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Instructions for
Recompiling the PDP Programs

Complete source code for all the programs described in this book is pro-
. vided in the archive src.arc. If you have Version 3.0 (or higher) of the
Microsoft C compiler, you should be able to modify the programs and
recompile them on your PC. If you have a UNIX system (Berkeley 4.2 or
higher) with the standard UNIX C compiler, you should also be able to
recompile the programs to run on that system. We first provide a general
inventory of the components of the PDP software and of the dependencies
among these components. Then we describe the procedure for recompiling
for the PC with Microsoft C. Following this we briefly describe how to set
up the PDP software on UNIX systems. You are free to try to use other C
compilers, but with others you are completely on your own. There is every
reason to expect that some tinkering will be required to recompile the
software with non-UNIX C compilers other than Microsoft C.

Components of the PDP Software

The software includes seven executable programs: aa, bp, ¢l, cs, ia, iac,
and pa. For each of these programs, there is a source file with the same
name (e.g., aa.c). In addition, there are certain other source files that
several programs share. The object files that all programs share are
grouped into one library file called libpc.a. This library file is made up of
the compiled versions of the routines from the files command.c, display.c,
general.c, io.c, main.c, patterns.c, template.c, and variable.c. The software
also includes the two utility programs: plot and colex; each of these is con-
structed from a single corresponding .c file.
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If you change any source file, you should recompile and relink all object
and executable files that depend upon that source file. The following
dependency list shows which executables depend upon which source files.
Where libpc.a is shown, all eight source files in the library are included in
the dependency.

aa: aa.c, libpc.a

bp: bp.c, weights.c, libpc.a

cl: cl.c, libpc.a

cs: ¢s.c, weights.c, libpc.a

ia: ia.c, laaux.c, iatop.c, libpc.a

iac: iac.c, weights.c

pa: pa.c, weights.c, libpc.a
plot: plot.c

colex: colex.c

Note also that there are many header files (with names ending in .A) in the
PDP software package. These files often contain declarations that are used
in several different modules. This is particularly true for the header files
associated with the modules in libpc.a. If one of these files is modified, it is
prudent to recompile all modules that include this file. The following list
indicates which .# files are included in each .c file:

general.h: display.h

aa.c: general.h, aa.h, variable.h, patterns.h, command.h

bp.c: general.h, bp.h, variable.h, weights.h, patterns.h,
command.h

clc: general.h, variable.h, patterns.h, command.h, clLh

command.c:  general h, io.h, command.h

cs.c: general h, cs.h, variable.h, command.h, patterns.h,
weights.h

display.c: general h, io.h, variable.h, template.h, weights.h,
command.h

general.c: general.h, command.h, variable.h

ia.c: ia.h, io.h, general.h

iaaux.c: ia.h

iac.c: general.h, iac.h, variable.h, command.h, weights.h,
patterns.h

iatop.c: general h, cs.h, variable.h, command.h, ia.h

io.c: io.h

main.c: general.h, variable.h, command.h, patterns.h

pa.c: general.h, pa.h, variable.h, weights.h, patterns.h,
command.h

patterns.c: general.h, command.h, variable.h, patterns.h
template.c:  general.h, command.h, variable.h, display.h, template.h
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variable.c: general.h, variable.h, command.h, patterns.h, weights.h
weights.c: general.h, command.h, weights.h, variable.h

Note that all files that include general.h also implicitly include display.h.

To Recompile for a PC Using Microsoft C

Three batch files are provided in the src directory to aid in compiling and
linking: compile.bat, makelib.bat, and pdplink.bat. These files can be exe-
cuted as though they were programs. :

The compile batch file includes the command to compile a source file (.¢)
into an object file (.obj). The first step in creating an executable (.exe) file
is to recompile all of the source files upon which it depends, including the
files in libpc.a. To recompile all the source files, execute the following
command in the directory that contains the files:

compile all

This will produce a .0bj file for each .c file in that directory. To compile
only one source file, use its name instead of all when giving the compile
command. Thus, to compile aa.c you would enter

compile aa.c

This will produce a file called aa.obj in that directory. If there are errors in
your source code, the compiler may abort the command file and display the
error messages.

Once all of the necessary object files are created, the libpc.a file can be
built. The command file for building the library is executed as follows:

makelib

This will create a file called libpc.a in the current directory from the eight
object files, which should be in the same directory. Whenever you recom-
pile any of the eight programs in libpc.a, you should use the makelib com-
mand again to update the library. (The makelib command requires all the
object files to be present, so it is best to keep these files around while you
are actively involved in modifying the programs. Once you stop making
changes, you can delete the .o files to save space.)

The final stage in compiling is linking. The command file pdplink.bat will
link the necessary files to create each of the executables. To link the object
files for a particular program, enter pdplink with the program name as argu-
ment. Thus,

pdplink bp



'l
-3
it

328  APPENDIX G. RECOMPILING THE PDP PROGRAMS

will link the files bp.obj and weights.obj with the library libpc.a to create the
executable bp.exe. The pdplink command will also work with plot or colex.
To create executables for all seven PDP simulation programs, use the fol-
lowing command:

pdplink all

Note that pdplink all does not link colex and plot; these must be linked
individually.

If you wish to recompile and relink all of the programs at once, use the
following three commands:

compile all
makelib
pdplink all

Once you have created new executables, you will want to move thes’ ﬁles
into the appropriate working directories, to be used with the rélévant .tem
and .str files. The MS-DOS copy utility can be used to do this.

Instructions for Setting Up the PDP Software on UNIX Systems

For UNIX systems, we suggest that you set up a parent directory system
for the PDP software and copy the extracted contents of each of the .arc
files into a separate subdirectory of the parent, giving the subdirectory the
same name as the archive. For example, if your parent directory were
called /usr/yourname/pdp, you would put the contents of aa.arc into a sub-
directory of this directory called /usr/yourname/pdp/aa. The only files that
you will not want to include in this directory system are the .exe files, since

these will only run on PCs. You would also create a subdirectory called - '

[usr/yourname/pdp/src containing the source files and other materlals '
necessary to recompile the package from the src.arc file. :
Once the directories have been set up, you will want to change direc-
tories to the src subdirectory. It is an easy matter to recompile all the pro-
grams because we have supplied a makefile. This file is used by the UNIX
make program to manage the PDP software. To compile all of the PDP
simulation programs, you need only execute the following command:

make

To compile a single program, simply give make the name of that program as
an argument. For example, to recompile the aa program, enter

make aa
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This form also works with the plot and colex programs; they are not
updated if make is executed with no arguments.

In either case, make will check the makefile to see which source files
need to be recompiled and will recompile them. It will update libpc.a if
necessary. And it will link the necessary object modules together to create
the necessary executable files. The supplied makefile places the seven PDP
executables in directories that are on the same level as the source directory
and have the same name as the executable. For example, if the src direc-
tory is /usr/yourname/pdp/src then the aa executable would be placed in
the directory /usr/yourname/pdp/aa. If you have set up subdirectories for
each program as suggested above, this will all work fine. If you have
chosen to organize the directories differently, the makefile can be modified
to change where each program is placed. For each program there is a vari-
able that specifies the destination directory for the executable version of the
program. The names of these variables are uppercase and consist of the
program name followed by DEST. Thus for aa, there is a line in the
makefile that looks like this:

AADEST = ../aa/
The path name to the right of the equal sign can be replaced by any other
valid UNIX path name. Once it is, aa will be stored in the directory speci-
fied by the path. Thus

AADEST = /usr/foo/pc/bin/

would cause make to put the aa executable in the directory
[usr/foo/pc/bin.
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aa program, 169-174
commands in, 171-172
core routines in, 169-170
implementation of, 169-170
modes of, 170 )
specification of architecture for, 170
use of, 170-174
variables in, 172-174
Adams, M. J. 205, 331
Anderson, J. A, 4, 83, 84, 162, 165,
168, 331, 332
Annealing, simulated, 71-72
exercises on, 74-75
Answers to questions in exercises,
289-320
Appendices, overview of, 4
Asynchronous update, 52
Attractor states as minima, 70
Auto-associator
linear _
assumptions of, 167
delta rule in, 179-181
exercises on, 174-178
explosive growth of activations in,
167, 177-178
learning orthogonal patterns in,
175-178
linear predictability constraint in,
180-181
multilayer, 166

one layer
background on, 161-165
essential properties of, 163
example of, 162
exercises on, 174-188
implementation of, 169-174
learning regimes for, 165-166
limitations of, 165-166
pattern completion in, 164
pattern rectification in, 164
psychological applications of,

181-188

recurrent processing in, 165
variants of, 167-169, 174-188

Back propagation

in cascaded networks, 153-155

exercises with, 145-152

extensions of, 152-159

gradient descent and local minima in,
132-135

implementation of, 137-141

learning by pattern and by epoch in,
136-137

the learning rule described, 130-131

minimizing mean squared error,
126-130

momentum in, 135-136

precursors and their limitations,
121-126
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Back propagation (continued)
in recurrent networks, 155-156
role of the activation function in,

131-132

in sequential networks, 156-159
symmetry breaking in, 136

Bagley, W. C., 203, 331

Baron, J., 204, 331

Best match problem, 50

Blake, A., 50, 331

Blocking in IAC networks, 16-17

Bobrow, D. G., 206, 333

Boitzmann machine, 73-75
exercises on, 74-75
implementation of, 73-74
simulated annealing in, 74-75
suggested experiments with, 75

use of to avoid local minima, 71-75

bp program
commands in, 142
core routines in, 138-140
implementation of, 137-141
modes and measures in, 140
use of, 141-145
variables in, 142-145
Brain-state-in-the-box model
assumptions of, 167-168
completion and rectification in,
178-179
prototype learning in, 179
self-connections in, 179
Broadbent, D. E., 235, 331

C, the programming language, 9. See

also Pseudo-C code, conventions
used in
Carr, T. H., 238, 239, 320, 331

Cascaded feedforward networks, back

propagation in, 153-154

asymptotic activation in, relation to

standard back propagation, 153
exercise on, 154-155
Cattell, J. M., 203, 321
Central tendency learning in pattern
associators, 113-114. See also
prototype learning
change_weights routine
inbp, 140
incl, 195-196
inpa, 102-103

cl program
commands in, 196
core routines in, 195-196
exercises with, 197-201
implementation of, 194-196
use of, 196-197
variables in, 196-197
Clamped activations of units, 65, 78
Clustering in competitive learning,
197-200
effects of the number of clusters,
199-200
colex program, use of, 284-285
Commands, general information on,
25-28
,abbreviations of, 26
entering, 25-26
executing lists of, 27
passing out of programs, 28
recursive command level, 28
syntax for, 26
Commands, summary of, 245-262
disp commands, 248-249
exam commands. See ser commands
get commands, 249-251
save commands, 251
set commands, 251-262
top-level, 245-248
Competition in IAC networks, 14-15
Competitive learning
architecture of, 189-190
background on, 188-194
exercises on, 197-201
features of, 193-194
geometric analogy, 191-193
graph partitioning with, 200-201
implementation of, 194-197
pattern classification and clustering
in, 193, 197-200
variants of, 189
version implemented in ¢l program,
189-191
compute_error routine
inbp, 138, 139
inpa, 102
compute_output routine
inbp, 138
incl, 195
inpa, 101-102
compute_wed routine inbp, 139



Computer programs, user interface to,
9-10
goals of, 9-10
constrain_neg_pos routine in bp, 140
Constraint satisfaction, 49-81. See also
constraint satisfaction models;
goodness
background on, 49-53
definition of, 50
energy as measure of, 70
exercises on, 58-68, 74-75, 78-81
goodness as measure of, 50-52
maxima in, 61-63, 68-73
models of, 53-54, 70, 72, 73-81
net input in, 52
physics analogy to, 68-73
simulated annealing and, 71
Constraint satisfaction models, 53-54,
70, 72, 73-75, 75-81
Boltzmann machine, 73-75
harmony theory, 75-81
Hopfield nets, 70
implementation of, 54-55, 73-74, 78
relations among, 72
schema model, 53-54
Constraints
hard, 50
weak, 50
Context effects in perception. See also
contextual enhancement effect;
word superiority effect
evidence of, 203-204
simulation of, 228-230
Contextual enhancement effect,
simulation of, 237-238
Cooling schedule. See simulated
annealing
Core routines
of aa, 169-170
of bp, 138-141
of¢l, 195-196 4
of cs, 54-55, 73, 74, 78
ofia, 218-222
of iac, 21-24
of pa, 100-103
€s program
commands in, 56
core routines of, 54-55
implementation of, 54-55
use of, 55-56
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variables in, 57-58 .
Cube example, exercises with, 58-63
¢ycle routine

incs, 54

inia, 218-219

iniac, 21

Davidson, B. J., 238, 331
Default assignment in IAC
networks, 45
Delta
definition of for LMS, 128
implementation of recursive
computation of, 138
recursive definition of for back
propagation, 130-131
Delta rule
generalized. See back propagation
one-layer, 86-89, 93-96. See also
perceptron, LMS
convergence of, 88, 95
linear independence in, 95-96
linear predictability constraint in,
89, 95-96
mathematical formulation, 87
other names for, 87
in pattern associators, 93-96
performance measure for, 88
simple application of, 87-88
transfer effects in, 95
in one-layer auto-associators, 165-
166, 179-181
Dipole problem for competitive
learning, 201
Disclaimers, 2, 10. See also the PDP
Software Package License
Agreement
regarding possible bugs, 10
regarding recompilability, 2
regarding use on non-IBM
computers, 2
Diskettes, organization of, 241-242
Display package, 20, 29, 41-42
Distributed memory and amnesia
model. See DMA model
DMA model
aspects of learning in, 182
assumptions of, 168-169
coexistence of prototype and repeated
exemplars, 186-188
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DMA model (continued)
learning a prototype from exemplars,
182-184
learning several categories without
labels, 184-186
memory for general and specific
information in, 181-188

Eigenvalues. See eigenvectors
Eigenvectors, in auto-associators, 163,
175-178
Electricity problem solving, exercises
on, 78-81
Energy, as measure of constraint -
satisfaction, 70
Epoch, training, 88
Epsilon (€), learning rate parameter, 84
Equilibria in IAC networks, 13-14
Error messages, 27
during execution of a list of
commands, 27
Error surface, 127-130, 133-135
bowl-shaped, 128-129
saddle-shaped, 134-135
Exclusive or function. See XOR
Execution of a list of commands, 27
processing of errors during, 27
Expectation effects in perception,
simulation of, 238-239

Feldman, J. A., 58, 331
Files
log (.log) 28, 283-284
look (loo), 47, 276-2717, 278-279
network (.ner), 24, 25, 40, 263-269
start-up (.str), 24, 25, 40
template (.rem), 24, 25, 40, 271-278
weight (wrs), 55, 269-271
Forced-choice test of contextual
influences in perception, 204
assumptions for, in IA model,
213-214
results of, 204
simulation of basic results of,
231-233
Formats for files used by PDP
programs, 263-281
log files, 283-284
look files, 278-279
network files, 263-269

pattern files, 280-281

template files, 271-278

weights files, 269-271
Francis, W., 209, 332
Fukushima, K., 189, 331

Geman, D., 71, 332
Geman, S., 71, 332
Generalization
in IAC networks, 45-46
in pattern associator models, 108-112
getinput routine in iac, 21
getnet routine in iac
Grossberg version, 23
standard version, 22
Gibbs sampler, 71
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