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Abstract 
How do we learn causal relations between events from 
experience?  Many have argued for an associative account 
inspired by animal conditioning models, but there is a 
growing literature arguing that indirect effects in 
contingency learning depend on explicit cognitive 
processes. Our experiments explore the basis of two such 
effects: blocking and screening off.  In Experiment 1, we 
gave participants an untimed explicit prediction task to 
replicate standard findings in the contingency learning 
literature in a novel domain.  We obtained robust indirect 
effects when participants had a causal framework to 
constrain their reasoning.  In Experiment 2, we reduced the 
time available for explicit recollection by reconstructing the 
task as a fast-paced RT task.  Participants continued to 
show robust learning of direct relationships, as measured 
by response times, but there were no indirect effects. 
Experiment 3 followed up on whether participants in our 
RT task would produce indirect effects through explicit 
processes when given an opportunity to make a more 
deliberative prediction at test.  
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Introduction 
A child goes out to dinner with his family and at the 

end of the meal experiences a strong allergic reaction.  
Upon discussion with the restaurant manager, the child’s 
parents learn that the sauce for his entrée contained 
shrimp, and peanuts were used in his dessert.  Suppose the 
child has never had shrimp before.  If he has had a history 
of peanut allergies, one may be inclined to attribute the 
allergy to the peanuts; if he had never had a peanut 
allergy before, one may be more inclined to suspect an 
allergy to the shrimp. 

We can consider the child’s previous experience with 
peanuts as the direct evidence about whether peanuts 
cause an allergic reaction. This evidence, together with 
the shrimp-and-peanuts event, provides indirect evidence 
about whether shrimp causes one. If peanuts had 
previously caused an allergy, this tends to block the 
inference that shrimp causes one; if peanuts had not 
previously caused an allergy, this tends to screen off the 
shrimp – increasing the likelihood of this inference. 
Comparing the two cases, the scenario above describes a 
direct effect whereby the strength of the perceived causal 
relation between peanuts and allergy should be higher for 
the blocking pair compared to the screening pair.  It also 
describes an indirect effect whereby the strength for 
shrimp will be higher in the screening pair compared to 
the blocking pair.  Table 1 encapsulates this information. 

Effects similar to the indirect effect described above 
have often been demonstrated in contingency learning 

experiments.  In these experiments, participants see a 
number of pairings of cues and outcomes during training.  
At test, they are asked to rate the various cues’ causal 
strengths or to make predictions about the likely outcomes 
for each cue. Early contingency learning researchers such 
as Alloy and Abramson (1979) and Dickinson and 
colleagues (1984) compared their findings to models of 
animal conditioning that automatically generate indirect 
effects (e.g., Rescorla & Wagner, 1972; Pearce & Hall, 
1980).  Indeed, a large class of error-correcting learning 
algorithms predicts these effects (Rosenblatt, 1958; 
Rumelhart et al., 1986; Sutton, 1988).  Recent dual 
process models of implicit and explicit learning have 
employed error-correcting learning algorithms in the 
implicit component of the models (e.g., Ashby et al., 
1998; Sun et al., 2005) – suggesting that indirect effects 
should be a basic outcome of an implicit learning system.  

 
Table 1: An example of direct and indirect effects in a 

contingency learning paradigm. 
Training Single item Pair 

Blocking pair B1+ B1B2+ 
Screening pair S1- S1S2+ 
Direct effect B1 > S1 
Indirect effect S2 > B2 

 
Complicating the error-driven account have been 

findings of retrospective effects like backward blocking 
(Shanks, 1985), where the order of compound and single 
item events are reversed (e.g., shrimp and peanuts before 
peanuts alone).  These models do not directly predict 
retrospective effects.  Various modifications to the error-
correcting learning algorithm have been proposed to 
accommodate retrospective effects (Van Hamme & 
Wasserman, 1994; Dickinson & Burke, 1996). These 
models continue to predict indirect effects as a basic 
outcome of the learning process.  Another approach has 
been to argue that retrospective effects are instead driven 
by the explicit retrieval of memories for previously 
experienced events (McClelland & Thompson, 2008).  

More troubling are recent findings that suggest indirect 
effects are often quite fragile in contingency learning 
tasks. De Houwer and Beckers (2003) found that blocking 
was attenuated when participants were given a relatively 
difficult secondary task (discriminating between a high 
and low tone) during training and test phases.  “High-
level” constraints such as assumptions that cues are 
additive in their effects also appear to modulate the size of 
indirect effects (Lovibond et al, 2003; Beckers et al., 
2005; cf. Livesey & Boakes, 2004).  These findings have 
led some to argue that an explicit propositional reasoning 
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process drives indirect effects, and some have gone so far 
as to argue that all associative learning is best explained 
by a propositional account (Mitchell et al., in press). 

Contingency learning experiments have a number of 
common attributes and it should not be taken for granted 
that their results would generalize if these attributes were 
altered.  The experimental context is often one that allows 
nearly unlimited time to deploy explicit processing. These 
studies also normally use stimuli drawn from familiar 
domains such as foods and allergies or symptoms and 
diseases.  It seems likely that participants bring to these 
tasks a great deal of prior knowledge about the kinds of 
causal relations that are likely to apply in the domain. In 
other cases, where researchers have employed what are 
arguably novel domains, participants are explicitly given 
a particular causal framing, e.g., “blickets are objects that 
make the machine go” (Sobel et al., 2004), and may also 
receive an explicit demonstration that if either of two 
objects is a blicket, the machine will go. 

To begin a systematic exploration of some of the issues 
raised above, our experiments explore an identical set of 
contingencies in two very different task settings.  In one 
setting (Experiment 1), participants are asked to make an 
explicit prediction of whether an outcome will occur 
given the current set of items.  In the other setting 
(Experiment 2), items occur, followed very shortly in 
some cases by outcomes, and participants must respond 
very quickly when the outcome occurs; so quickly that 
they must rely on perhaps implicit expectations to 
anticipate the outcome in order to respond quickly 
enough.  The former setting is the kind in which one may 
expect explicit reasoning processes to occur, whereas the 
latter shares features with many tasks thought to involve 
implicit learning (Lewicki et al., 1987; Cleeremans & 
McClelland, 1990).   Our study therefore provides a direct 
basis for comparing the outcome of learning in these two 
very different kinds of task situations.  Crossed with the 
task manipulation, we employed a framing manipulation: 
Half of the participants in each task were given an explicit 
causal framing similar to those used in experiments with 
the blicket detector (Sobel et al, 2004), and half were not 
given such a framing.  Overall the experiments allowed us 
to compare direct and indirect contingency learning in 
two very different task settings, and to examine the 
importance of framing for both kinds of learning. 

Experiment 1: Untimed Prediction 

Method  
Participants 50 members of a paid participant pool at 
Stanford University participated in this experiment. 4 
were removed due to performance falling more than two 
standard deviations below the mean, resulting in a total of 
46 participants (23 in each condition). 

 
Design and Procedure The experiment consisted of two 
training blocks followed by a test block. Each training 

trial began with a box in the center of the screen, in which 
one or two objects appeared following a random delay of 
1-3s between each trial. The object images were taken 
from http://www.openclipart.org. Participants were 
instructed to respond by pressing a key to denote their 
prediction of whether a dot was to appear on that trial and 
were given unlimited time to make their response.  After 
making the prediction, they were shown the outcome.  On 
dot outcome (+) trials, a green dot appeared to either the 
left or the right side of the box for 500 ms (the side was 
randomly chosen for each dot trial).  On no-dot (-) trials, 
the screen did not change during the 500 ms outcome 
period.  After the outcome period, participants were given 
both visual and auditory feedback.  The visual feedback 
consisted of a point score that appeared in the center of 
the box.  Correct predictions were followed by “10” 
appearing in green, while incorrect predictions were 
followed by “-5” in red.  Participants were instructed that 
every 5 points was equal to $0.01 in payment.  Auditory 
feedback consisted of a pleasant sound for correct 
predictions and a buzzer for incorrect predictions.  Figure 
1 shows a single training trial in the experiment. Training 
consisted of 264 trials (24 exposures to each training 
event).  During the test phase, no feedback was given, and 
each event was shown 5 times, for a total of 60 test trials. 

 

 
Figure 1: Layout of a single trial in the experiments  

 
The structure of events shown to participants during 

training and test for Experiment 1 is given in Table 2. 11 
events were shown during training, and 12 events were 
shown at test. Events that were likely to be followed by 
the dot (“+” events in Table 2) were followed by the dot 
on 22 of 24 presentations during training, versus 2 of 24 
presentations for the other items. Object images were 
randomly matched to specific items for each participant.  
Filler events were included during training to lower the 
proportion of all trials in which the dot appeared, as pilot 
testing without these revealed that participants had a 
general bias to predict the dot outcome.  

All participants received the same standard task 
instructions explaining the nature of the task and the 
payoff structure.  Half of the participants (framed 
participants) in the study were given an additional set of 
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instructions immediately after the task instructions and 
immediately before beginning the experiment (shown in 
Table 3).  These instructions explicitly indicated that 
some objects had the power to produce the dot while 
others did not, similar to the framing given to participants 
in blicket detector experiments (e.g. Sobel et al., 2004).  
The remaining (unframed) participants received no further 
instructions. 

 
Table 2: Structure of events in Experiment 1 

 Training Test 
Tested items Pair Sing. Pair Sing. 

Blocking B1B2+ B1+ B1B2 B1   B2 
Screening S1S2+ S1- S1S2 S1    S2 
Control C1C2+  C1C2 C1   C2 
Negative N1N2- N1- N1N2 N1   N2 

Filler items     
+ Singleton PS+    
- Singleton 1  NS1-   
- Singleton 2  NS2-   
- Pair NP1NP2-    
 

Table 3: Instructions for the framing manipulation. 
The following information may help to improve your performance 
during the experiment.   
Some of the objects that you will see during the experiment have the 
power to make the dot appear, while others do not.   
The computer has randomly decided which objects have this power at 
the beginning of the experiment.   
You cannot tell just by looking at the object whether it has the power to 
make the dot appear.   
However, you can learn which objects have this power based on whether 
or not the dot appears when the object is inside the box.   
If two objects appear inside the box and at least one of them has this 
power, the dot will usually appear.  
Sometimes the box may malfunction, and the dot may occasionally fail 
to appear when it should, and may occasionally appear when it 
shouldn't. 
If you can determine which objects have the power to make the dot 
appear, this will help you to make predictions during the experiment. 
 

After the test phase, participants were given a number 
of additional tasks.  First they were asked, “How likely is 
it that the dot would occur if this object appeared by 
itself?” and responded on a scale from 1 and 10. They 
were then given a forced-choice pair identification task, in 
which each test item appeared in the center of the screen, 
with the four respective training items below.  They then 
performed the same likelihood rating task as before with 
the pair events.  Finally, framed participants were asked 
to give ratings of causal strength for each test and training 
item.  They were asked “How likely is it that this object 
had the power to make the dot appear?” and told to 
choose from six options: “Sure No”, “Probably No”, 
“Guess No”, up to “Sure Yes”.  Unframed participants 
were not asked to make causal strength judgments. 

Results 
Figure 2 plots dot prediction rates for key direct and 
indirect items during the test phase.  We compared the 
difference between blocking and screening training items 

(B1 and S1) as an index of direct effects, and the 
difference between the respective test items (B2 and S2) as 
an index of indirect effects.  Likelihood ratings and causal 
strength ratings elicited the same pattern of significant 
and non-significant findings as predictions, and are not 
shown. Both conditions showed robust direct effects (B1 
vs. S1) across all three measures using Wilcoxon’s signed-
rank tests, all p < .001. Only participants in the framed 
condition showed significant indirect effects (B2 vs. S2), 
which were significant across all measures, p < .01.  All 
of these measures failed to show significant indirect 
effects for the unframed condition, all p > .1.   

 

 
Figure 2: Direct and indirect effects in Experiment 1.1 

Discussion 
Experiment 1 demonstrated that our task could replicate 
findings in standard contingency learning tasks.  By 
giving participants a clear causal framing of the 
experiment, we were able to obtain indirect effects, but 
there was no evidence of these effects in the absence of 
such a framing.  It appears that such framing, either 
through explicit instruction or through stimuli from a 
well-learned domain, may be crucial to obtaining indirect 
effects in contingency learning experiments. 

It is still possible that a faster-paced task in which 
subjects cannot explicitly recall prior events in order to 
generate a prediction might uncover an implicit learning 
process in which indirect effects may occur.  Implicit 
learning has often been modeled using error-correcting 
learning models driven automatically by differences 
between predicted and observed outcomes (e.g., Sun et al, 

                                                             
1 Means and standard errors are presented here for convenience.  
All statistical tests for prediction counts and ratings are non-
parametric Wilcoxon’s signed-rank tests. The prediction counts 
in particular are highly bimodal, with most participants either 
predicting the dot on all five of the test exposures or on none. 
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2005; Cleeremans & McClelland, 1990).  With 
interleaved presentation of the blocking and screening 
training stimuli (B1+, B1B2+; S1-, S1S2+) such models 
produce indirect effects.  On this basis, a theory in which 
implicit learning was based on such error-correcting 
learning would predict that we would obtain indirect 
effects in this experiment, regardless of whether 
participants were given an explicit causal framing. 

Experiment 2: Fast-paced RT Task 
In Experiment 2, we set out to modify our task to reduce 
the influence of explicit processing during both training 
and testing. We embedded the same event structure from 
Experiment 1 in a fast-paced serial reaction time task 
where participants were instructed to respond as quickly 
as possible to the appearance of the dot and to avoid 
responding when the dot failed to appear. If participants 
have learned the contingencies, they should respond faster 
to the dot when it follows the presentation of items that 
are associated with the dot outcome.  Thus if we obtain a 
direct effect, response times for the B1 item should be 
faster than for the S1 item.  If we obtain indirect effects, 
response times for the B2 item should be slower than for 
the S2 item. 

Method 
Participants 48 members of the Stanford Psychology 
paid pool participated in the experiment for payment.  
Three were removed because their performance during 
training fell more than two standard deviations below the 
mean. One participant was removed due to experimental 
error.  This resulted in 22 participants in each condition. 
 
Design and Procedure The overall structure of the 
training phase was identical to Experiment 1, except that 
there were twice as many training trials.  In order to keep 
the contingencies as similar as possible subjects were 
given 43 dot outcome trials for each “+” item and 5 dot 
outcome trials for each “-” item. Participants completed 
528 training trials comprising 48 exposures to each 
training item and 288 test trials, comprising 24 exposures 
to each test item.  

Trials began similarly to Experiment 1.  Each trial 
began with the box framing the center portion of the 
screen.  Objects appeared after a random 1-3 second delay 
as in Experiment 1.  However, in the current experiment, 
the outcome occurred automatically 350 ms after the 
object(s) appeared. Participants were instructed that they 
could earn points by pressing the spacebar within a brief 
time window after the dot appeared.  The outcome period 
lasted for 500 ms, with a response deadline occurring 
somewhere within.  The response deadline was initialized 
at 400 ms, and decreased at a constant rate every 10 trials 
during the first 200 training trials, then remained at 275 
ms for the rest of the experiment.  

Unlike in Experiment 1, test trials in Experiment 2 still 
included outcomes and feedback, and were 

indistinguishable from training trials in structure. As in 
Experiment 1, the test included the all the training items 
as well as the previously unseen test items. Each test 
event occurred 24 times. For the singleton test items, the 
contingencies established during training were not 
maintained.  Instead, each singleton was followed by the 
dot on 12 of its 24 presentations.  To help maintain the 
learned contingencies, pair events continued to hold the 
same contingencies as they had during training.  At the 
conclusion of the test phase, participants were given the 
same set of concluding tasks as in Experiment 1. 

Results 
Figure 3 shows average response times for the direct and 
indirect items during the test block. Paired t-tests of the 
response times revealed that both groups responded faster 
to the dot on B1 events compared to S1, both p < .001.  
The direct effects also appeared in likelihood ratings and 
causal strength ratings using Wilcoxon’s sign rank tests, 
all p < .001.  There was no evidence of indirect effects in 
either condition for any measure, all p > .3.    

 

 
Figure 3: Direct and indirect effects as measured by 

response times in Experiment 2. 

Discussion 
In Experiment 2 we tried to minimize the influence of 
explicit processes during both training and test.  If we 
were successful in uncovering an implicit error-correcting 
learning mechanism, we should have obtained indirect 
effects in both groups.  Instead we found no evidence of 
any indirect effects.  At the same time, participants 
continued to be respond in accordance with the direct 
contingencies that they experienced during training.  
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It also appears that participants do have explicit 
knowledge of the direct contingencies, as evidenced by 
their responses to rating and causal strength questions. 
While these explicit measures also failed to show any 
indirect effects, there is a possible confound.  By breaking 
the contingencies for the singleton trials during the test 
phase, we may have reduced the strength of the 
contingencies that participants might have been able to 
use in answering the post-test outcome likelihood and 
causal strength questions.  Experiment 3 provides a 
design that avoids this difficulty. 

Experiment 3: Explicit Knowledge in the RT 
Task 

 
Given our findings in Experiment 2, we wished to explore 
whether indirect effects in our tasks depend on time for 
deliberation during training or whether they could be 
generated at test given sufficient time to deliberate before 
responding.  To address this question, we used a hybrid 
version of our task, training participants on the fast-paced 
RT task from Experiment 2, but placing them in the 
explicit prediction task from Experiment 1 during the test 
phase.  This ensured that outcomes during the test phase 
would not wash out any of the effects over the course of 
test, and would maximize the likelihood of generating 
indirect effects if it was indeed possible to do so. 

Method 
Participants 25 members of the Stanford Psychology 
Department paid subject pool participated in the 
experiment for payment.  Three participants were 
removed because their performance during training fell 
more than two standard deviations below the mean.   
 
Design and Procedure The training phase was identical 
to Experiment 2.  The test phase was identical to 
Experiment 1.  Ratings and causal strength ratings were 
obtained after the test phase.  All participants were given 
the framing instructions given to participants in the 
framed conditions of Experiments 1 and 2.   

Results 
Robust direct effects were observed for all three measures 
using Wilcoxon’s sign rank tests, all p < .001. Blocking 
and screening test items only differed significantly in their 
causal strength ratings, p = .046, while the trend was non-
significant for the other two measures, both p > .2.  
Figure 4 graphs the data from the power ratings. 

Discussion 
Our findings in Experiment 3 fall between those of 
Experiments 1 and 2.  By giving participants the 
opportunity to make an explicit prediction immediately 
after training, we were still only able to obtain a 
significant indirect effect when we asked participants to 

rate how likely it was that each object “had the power to 
make the dot appear.”   

There are a few possible explanations for this finding.  
As participants showed weaker explicit learning of the 
direct contingencies in Experiment 3 compared to 
Experiment 1, there may have simply been a weaker 
overall indirect effect which happened to reach 
significance for the causal strength measure.  
Alternatively, there is some evidence that questions about 
cues’ causal strengths generate more robust indirect 
effects than questions about predicting outcomes (Vadillo 
& Matute, 1998).  It is also possible that the forced-choice 
pair identification task and pair ratings, which occurred 
immediately before the causal strength ratings, may have 
reinforced participants’ memories of the events they had 
seen, increasing their ability to exploit these memories to 
the point of producing an indirect effect in some 
participants. 

  
Figure 4: Causal strength ratings for direct and indirect 

items in Experiment 3. 

General Discussion 
In an explicit task, we found evidence that participants 
only learned indirect contingent relations when given a set 
of framing instructions explicitly providing a causal 
interpretation of the relationship between presented items 
and outcomes. It should be noted, however, that the use of 
so many different items may have influenced unframed 
participants’ ability to use information from paired items 
that they might otherwise have exploited.  We also note 
that framed participants were told explicitly that there 
would be occasional malfunctions, thus allowing 
occasional events not consistent with a simple causal 
story to be disregarded.  Thus it is clear that further 
research will be crucial in order to more fully delineate 
the conditions necessary for obtaining indirect effects.  In 
any case, the results from Experiment 1 make it unlikely 
that automatic error-correcting learning, as in some 
connectionist models provides the mechanism underlying 
contingency learning in our explicit prediction task.  
These conclusions appear to be consistent with a great 
deal of the recent human contingency learning literature.   

Perhaps more surprisingly, our RT task failed to 
uncover any indirect effects whatsoever.  This appears to 
be at odds with predictions of several models of implicit 
contingency learning (Cleeremans & McClelland, 1990; 
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Sun et al, 2005). We might still think that some kind of 
implicit learning process is operating in our fast-paced 
task given the task’s time constraints and the fact that 
participants’ response times show clear direct effects.  If 
this is the case, however, the implicit learning system 
appears not to be operating through error-correction. 
Instead, our RT experiment results seem to be more in 
agreement with a Hebbian-like model. Of course, our 
experiment is not the final word on this point: it is 
possible, for example that an error-correcting effect would 
emerge with even longer training.  Given that error-
correcting models are more powerful and continue to be 
popular for simulating learning in a wide variety of 
domains such as language and categorization as well as 
animal conditioning, this is an important issue for further 
investigation. Further experimental and computational 
work is needed to elucidate the processes involved in both 
kinds of tasks explored in our investigations.   
  With these studies in hand along with other recent 
demonstrations of the fragility of indirect effects, we 
appear to be approaching a crossroads in the 
characterization of associative learning. There is now 
evidence that some effects formerly thought to arise as 
basic outcomes of an automatic associative learning 
process may require more complex processes than many 
had previously expected. It also seems that models of 
implicit learning will require further elaboration before 
they easily encompass the results of our RT experiment. 
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