (Busemeyer & Died-
erich, 2002; Diederich, 1997, 2003; Roe et al., 2001) as well as in
a previous neural network model for multiattribute decision mak-
ing (Usher & Zakay, 1993). This assumption, whose precursor was
also used in Tversky’s (1972) EBA model, involves a stochastic
process of switching attention between the attributes of the choice
alternatives.5 As already shown by Tversky (1972), this assump-
tion can explain the similarity effect. However, our model differs
from the DFTDDI in that it follows Tversky and Kahneman (1991)
and Tversky and Simonson (1993) in assuming the existence of an
asymmetric value function displaying loss aversion. The use of
such a value function provides explanations for the compromise
and attraction effects, avoiding the need to invoke distance-
dependent activation by negated inhibition. Although our model
does use lateral inhibition, activations do not propagate below 0;
so, there is no boosting by negated inhibition, and the strength of
lateral inhibitory interactions is uniform rather than distance
dependent.

In Figure 2, the model is illustrated for situations involving a
choice between three alternatives (A1, A2, and A3), characterized
by their values on two dimensions (labeled Q for performance
quality and E for economy). The model operates as follows. At
each time iteration, one dimension is chosen randomly to be the
focus of attention. The input to each of the LCA units is deter-
mined by an input preprocessing stage, on the basis of nonlinear
transformations of the differences between all pairs of alternatives
on the chosen dimension. Thus, unlike in Tversky and Simonson
(1993), the loss-aversion value function is applied separately
within each dimension.

Preprocessing Stage

The characteristics of this stage follow Tversky and Simonson
(1993) in assuming that in multialternative choice situations, when
participants are faced with options that do not provide an explicit
reference, they evaluate the options in relation to each other (i.e.,
each option is being used as a reference point in the evaluation of
each other option; the explicit reference situation is addressed
below). For example, in the three-alternative case, inputs Ii to the
leaking accumulators are governed by these equations:

5 In EBA, the attributes are sampled without replacement. We adopt the
sampling with replacement procedure used by Roe et al. (2001; see also,
Diederich, 1997, 2003, and Usher & Zakay, 1993).
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I1 � V�d12� � V�d13� � I0, (1)

I2 � V�d21� � V�d23� � I0, (2)

and

I3 � V�d31� � V�d32� � I0, (3)

where dij is the differential (advantage or disadvantage) of option
i relative to option j, computed on the chosen dimension; V is the
nonlinear advantage function; and I0 is a positive constant that can
be seen as promoting the available alternatives into the choice set.
Without this constant, the input to each accumulator unit would
always be negative because of the loss-averse value function. The
nonlinear advantage function (see Figure 3) is chosen, consistent
with Tversky and Kahneman (1991) and Tversky and Simonson
(1993), to provide diminishing returns for high gains or losses and
aversion for losses relative to the corresponding gains:

V�x� � z�x�, x � 0 (4)

and

V�x� � � �z��x�� � �z��x���2�, x � 0. (5)

Here z(x) � log(1 	 x) is a function whose slope at the origin is
unity and decreases monotonically with gains. Notice that, as
proposed by Tversky and Simonson (1993), the value function for
losses is a convex function of the corresponding gains.6 Moreover,
as in the graphical displays of the context-advantage function
(Tversky & Kahneman, 1991), the value function has a higher
slope in the domain of losses than in the domain of gains, provid-
ing an advantage for similar options and penalizing dissimilar

option pairs (see Figure 3). This is the essential component that
enables us to account for the attraction, compromise, and loss-
aversion effects.

We assume that when the options for choice are framed relative
to a reference (this may include an option the participant is
required to give up to choose a new option in its place), the value
function is evaluated relative to this reference (Kahneman &
Tversky, 1984; Tversky & Kahneman, 1991). For example, in the
case in which a previously held (terminating) job must be ex-
changed for one of two (this generalizes straightforwardly to
n-choice) other (available) jobs, we have

I1 � V�d1R� � I0 (6)

and

I2 � V�d2R� � I0, (7)

where d1R and d2R are the advantages and/or disadvantages of the
two options relative to the reference, R.

These features make our model similar to the context-dependent
advantage model (Tversky & Simonson, 1993). However, instead
of obtaining a single preference value for every pair of choices, the
model assumes that gains and losses are estimated on each dimen-
sion separately, combining the assumptions of the context-
dependent advantage model with that of the EBA model.

Leaky-Integration Process

The activation values of the leaky, competing choice units, Ai,
integrate the input subject to decay, according to the following
iterative procedure (see Usher & McClelland, 2001, for the differ-
ential equation version):

Ai�t � 1� � �Ai�t� � �1 � ���Ii�t� � ��
j
i

Aj�t� � �i � �t��. (8)

Here, � is the neural decay constant, � is the global inhibition
parameter, � corresponds to a normally distributed noise term with
zero mean and SD � 	, and Ii corresponds to the inputs as
previously indicated. These equations are further supplemented by
resetting negative activations to zero. In Usher and McClelland
(2001), we showed that this is quantitatively indistinguishable
from an alternative formulation in which units are allowed to take
on negative activations but these activations are not propagated (no
negative firing rates).

Details of the Implementation

Option representations. As in DFTDDI, we consider sets of
options characterized by two attributes (or dimensions). This in-
cludes sets of three options to examine the similarity, compromise,
and attraction effects (Roe et al., 2001), as well as choices between
two options relative to a reference to account for loss-aversion
situations (Tversky & Kahneman, 1991). The dimensions were
scaled within the interval (0, 1). Furthermore, all the options
(except for the dominated alternatives, D, R, or F) were chosen on

6 Consider a gain of size x, a loss of size �x, and the values V(x) and
V(�x) of the associated gain and loss. The convex function we use has the
property that V(�x) � f [V(x)], where f(x) � �(x 	 x2).

Figure 2. Model scheme for a choice between three options (A1, A2, and
A3) characterized by two dimensions, Q and E, respectively. The solid-
headed arrows correspond to excitation, and the open-headed arrows cor-
respond to inhibition. At every time step, an attentional system stochasti-
cally selects the activated dimension (E in this illustration). The input-item
units in the second layer represent each option according to its weights on
both of the dimensions and project into difference-input units (d) in the
third layer (ellipses; together, the second and third layer have the function
of input preprocessing). This layer converts the differences via an asym-
metric nonlinear value function before transmitting them to the leaky,
competing accumulators, Ai, in the choice layer.
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a diagonal line, corresponding to equal binary preferences, and the
weight of (or the time spent on) each of the two attributes was
equal. The options A and B were set to (.15, .85) and (.85, .15). The
similar options Se and Sc were set to (.1, .9) and (.2, .8). The
compromise option C was set to (.5, .5). The dominated options
were set as follows: D was set to (.1, .8), R to (.05, .85), and F to
(.15, .75). For the inferior (but not strictly dominated) option I,
several cases were considered with attribute values (x, .9), with
different values of x � .1 (see Figure 1).

Model parameters. The parameter values used in the simula-
tions were 	 � .2 and I0 � .75. The value of the leak parameter
was set to � � .94, as in Roe et al. (2001). Also, as in that model,
we varied the value of the inhibition parameter to explore its effect
on the choice patterns.

Simulation procedure. Simulation sets of 1,000 trials were run
for the following six scenarios: (a) loss aversion (status quo; A, B
with A as reference), (b) loss aversion (high vs. low advantage–
disadvantage; A, C with Se as reference), (c) similarity compromise
(A, B, Sc), (d) similarity extreme (A, B, Se), (e) compromise (A, B,
C), and (f) attraction (A, B, D). We also tested the difference
between range and frequency decoys by replacing (in f) D with R
or F, respectively, and we tested the attraction scenario with a
choice between A and B, relative to an explicit reference.

The choice fraction, Pi(t), is computed by running the simula-
tion for 500 iterations and measuring the alternative whose acti-
vation is the highest at t. This traces the choice probabilities that
would arise from the use of an externally controlled stopping rule
at each time point t. Because the actual value of t is not known and
may be variable, the model’s final choice frequencies for a given
alternative are obtained by averaging Pi(t) over the interval 100 �
t � 500, corresponding to the assumption that the choice is
precipitated at a random instant between t � 100 and t � 500;
initial transient effects within the first 100 time steps are not
included. The basic effects we present are independent of these
details, and we provide the full Pi(t) curves when they are infor-
mative. Because of the importance of the magnitude of inhibition

in the accounts for some of the effects offered by Roe et al. (2001),
we explicitly consider to what extent the accounts offered in our
model depend on the strength of inhibition in the presentation of
the results below.

Results and Discussion

Reference effects: Loss aversion. The choice probability for
the A alternative for inhibition in the range (0, .75) is displayed
(see Figure 4) for the status-quo situation (option A serving as a
reference in a choice between A and B) and for the job situation
(with Se as reference in a choice between A and C). Consistent with
the choice data (Knetsch, 1989; Tversky & Kahneman, 1991), we
observed a strong bias for participants to choose the option favored
by the status quo or to choose the option similar to the reference.
(In both situations the choice probability is 50% when the refer-
ence is located at mid-distance between the choice options.) In the
model, the effect is the outcome of the loss-aversion value func-
tion, which penalizes the option with both a large advantage and a

Figure 3. Left: Nonlinear value function, similar to the one used in the reference-dependent model of riskless
choice (Tversky & Simonson, 1993). Right: Average input to the model obtained by averaging gains and losses
in the value function of A and adding a constant, I0 � .75.

Figure 4. Choice probability for choosing option A (1,000 trials per data
point) as a function of the inhibition parameter. Left: Status-quo effect (A
is reference in choice between A and B). Right: The job scenario (Se is the
reference in choice between A and C; see the text for further information).
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large disadvantage relative to the reference. The increase in the
level of inhibition has the effect of increasing the competition
between the two choice units, amplifying the magnitude of the
effect.

Similarity, compromise, and attraction effects. We turn now to
the scenarios c–f, involving violations of independence, which
were accounted for in Roe et al. (2001). Here, we rely on Equa-
tions 1–3, corresponding to a choice among three alternatives
without an explicit reference. In Figure 5, the global choice fre-
quencies are shown as a function of the lateral inhibition � for
these four scenarios (the simulations were done at � � {0, .25, .5,
.6, .7} and are linearly interpolated at points in between). For a
range of inhibition values (.4 � � � .7), all three effects are
obtained.

The explanation of the compromise and attraction effects is a
direct outcome of the loss-aversion advantage function, as in the
context-advantage model (Tversky & Simonson, 1993). In both
conditions, the distant options (B in the similarity condition and
both A and B in the compromise condition) are penalized by the
asymmetry in the loss-aversion value function. As a result, the
option C (having fewer distant alternatives) is preferred in the
compromise condition, and A is preferred over B (which has two
distant alternatives as opposed to one for A) in the attraction
condition. For the attraction effect, although the dominated option
D takes almost no shares, it does attract the choice pattern toward
the dominant option A. A similar result (not shown) is obtained if
the dominated option is used as a reference according to Equations
4–7, capturing the choice preference for improvements relative to
trade-offs. The degree of inhibition has a nonmonotonic effect on
the magnitude of the compromise effect. At low values, the com-
petition between the options has the effect of increasing the choice
sensitivity as the inhibition and the leak balance each other (Usher

& McClelland, 2001) and therefore enhance the choice in favor of
the compromise, whereas higher levels of inhibition diminish the
effect.

The similarity effect is illustrated in the bottom panels of Fig-
ure 5. Note that for the similarity effect, there is also a slight sign
of a compromise effect, such that A gains a little relative to B and
S when it is “inside” S (similarity: Se) and loses a little when it is
“outside” S (similarity: Sc). The explanation of the similarity effect
and the effect of inhibition on it is simple. Here, whereas the
loss-aversion function penalizes the dissimilar option, B, the cor-
relation between the activations of the similar options A and S (see
Figure 7, top panel, in The Importance of Leaky Integration
section, below) helps it. As in the EBA model (Tversky, 1972) and
in the DFT, the similar options share high activation during the
same choice intervals, and thus, they share their choices. If, for
example, the loss-aversion effect is to give the A option a share of
less than 66% for the choice set (A, B, D), when D is substituted
by S and assuming that A and S are now splitting their shares, a
small advantage for the dissimilar option B results. This advantage
is further amplified by the inhibition. As this increases, the two
similar options, A and S, compete to a higher degree, to the
advantage of the dissimilar option B. Note that the higher degree
of competition between A and S arises even though our model does
not use distance-dependent inhibition. It occurs in this case be-
cause the activation of the similar alternatives covaries as attention
switches between dimensions.

Additional dynamic effects can be observed for the choice
pattern in the compromise and the attraction conditions. These are
illustrated in Figure 6, which shows the choice probabilities for the
different alternatives, Pi(t), for choices made at times varying from
0 to 190 iterations of the computer simulation. The left panel
shows the evolution of the choice preference in the compromise
condition. We can observe that it takes about 30 iteration steps for
the compromise option to dominate the choice. This is because
early on one or the other of the extremes is likely to dominate, but
as the activations are integrated, the fluctuations in the extreme
options are averaged out, leading to an advantage for the compro-
mise. In the attraction condition (right panel), we see that it takes
about 10 iterations for the similar option, A, to dominate the
dissimilar option, B. Early on, D shares some of the choices with
A (as with the similarity effect). As the noise is averaged out with

Figure 5. Simulation results (1,000 trials per data point). Top left: Com-
promise (A, B, C), the compromise option C wins. Top right: Attraction (A,
B, D), the A alternative (similar to D) wins. Bottom row: Similarity [left:
(A, B, Sc); right: (A, B, Se)], the dissimilar alternative B wins. The y-range
in the four panels is different to allow all the patterns of qualitative effects
to be seen.

Figure 6. Time-dependent choice preference for the compromise effect
(left: C, solid line, upper curve; A and B, dashed–dotted lines) and for the
attraction effect (right: A, solid line, upper curve; B, dashed line, middle
curve; D, dotted line, lower curve). The inhibition parameter is � � .25. All
other parameters are as given in the text.
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integration time, the amount of choices for the dominated option
decreases, and the similar options come to dominate the choice.
Our model (as well as the DFT) thus predicts the emergence of the
compromise effect (after an early stage in which the opposite
effect would be obtained) and an enhancement of the attraction
effect with time. (In particular, the model predicts that some
participants will show a reversal of their choices as the deliberation
progresses in the compromise condition.) Experimental results
seem to confirm these predictions, indicating that, as decision
makers are encouraged to deliberate longer, the magnitude of the
attraction and the compromise effects increases (Dhar, Nowlis, &
Sherman, 2000; Simonson, 1989).

We considered two additional effects reported in the literature
and accounted for by the DFT model. First, we tested the impact
of the difference between range and frequency decoys on the
magnitude of the attraction effect. Consistent with Huber et al.
(1982; and as in the Roe et al., 2001, model), we found a larger
attraction effect for the (A, B, R) set (P(A) � .66, P(B) � .34) than
for the (A, B, F) set (P(A) � .63, P(B) � .37). Second, we
examined the impact on the shares of the A and B options of
changing the third option from an equal competitor, Se, with values
(.1, .9) to an inferior but not strictly dominated option, I, with
values (x, .9), for x � .1. The results are presented in Table 1.

Consistent with the choice data (Huber et al., 1982), we found
that transforming a competitor into an inferior option dramatically
alters the shares between the two similar options (A and I) but not
the share of the dissimilar option. The DFT model predicts a
modest decline in the shares of B (of 5%) for the same change in
the shares of A (Roe et al., 2001, Table 4).

The Importance of Leaky Integration

In addition to stochastic alternation of attention, the DFT and
our current model also share another important assumption. In both

models, the choice is modeled as a sequential sampling process
with leakage of information over time. This Ornstein–Uhlenbeck
(OU) diffusion process can be distinguished from classical diffu-
sion processes in which the samples of information are integrated
without loss (e.g., Ratcliff, 1978). The importance of the OU
process has been argued both within the DFT framework (Buse-
meyer & Townsend, 1993; Diederich, 1997; Townsend & Buse-
meyer, 1995) as applied to decision making and in our LCA model
(Usher & McClelland, 2001) for the domain of perceptual choice.
We now examine how the feature of leaky versus perfect integra-
tion affects the multiattribute effects described here. To do this, we
ran the same simulations, but with the parameter � set to the value
of .999 (corresponding effectively to perfect or lossless integra-
tion). The results are given in Table 2.

We observed that although the attraction and the compromise
effects occur (at magnitudes that are beyond the range of experi-
mental data), there is a total reversal of the similarity effect (the
dissimilar option gets only 12% of the shares).7 To help understand
the reversal of the similarity effect, we show in Figure 7 the
activation trajectories for one trial of the simulation each for the
case of leaky integration (� � .94; top panel) and for the case of
perfect integration (bottom panel). We observed that unlike with
the leaky integration, in which the dissimilar option (dotted line
with open squares) has extended time intervals in which it domi-
nates the option set, with the perfect integration the dissimilar
option is dominated throughout the simulation. This is a result of

7 In a separate set of simulations, we tested whether the nonleaky
integrator model can account for the effect when the asymmetry in the
value function is diminished. To do this, we parameterized the magnitude
of this asymmetry by 
 in the convex function f(x) � x 	 
x2. For 
 � .29,
we obtain a relatively small compromise effect (of 4%). Even in this
situation, however, the perfect integrator model is unable to account for the
similarity effect.

Table 1
Effects of Inferior Decoy, I, on the Choice Between the A and B
Options

x P(A) P(I) P(B)

.10 .33 .29 .37

.08 .49 .13 .37

.06 .58 .05 .36

.05 .61 .03 .36

Table 2
Choice Probabilities in the Model With Perfect Integration

Effect

Option in the choice set

A B D C Sc Se

Attraction .87 .13 .00
Compromise .07 .07 .84
Similaritya .22 .12 .65
Similarityb .70 .12 .18

Note. For each effect, there were three options in the choice set.
a This row shows probabilities for choice options for the similarity effect in
the compromise condition. b This row shows probabilities for choice
options for the similarity effect in the extreme condition.

Figure 7. Activation trajectories for one trial in the similarity condition
for the leaky integrator with competition (top) and for the perfect integrator
(bottom). A, solid line; B, dotted line with open squares; Sc, dashed line
without symbols.
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the asymmetric value function. The leakage of information is thus
essential in accounting for the similarity effect, once a loss-
aversion advantage function is assumed. This is because it makes
the activation of the choice units dependent on a recency-based
temporal window. As the attributes are stochastically sampled,
there are time windows in which the dissimilar choice unit receives
a stronger input (when the supporting attribute is sampled), and
this unit makes a recovery and dominates the option set. With a
perfect integration, the advantages and disadvantages that corre-
spond to the sequential sampling of the attributes are integrated,
and they average out, leading to the advantage of the Sc option
because of the compromise effect.

Evaluations and New Predictions

We have proposed a model that shares a number of important
assumptions with the DFT framework. These include leaky inte-
gration and lateral inhibition that triggers choice competition. The
model also shares with the DFT model the stochastic sampling of
attributes (see also Busemeyer & Diederich, 2002; Diederich,
1997; Diederich & Busemeyer, 1999; Usher & Zakay, 1993). The
models make different assumptions, however, about the principles
of processing relating to inhibition. Roe et al. (2001) used distant-
dependent inhibition and relied on activation by negated inhibition,
whereas in our model, inhibition is distance independent and there
is no propagation through inhibitory connections when activations
go below 0. Instead, we rely on the asymmetric value functions, in
which losses are a convex function of gains (Tversky & Simonson,
1993), which have played a central role in previous work in
decision making. The inclusion of loss aversion in the model
enables us to account for a large amount of data, such as the
status-quo and other reference effects, which motivated Tversky
and colleagues (Tversky & Kahneman, 1991; Tversky & Simon-
son, 1993) to rely on this mechanism in their decision-making
theory.

Like the DFTDDI, our model can account for violations of
independence of irrelevant alternatives (i.e., similarity, attraction,
and compromise) that have challenged other theories of multiat-
tribute decision making. In addition, this model as well as the
DFTDDI accounts for some more subtle effects, such as an in-
creased attraction effect with range—rather than frequency—de-
coys and the preserved shares of the competitor B when the option
similar to A, Se, is transformed into an inferior option (I). The
models also make the same prediction regarding the increase in the
magnitude of compromise effects with reaction time and choice
reversals under time pressure.

Despite these similarities, the way in which the DFT (as imple-
mented in Roe et al., 2001) and the present model account for
many of the effects is not the same, and this is reflected in a
number of differences and diverging predictions. The main differ-
ence concerns the way in which the attraction and the compromise
effects are explained.

Consider first the attraction effect. Whereas in Roe et al. (2001)
the dominating option (A) wins because of an additional boost
from the similar dominated option, in our model the effect is due
to the cost suffered by the dissimilar option (B), which is penalized
by the asymmetric value function. Our model predicts therefore
that the shares of the B option are almost preserved when a
competitive option such as Sc is transformed into a dominated

option such as D or F; because B is almost equidistant relative to
Sc, F, and D, its shares are preserved and the attraction is due only
to a redistribution of the shares between the two similar options:
P(B�A, B, Sc) � .38; P(B�A, B, F) � .37; P(B�A, B, D) � .36. In
DFTDDI, however, transforming the competitor option into a dom-
inated option generates a specific boosting for the activation of the
similar option, A. This has the effect that the shares of the dissim-
ilar option are diminished to a larger extent (approximately 13% in
Roe et al., 2001). Experimental studies by Huber et al. (1982) have
reported that the shares of the B competitor are not affected by
transforming Se into an inferior option I. As we saw, both our and
the DFT model were able to account for those results, although the
preservation is within 1% in the results we presented above com-
pared with 5% in Roe et al. (2001, Table 2). As the experimental
precision may not suffice to test this small difference in the
models’ predictions, future studies should focus on choices for
options sets (A, B, S) and (A, B, D), in which the difference
between the predictions is higher as a result of the fact that D is
strictly dominated by A (inferior on both dimensions).

A more fundamental difference between the models is their
accounts of the compromise effect. In our model, the extreme
options are penalized by the value function to the benefit of the
compromise. In the DFT model, conversely, the effect is not driven
by differential levels of activation (as the attraction effect) but by
correlations due to the local inhibition: The activations of the
extremes are correlated in time because they both compete with the
compromise. Although both mechanisms account for the compro-
mise effect, the correlation mechanism is weaker relative to the
boost of activation. This makes the magnitude of the compromise
effect only 4% (P(C) � .37, in Roe et al., 2001, relative to a large
attraction effect of 19%). In the model we have presented here, the
magnitude of the compromise effect is larger (about 10%), which
is more consistent with the choice data (Simonson, 1989).

Moreover, because of their different nature, the two types of
mechanisms lead to several qualitative differences in their predic-
tions for new choice situations. Consider first the impact of the
distance between the options on the magnitude of the compromise
effect. Because the anticorrelations in the DFTDDI are driven by
lateral inhibition that decays with distance, the effect should de-
crease with distance. In our model, conversely, the loss aversion
increases with distance (see Figure 3). As a result, we found that
the compromise effect shows an increasing relationship. To show
this, we symmetrically changed the distance, d, of the extremes A
and B on each attribute from the compromise C from .35 (in the
previous simulations) to .25 and .15. The results are as follows: For
d � .15, P(C) � .33; for d � .25, P(C) � .40; and for d � .35,
P(C) � .42. (This simulation corresponds to an inhibition of � �
.5. Other � values yield similar results; e.g., � � .6 gives P(C) �
.35, for d � .15; P(C) � .41, for d �.25; and P(C) � .41, for d �
.35.)

Second, future experiments could directly test the correlation
hypothesis. Consider, for example, a situation in which a partici-
pant chooses one of the extremes, say A, following a response
signal at t. According to the correlation hypothesis, the option with
the next highest activation at t is the other extreme, B. To test this,
one could carry out an experiment in which on a subset of trials,
the choice alternative A is declared unavailable at the instant that
it is chosen, and the participant must then make a second speeded
choice. Assuming that the participant selects the alternative that is
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next most active at the same instant as the first selection, the DFT
model should predict that for speeded choices, P(B�A) � P(C�A),
whereas the converse is predicted in our model. Finally, it may
also be possible to test the correlation hypothesis without a second
response by comparing the reaction time for choices elicited by a
response signal for compromise versus extreme options. Under the
assumption that the time to resolve the choice is larger for options
whose activation values (at the moment when the response signal
is received) are similar, one should expect longer reaction times
when either of the correlated options, A or B, is chosen than when
alternative C is chosen.

Conclusion

We have extended our LCA model of perceptual choice to
address preferential choice situations, incorporating attentional
switching between attributes (following Roe et al., 2001) and loss
aversion. With these extensions, we offer an account for several
effects that have been captured within DFT by relying on distant-
dependent activation by negated inhibition. We do not wish to
suggest in any way that the overall DFT should be rejected. DFT
models have been used to account for many important effects in
decision making, such as violations of stochastic dominance and
effects of time pressure (Diederich, 2003; Diederich & Busemeyer,
1999), and our model, which has been successfully applied to
many phenomena in perceptual choice, is in many ways very
similar to the DFT. For these reasons, we do not view our model
as a competitor to the DFT. Instead, we view it as suggesting some
constructive amendments to the DFT framework. We have pro-
posed that the use of distance-dependent activation by negated
inhibition should be replaced with an explicit reliance on the
principle of loss aversion. Although both of these alternative
mechanisms can account for basic aspects of the violation of
independence effects, the magnitude of the effects may favor our
approach. Moreover, we have demonstrated that all these effects,
as well as the status-quo effect and two other effects arising when
an explicit reference is provided, can be accounted for with the use
of a loss-averse value function. It remains to be seen whether a
similarly adequate account can be achieved within the DFT with a
specified monotonically decaying distance function. We have also
suggested that it may be useful to incorporate a nonlinearity of the
kind used in many neural network models to avoid undesirable
consequences that can arise from activation by negated inhibition
when there are many suppressed alternatives. In summary, our
LCA model with loss aversion can be viewed as a version of the
DFT, incorporating loss aversion and truncation of activations at 0
instead of distant-dependent inhibition and propagation of negative
activations.

Although our proposed model can be seen as falling within the
same overall framework as DFT, the processes that enable it to
account for choice patterns in decision making are different in
important ways from the processes that take place in the model
proposed by Roe et al. (2001). In addition to the differences noted
above, the two models make several distinct empirical predictions.
Future tests of these predictions, whichever way they turn out, will
enhance our understanding of the dynamics of decision making
and will contribute to the ongoing process of uncovering the
principles of human decision making.
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