APPENDIX G i

Instructions for
Recompiling the PDP Programs

Complete source code for all the programs described in this book is pro-
. vided in the archive src.arc. If you have Version 3.0 (or higher) of the
Microsoft C compiler, you should be able to modify the programs and
recompile them on your PC. If you have a UNIX system (Berkeley 4.2 or
higher) with the standard UNIX C compiler, you should also be able to
recompile the programs to run on that system. We first provide a general
inventory of the components of the PDP software and of the dependencies
among these components. Then we describe the procedure for recompiling
for the PC with Microsoft C. Following this we briefly describe how to set
up the PDP software on UNIX systems. You are free to try to use other C
compilers, but with others you are completely on your own. There is every
reason to expect that some tinkering will be required to recompile the
software with non-UNIX C compilers other than Microsoft C.

Components of the PDP Software

The software includes seven executable programs: aa, bp, ¢l, cs, ia, iac,
and pa. For each of these programs, there is a source file with the same
name (e.g., aa.c). In addition, there are certain other source files that
several programs share. The object files that all programs share are
grouped into one library file called libpc.a. This library file is made up of
the compiled versions of the routines from the files command.c, display.c,
general.c, io.c, main.c, patterns.c, template.c, and variable.c. The software
also includes the two utility programs: plot and colex; each of these is con-
structed from a single corresponding .c file.

326 APPENDIX G. RECOMPILING THE PDP PROGRAMS

If you change any source file, you should recompile and relink all object
and executable files that depend upon that source file. The following
dependency list shows which executables depend upon which source files.
Where libpc.a is shown, all eight source files in the library are included in
the dependency.

aa: aa.c, libpc.a

bp: bp.c, weights.c, libpc.a

cl: cl.c, libpc.a

cs: ¢s.c, weights.c, libpc.a

ia: ia.c, laaux.c, iatop.c, libpc.a

iac: iac.c, weights.c

pa: pa.c, weights.c, libpc.a
plot: plot.c

colex: colex.c

Note also that there are many header files (with names ending in .A) in the
PDP software package. These files often contain declarations that are used
in several different modules. This is particularly true for the header files
associated with the modules in libpc.a. If one of these files is modified, it is
prudent to recompile all modules that include this file. The following list
indicates which .# files are included in each .c file:

general.h: display.h

aa.c: general.h, aa.h, variable.h, patterns.h, command.h

bp.c: general.h, bp.h, variable.h, weights.h, patterns.h,
command.h

clc: general.h, variable.h, patterns.h, command.h, clLh

command.c: general h, io.h, command.h

cs.c: general h, cs.h, variable.h, command.h, patterns.h,
weights.h

display.c: general h, io.h, variable.h, template.h, weights.h,
command.h

general.c: general.h, command.h, variable.h

ia.c: ia.h, io.h, general.h

iaaux.c: ia.h

iac.c: general.h, iac.h, variable.h, command.h, weights.h,
patterns.h

iatop.c: general h, cs.h, variable.h, command.h, ia.h

io.c: io.h

main.c: general.h, variable.h, command.h, patterns.h

pa.c: general.h, pa.h, variable.h, weights.h, patterns.h,
command.h

patterns.c: general.h, command.h, variable.h, patterns.h
template.c: general.h, command.h, variable.h, display.h, template.h

APPENDIX G. RECOMPILING THE PDP PROGRAMS 327

variable.c: general.h, variable.h, command.h, patterns.h, weights.h
weights.c: general.h, command.h, weights.h, variable.h

Note that all files that include general.h also implicitly include display.h.

To Recompile for a PC Using Microsoft C

Three batch files are provided in the src directory to aid in compiling and
linking: compile.bat, makelib.bat, and pdplink.bat. These files can be exe-
cuted as though they were programs. :

The compile batch file includes the command to compile a source file (.¢)
into an object file (.obj). The first step in creating an executable (.exe) file
is to recompile all of the source files upon which it depends, including the
files in libpc.a. To recompile all the source files, execute the following
command in the directory that contains the files:

compile all

This will produce a .0bj file for each .c file in that directory. To compile
only one source file, use its name instead of all when giving the compile
command. Thus, to compile aa.c you would enter

compile aa.c

This will produce a file called aa.obj in that directory. If there are errors in
your source code, the compiler may abort the command file and display the
error messages.

Once all of the necessary object files are created, the libpc.a file can be
built. The command file for building the library is executed as follows:

makelib

This will create a file called libpc.a in the current directory from the eight
object files, which should be in the same directory. Whenever you recom-
pile any of the eight programs in libpc.a, you should use the makelib com-
mand again to update the library. (The makelib command requires all the
object files to be present, so it is best to keep these files around while you
are actively involved in modifying the programs. Once you stop making
changes, you can delete the .o files to save space.)

The final stage in compiling is linking. The command file pdplink.bat will
link the necessary files to create each of the executables. To link the object
files for a particular program, enter pdplink with the program name as argu-
ment. Thus,

pdplink bp

'l
-3
it

328 APPENDIX G. RECOMPILING THE PDP PROGRAMS

will link the files bp.obj and weights.obj with the library libpc.a to create the
executable bp.exe. The pdplink command will also work with plot or colex.
To create executables for all seven PDP simulation programs, use the fol-
lowing command:

pdplink all

Note that pdplink all does not link colex and plot; these must be linked
individually.

If you wish to recompile and relink all of the programs at once, use the
following three commands:

compile all
makelib
pdplink all

Once you have created new executables, you will want to move thes’ ﬁles
into the appropriate working directories, to be used with the rélévant .tem
and .str files. The MS-DOS copy utility can be used to do this.

Instructions for Setting Up the PDP Software on UNIX Systems

For UNIX systems, we suggest that you set up a parent directory system
for the PDP software and copy the extracted contents of each of the .arc
files into a separate subdirectory of the parent, giving the subdirectory the
same name as the archive. For example, if your parent directory were
called /usr/yourname/pdp, you would put the contents of aa.arc into a sub-
directory of this directory called /usr/yourname/pdp/aa. The only files that
you will not want to include in this directory system are the .exe files, since

these will only run on PCs. You would also create a subdirectory called - '

[usr/yourname/pdp/src containing the source files and other materlals '
necessary to recompile the package from the src.arc file. :
Once the directories have been set up, you will want to change direc-
tories to the src subdirectory. It is an easy matter to recompile all the pro-
grams because we have supplied a makefile. This file is used by the UNIX
make program to manage the PDP software. To compile all of the PDP
simulation programs, you need only execute the following command:

make

To compile a single program, simply give make the name of that program as
an argument. For example, to recompile the aa program, enter

make aa

APPENDIX G. RECOMPILING THE PDP PROGRAMS 329

This form also works with the plot and colex programs; they are not
updated if make is executed with no arguments.

In either case, make will check the makefile to see which source files
need to be recompiled and will recompile them. It will update libpc.a if
necessary. And it will link the necessary object modules together to create
the necessary executable files. The supplied makefile places the seven PDP
executables in directories that are on the same level as the source directory
and have the same name as the executable. For example, if the src direc-
tory is /usr/yourname/pdp/src then the aa executable would be placed in
the directory /usr/yourname/pdp/aa. If you have set up subdirectories for
each program as suggested above, this will all work fine. If you have
chosen to organize the directories differently, the makefile can be modified
to change where each program is placed. For each program there is a vari-
able that specifies the destination directory for the executable version of the
program. The names of these variables are uppercase and consist of the
program name followed by DEST. Thus for aa, there is a line in the
makefile that looks like this:

AADEST = ../aa/
The path name to the right of the equal sign can be replaced by any other
valid UNIX path name. Once it is, aa will be stored in the directory speci-
fied by the path. Thus

AADEST = /usr/foo/pc/bin/

would cause make to put the aa executable in the directory
[usr/foo/pc/bin.

References

Adams, M. I. (1979). Models of word recognition. Cognitive - Psychology, 11,
133-176.

Anderson, J. ‘A. (1977). Neural models with cognitive implications. In D. LaBerge
& S. . Samuels (Eds.), Basic processes in reading perception and comprehension
(pp. 27-90). Hillsdale, NJ: Erlbaum.

Anderson, J. A. (1983). Cognitive and psychological computation with neural
models. IEEE Transactions on Systems, Man, and Cybernetics, 13, 799-815.

Anderson, J. A., Silverstein, J. W., Ritz, S. A., & Jones, R. S. (1977). Distinctive
features, categorical perception, and probability learning: Some applications of a
neural model. Psychological Review, 84, 413-451.

Bagley, W. C. (1900). The apperception of the spoken sentence: A study in the
psychology of language. American Journal of Psychology, 12, 80-130.

Baron, J., & Thurston, I. (1973). An analysis of the word-superiority effect. Cog-
nitive Psychology, 4, 207-228. .

Blake, A. (1983). The least disturbance principle and weak constraints. Pattern
Recognition Letters, 1, 393-399.

Broadbent, D. E., & Gregory, M. (1968). Visual perception of words differing in
letter digram frequency. Journal of Verbal Learning and Verbal Behavior, 7,
569-571. .

Carr, T. H., Davidson, B: J., & Hawkins, H. L. (1978). Perceptual flexibility in
word recognition: Strategies affect orthographic computation but not lexical
access. Journal of Experimental Psychology: Human Perception and Performance,
4, 674-690.

Cattell, J. M. (1886). The time taken up by cerebral operations. Mind, 11,
220-242.

Feldman, J. A. (1981). A connectionist model of visual memory. In G. E. Hinton
& J. A. Anderson (Eds.), Parallel models of associative memory (pp. 49-81).
Hillsdale, NJ: Erlbaum.

Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network.
Biological Cybernetics, 20, 121-136.

332 REFERENCES

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. [EEE Transactions on Pattern Analysis and
Machine Intelligence, 6, 7121-741.

Grossberg, S. (1976). Adaptive pattern classification and universal recoding: Part I.
Parallel development and coding of neural feature detectors. Biological Cybernet-
ics, 23, 121-134.

Grossberg, S. (1978). A theory of visual coding, memory, and development. In E.
L. J. Leeuwenberg & H. F. J. M. Buffart (Eds.), Formal theories of visual percep-
tion. New York: Wiley.

Grossberg, S. (1980). How does the brain build a cognitive code? Psychological
Review, 87, 1-51.

Hebb, D. O. (1949). The organization of behavzor New York: Wiley.

Hinton, G. E. (1977). Relaxation and its role in vision. Unpublished doctoral disser-
tation, University of Edinburgh.

Hinton, G. E., & Anderson, J. A. (Eds.). (1981). Parallel models of associative
memory. Hillsdale, NJ: Erlbaum.

Hinton, G. E., & Sejnowski, T. J. (1983). Optimal perceptual inference. Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 448-453.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collec-
tive computational abilities. Proceedings of the National Academy of Sciences,
USA, 79, 2554-2558.

Hopfield, J. J. (1984). Neurons with graded response have collective computational
properties like those of two-state neurons. Proceedings of the National Academy
of Sciences, USA, 81, 3088-3092.

James, W. (1890). Principles of psychology (Vol. 1). New York: Hoilt. :

Johnston, J. C. (1978). A test of the sophisticated guessing theory of word per-
ception. Cognitive Psychology, 10, 123-153. }

Johnston, J. C. (1980). Experimental tests of a hierarchical model of word identif-
ication. Journal of Verbal Learning and Verbal Behavior, 19, 503-524.

Johnston, J. C., & McClelland, J. L. (1973). Visual factors in word perception.
Perception & Psychophysrcs 14, 365-370.

Johnston, J. C., & McClelland, J. L. (1974). Perception of letters in words: Seek
not and ye shall find. Science, 184, 1192-1194.

Johnston, J. C., & McClelland, J. L. (1980). Experimental tests of a hierarchical
model of word identification. Journal of Verbal Learning and Verbal Behavior,
19, 503-524.

Jordan, M. 1. (1986). Attractor dynamics and parallelism in a connectionist
sequential machine. Proceedings of the Eighth Annual Meeting of the Cognitive Sci-
ence Society. Hillsdale, NJ: Erlbaum.

Kernighan, B. W., & Ritchie, D. M. (1978). The C Programming Language.
Englewood Cliffs, NJ: Prentice-Hall.

Kohonen, T. (1977). Associative memory: A system theoretical approach. New York:
Springer.

Kucera, H., & Francis, W. (1967). Computational analysis of present-day American
English. Providence, RI: Brown University Press.

Levin, J. A. (1976). Proteus: An activation framework for cognitive process models
(Tech. Rep. No. ISI/WP-2). Marina del Rey, CA: University of Southern Cali-
fornia, Information Sciences Institute.

Luce, R. D. (1959). Individual choice behavior. New York: Wiley.

REFERENCES 333

Manelis, L. (1974). The effect of meaningfulness in tachistoscopic word percep-
tion. Perception & Psychophysics, 16, 182-192.

Massaro, D. W. (1973). Perception of letters, words, and nonwords. Journal of
Experimental Psychology, 13, 45-48.

Massaro, D. W., & Klitzke, D. (1979). The role of lateral masking and ortho-
graphic structure in letter and word recognition. Acta Psychologica, 43, 413-426.

McClelland, J. L. (1976). Preliminary letter identification in the perception of
words and nonwords. Journal of Experimental Psychology: Human Perception and
Performance, 2, 80-91.

McClelland, J. L. (1979). On the time-relas of mental processes: An examina-

tion of systems of processes in cascade. Psychological Review, 86, 287-330.

McClelland, J. L. (1981). Retrieving general and specific information from stored
knowledge of specifics. Proceedings of the Third Annual Meeting of the Cognitive
Science Society, 170-172.

McClelland, J. L., & Johnston, J. C. (1977). The role of familiar units in percep-
tion of words and nonwords. Perceprion & Psychophysics, 22, 249-261.

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of
context effects in letter perception: Part 1. An account of basic findings. Psycho-
logical Review, 88, 375-407.

McClelland, J. L., & Rumelhart, D. E. (1985). Distributed memory and the
representation of general and specific information. Journal of Experimental
Psychology: General, 114, 159-188.

McClelland, J. L., Rumelhart, D. E., & the PDP Research Group. (1986). Paralle!
distributed processing: Explorations in the microstructure of cognition. Vol. 2.
Psychological and biological models. Cambridge, MA: MIT Press/Bradford Books.

Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.

Morton, J. (1969). Interaction of information in word recognition. Psychological
Review, 76, 165-178.

Norman, D. A., & Bobrow, D. G. (1975). On data-limited and resource-limited
processes. Cognitive Psychology, 7, 44-64.

Pillsbury, W. B. (1897). A study in apperception. American Journal of Psychology,

8, 315-393.

Pinker, S., & Prince, A. (1987). On language and connectionism: Analysis of a paral-
lel distributed processing model of language acquisition (Occasional Paper 33).
Cambridge: Massachusetts Institute of Technology, Center for Cognitive Sci-
ence.

Reicher, G. M. (1969). Perceptual recognition as a function of meaningfulness of
stimulus material. Journal of Experimental Psychology, 81, 274-280.

Riley, M. S., & Smolensky, P. (1984). A parallel model of (sequential) problem
solving. Proceedings of the Sixth Annual Conference of the Cognitive Science
Society. :

Rosenblatt, F. (1959). Two theorems of statistical separability in the perceptron.

In Mechanisation of thought processes: Proceedings of a symposium held at the
National Physical Laboratory, November 1958. Vol. 1 (pp. 421-456). London:
HM Stationery Office.

Rosenblatt, F. (1962). Principles of neurodynamics. New York: Spartan.

Rumelhart, D. E. (1977). Toward an interactive model of reading. In S. Dornic
(Ed.), Attention & Performance VI. Hillsdale, NJ: Erlbaum.

Rumelhart, D. E., & McClelland, J. L. (1982). An interactive activation model of
context effects in letter perception: Part 2. The contextual enhancement effect

334 REFERENCES

and some tests and extensions of the model. Psychological Review, §9, 60-94.

Rumelhart, D. E., McClelland, J. L., & the PDP Research Group. (1986). Parallel
distributed processing: Explorations in the microstructure of cognition. Vol. 1. Foun-
dations. Cambridge, MA: MIT Press/Bradford Books.

Rumelhart, D. E., & Ortony, A. (1977). The representation of knowledge in
memory. In R. C. Anderson, R. J. Spiro, & W. E. Montague (Eds.), Schooling
and the acquisition of knowledge (pp. 99-135). Hillsdale, NJ: Erlbaum.

Rumelhart, D. E., & Siple, P. (1974). Process of recognizing tachistoscopically
presented words. Psychological Review, 81, 99-118.

Rumelhart, D. E., & Zipser, D. (1985). Feature discovery by competitive learning.
Cognitive Science, 9, 75-112.

Selfridge, O. G. (1955). Pattern recognition in modern computers. Proceedings of
the Western Joint Computer Conference. :

Smolensky, P. (1983). Schema selection and stochastic inference in modular
environments. Proceedings of the National Conference on Artificial Intelligence
AAAI-83, 109-113.

Spoehr, K., & Smith, E. (1975). The role of orthographic and phonotactic rules in
perceiving letter patterns. Journal of Experimental Psychology: Human Perception
and Performance, 1, 21-34.

Turvey, M. (1973). On peripheral and central processes in vision: Inferences from
an information processing analysis of masking with patterned stimuli. Psycholog-
ical Review, 80, 1-52.

von der Malsberg, C. (1973). Self-organizing of orientation sensitive cells in the
striate cortex. Kybernetik, 14, 85-100.

Weisstein, N., Ozog, G., & Szoc, R. (1975). A comparison and elaboration of two
models of metacontrast. Psychological Review, 82, 325-343.

Wheeler, D. D. (1970). Processes in word recognition. Cognitive Psychology, I,
59-85.

Whittlesea, B. W. A. (1983). Representation and generalization of concepts: The
abstractive and episodic perspectives evaluated. Unpublished doctoral dissertation,
MacMaster University.

Widrow, G., & Hoff, M. E. (1960). Adaptive switching circuits. Institute of Radio
Engineers, Western Electronic Show and Convention, Convention Record, Part 4,
96-104.

e

. Index

aa program, 169-174
commands in, 171-172
core routines in, 169-170
implementation of, 169-170
modes of, 170)
specification of architecture for, 170
use of, 170-174
variables in, 172-174
Adams, M. J. 205, 331
Anderson, J. A, 4, 83, 84, 162, 165,
168, 331, 332
Annealing, simulated, 71-72
exercises on, 74-75
Answers to questions in exercises,
289-320
Appendices, overview of, 4
Asynchronous update, 52
Attractor states as minima, 70
Auto-associator
linear _
assumptions of, 167
delta rule in, 179-181
exercises on, 174-178
explosive growth of activations in,
167, 177-178
learning orthogonal patterns in,
175-178
linear predictability constraint in,
180-181
multilayer, 166

one layer
background on, 161-165
essential properties of, 163
example of, 162
exercises on, 174-188
implementation of, 169-174
learning regimes for, 165-166
limitations of, 165-166
pattern completion in, 164
pattern rectification in, 164
psychological applications of,

181-188

recurrent processing in, 165
variants of, 167-169, 174-188

Back propagation

in cascaded networks, 153-155

exercises with, 145-152

extensions of, 152-159

gradient descent and local minima in,
132-135

implementation of, 137-141

learning by pattern and by epoch in,
136-137

the learning rule described, 130-131

minimizing mean squared error,
126-130

momentum in, 135-136

precursors and their limitations,
121-126

336 INDEX

Back propagation (continued)
in recurrent networks, 155-156
role of the activation function in,

131-132

in sequential networks, 156-159
symmetry breaking in, 136

Bagley, W. C., 203, 331

Baron, J., 204, 331

Best match problem, 50

Blake, A., 50, 331

Blocking in IAC networks, 16-17

Bobrow, D. G., 206, 333

Boitzmann machine, 73-75
exercises on, 74-75
implementation of, 73-74
simulated annealing in, 74-75
suggested experiments with, 75

use of to avoid local minima, 71-75

bp program
commands in, 142
core routines in, 138-140
implementation of, 137-141
modes and measures in, 140
use of, 141-145
variables in, 142-145
Brain-state-in-the-box model
assumptions of, 167-168
completion and rectification in,
178-179
prototype learning in, 179
self-connections in, 179
Broadbent, D. E., 235, 331

C, the programming language, 9. See

also Pseudo-C code, conventions
used in
Carr, T. H., 238, 239, 320, 331

Cascaded feedforward networks, back

propagation in, 153-154

asymptotic activation in, relation to

standard back propagation, 153
exercise on, 154-155
Cattell, J. M., 203, 321
Central tendency learning in pattern
associators, 113-114. See also
prototype learning
change_weights routine
inbp, 140
incl, 195-196
inpa, 102-103

cl program
commands in, 196
core routines in, 195-196
exercises with, 197-201
implementation of, 194-196
use of, 196-197
variables in, 196-197
Clamped activations of units, 65, 78
Clustering in competitive learning,
197-200
effects of the number of clusters,
199-200
colex program, use of, 284-285
Commands, general information on,
25-28
,abbreviations of, 26
entering, 25-26
executing lists of, 27
passing out of programs, 28
recursive command level, 28
syntax for, 26
Commands, summary of, 245-262
disp commands, 248-249
exam commands. See ser commands
get commands, 249-251
save commands, 251
set commands, 251-262
top-level, 245-248
Competition in IAC networks, 14-15
Competitive learning
architecture of, 189-190
background on, 188-194
exercises on, 197-201
features of, 193-194
geometric analogy, 191-193
graph partitioning with, 200-201
implementation of, 194-197
pattern classification and clustering
in, 193, 197-200
variants of, 189
version implemented in ¢l program,
189-191
compute_error routine
inbp, 138, 139
inpa, 102
compute_output routine
inbp, 138
incl, 195
inpa, 101-102
compute_wed routine inbp, 139

Computer programs, user interface to,
9-10
goals of, 9-10
constrain_neg_pos routine in bp, 140
Constraint satisfaction, 49-81. See also
constraint satisfaction models;
goodness
background on, 49-53
definition of, 50
energy as measure of, 70
exercises on, 58-68, 74-75, 78-81
goodness as measure of, 50-52
maxima in, 61-63, 68-73
models of, 53-54, 70, 72, 73-81
net input in, 52
physics analogy to, 68-73
simulated annealing and, 71
Constraint satisfaction models, 53-54,
70, 72, 73-75, 75-81
Boltzmann machine, 73-75
harmony theory, 75-81
Hopfield nets, 70
implementation of, 54-55, 73-74, 78
relations among, 72
schema model, 53-54
Constraints
hard, 50
weak, 50
Context effects in perception. See also
contextual enhancement effect;
word superiority effect
evidence of, 203-204
simulation of, 228-230
Contextual enhancement effect,
simulation of, 237-238
Cooling schedule. See simulated
annealing
Core routines
of aa, 169-170
of bp, 138-141
of¢l, 195-196 4
of cs, 54-55, 73, 74, 78
ofia, 218-222
of iac, 21-24
of pa, 100-103
€s program
commands in, 56
core routines of, 54-55
implementation of, 54-55
use of, 55-56

INDEX 337

variables in, 57-58 .
Cube example, exercises with, 58-63
¢ycle routine

incs, 54

inia, 218-219

iniac, 21

Davidson, B. J., 238, 331
Default assignment in IAC
networks, 45
Delta
definition of for LMS, 128
implementation of recursive
computation of, 138
recursive definition of for back
propagation, 130-131
Delta rule
generalized. See back propagation
one-layer, 86-89, 93-96. See also
perceptron, LMS
convergence of, 88, 95
linear independence in, 95-96
linear predictability constraint in,
89, 95-96
mathematical formulation, 87
other names for, 87
in pattern associators, 93-96
performance measure for, 88
simple application of, 87-88
transfer effects in, 95
in one-layer auto-associators, 165-
166, 179-181
Dipole problem for competitive
learning, 201
Disclaimers, 2, 10. See also the PDP
Software Package License
Agreement
regarding possible bugs, 10
regarding recompilability, 2
regarding use on non-IBM
computers, 2
Diskettes, organization of, 241-242
Display package, 20, 29, 41-42
Distributed memory and amnesia
model. See DMA model
DMA model
aspects of learning in, 182
assumptions of, 168-169
coexistence of prototype and repeated
exemplars, 186-188

338 INDEX

DMA model (continued)
learning a prototype from exemplars,
182-184
learning several categories without
labels, 184-186
memory for general and specific
information in, 181-188

Eigenvalues. See eigenvectors
Eigenvectors, in auto-associators, 163,
175-178
Electricity problem solving, exercises
on, 78-81
Energy, as measure of constraint -
satisfaction, 70
Epoch, training, 88
Epsilon (€), learning rate parameter, 84
Equilibria in IAC networks, 13-14
Error messages, 27
during execution of a list of
commands, 27
Error surface, 127-130, 133-135
bowl-shaped, 128-129
saddle-shaped, 134-135
Exclusive or function. See XOR
Execution of a list of commands, 27
processing of errors during, 27
Expectation effects in perception,
simulation of, 238-239

Feldman, J. A., 58, 331
Files
log (.log) 28, 283-284
look (loo), 47, 276-2717, 278-279
network (.ner), 24, 25, 40, 263-269
start-up (.str), 24, 25, 40
template (.rem), 24, 25, 40, 271-278
weight (wrs), 55, 269-271
Forced-choice test of contextual
influences in perception, 204
assumptions for, in IA model,
213-214
results of, 204
simulation of basic results of,
231-233
Formats for files used by PDP
programs, 263-281
log files, 283-284
look files, 278-279
network files, 263-269

pattern files, 280-281

template files, 271-278

weights files, 269-271
Francis, W., 209, 332
Fukushima, K., 189, 331

Geman, D., 71, 332
Geman, S., 71, 332
Generalization
in IAC networks, 45-46
in pattern associator models, 108-112
getinput routine in iac, 21
getnet routine in iac
Grossberg version, 23
standard version, 22
Gibbs sampler, 71
Goodness, 50-52. See also maxima
definition of, 51
in harmony theory, 78
relation to energy, 70
relation of to net input in symmetric
nets, 52
Gradient descent
and back propagation rule, 130-131
correlation of successive steps in, gcor
measure of, 141 :
example of in one-layer net, 128
and local minima in back propagation,
132-133
and momentum, 135-136
relation to size of weight changes,
130
in weight space, 127-130
Graph partitioning in competitive
learning, 200-201
Graphs, how to make, 29, 283-288
Gregory, M., 235, 331
Grossberg, S., 3, 4, 11, 12, 15, 17, 18,
22, 23, 38, 46, 189, 194, 256, 292,
332
Grossberg’s version of IAC networks,
17, 46-47

Handbook, introduction to, 1-11
hardware requirements and
recommendations for use of, 2-3
mathematical conventions in, 6
overview of, 3
pseudo-C code in, 7-9
purpose of, 1

as raw material for explorations, 10
software provided with, 2
use with PDP volumes, 1
Harmony, definition of, 77
Harmony theory, 75-81
application to electricity problem
solving, exercises on, 78-81
feature units in, 75
goodness measure for, 78
implementation of, 78
knowledge atoms in, 75
parameters in, 76, 77
sequential problem solving and, 81
symmetry in, 76
Hawkins, H. L., 238, 331
Hebb, D. 0., 83, 84, 332
Hebb rule, 84-86, 90-93
correlational character of, 85, 86
Hebb’s statement of, 84
limitations of, 86, 93
mathematical formulation, 84
in one layer auto-associator, 165
in pattern associators, 90-93
simple application of, 85-86
Hidden units
definition of, 126
essential role of, 125-126
Hill-climbing, 53
Hinton, G. E., 50, 66, 68, 70, 71, 73,
83, 332
Hoff, M. E., 83, 87, 121, 126, 334
Hopfield, J. 1., 52, 70, 71, 72, 73, 332
Hopfield networks, 70
Hysteresis in IAC networks, 16-17

1A model

approach to psychological modeling
in, 207-208

architecture of, 208-210
background on, 203-208
basic assumptions of, 205-206
concept of trial in, 211-212
connections in, 210-211
display conditions in, 217
exercises for, 227-239
forced-choice test in, 213-214
implementation of, 218-222
input assumptions, 212
parameters of, 214-217
processing assumptions, 212

wpex 339

questions for, 206-208
readout from, 213
use of, 222-227
ia program
commands in, 223-226
core routines in, 218-222
data structures in, 218
example screen display for, 229-230
exercises with, 227-239
implementation of, 218-227
processing in, 218-222
screen displays in, 222-223
trial and forced-choice specifications
for, 222
use of, 222-227
variables in, 226-227
TAC model
exercises for, 38-47
implementation of, 19-38
overview of, 18
parameters in, 19
IAC networks
activation function for, 13
architecture of, 12, 18
construction of, 47
definition of, 12, 18
dynamics of, 12-13, 18
exercises on, 38-47
Grossberg’s version of, 17, 46-47
net input in, 12
output function for, 12
parameters of, 13, 19
properties of, 13-17
iac program
command descriptions for, 30-33
components of, 20-21
core routines in, 21-24
example of use of, 40-42
use of, 24-30
variable list for, 35-38
interact routine inia, 219-221
Interactive activation and competition,
11-47. See aiso IAC model; 1A
model
background on, 11-18
exercises on, 38-47
IAC model of, 18-19
IAC program, 20-38
Interactive activation model. See 1A
model

RN

340 INDEX

Interrupt prompt, 27
Interrupting processing, 27

James, W, 83, 332
Jets and Sharks example
exercises on with IAC nets, 38-46
exercises on in schema model, 67-68
exercises on in competitive learning,
197-200
Johnston, J. C., 204, 205, 206, 207,
217, 233, 234, 235, 318, 332, 333
Jones, R. S., 162, 331
Jordan, M. L., 156, 157, 158, 332

Kappa (k), parameter in harmony
thedry, 77

Kernighan, B. W., 9, 321, 332

Klitzke, D., 204, 333

Kohonen, T., 4, 83, 95, 108, 162, 332

Kucera, H., 209, 332

Learning in PDP models. See also
delta rule, Hebb rule, competitive
learning, back propagation

delta rule, one-layer, 86-89, 93-96

Hebb rule, 84-86, 90-93

introduction to, 83-84

in pattern associators, 90-96
exercises on, 108-119

Least mean square associator. See
LMS

Levin, J. A., 11, 332

LMS, 121, 126-130. See aiso delta
rule, one layer

gradient descent and, 127

Local maxima, problem of, 68-73
attractor states as, 70
example of with necker cube, 69
physics analogy to, 70-73
probabilistic activation and, 71-72
simulated annealing and, 71-72
stochastic networks for avoiding,

71-72

log (.loo) files, format of, 283-284

Logistic activation rule, use of in back
propagation, 131-132

Logistic function, definition of, 71

graph of, 72
logistic routine, 74
look (.loo) files, format of, 278-279

example of, 278-279 .
for a matrix variable, example of, 279
Luce, R. D, 213, 315, 333

Making graphs, 29, 283-288
Manelis, L., 204, 333
Massaro, D. W., 204, 333
Mathematical notation, conventions of,
6-7
counting, 7
matrices, 6
scalars, 6
vectors, 6
Maxima, global and local, 53, 61-63,
68-73
Maxima, local, methods for avoiding,
71. See also local maxima
McClelland, J. L., vii, 1, 3, 4, 11, 37,
39, 41, 153, 162, 183, 185, 186,
187, 203, 204, 205, 206, 207, 208,
209, 217, 227, 228, 231, 233, 234,
236, 237, 290, 317, 318, 319, 320,
332, 333, 334
Memory for general and specific
information
in auto-associator models, 181-188
in IAC networks, Jets and Sharks
example of, 38-44
Minima, local
in weight space, example of, 132-133
Minsky, M., 50, 89, 122, 123, 125,
126, 333
Models, relation to programs, 5
Morton, J., 205, 333

Net input in constraint satisfaction
models, 52
Network configuration package, 20
network (.net) files
construction of, 47
example of, 269
format of, 263-269
inclusion in .str file, 40
overview, 263
sections of, 264-269
use of to specify architecture, 24
Nonwords, unpronounceable,
facilitation of perception of, 236-237
Normalized dot product, 91
Norman, D. A, 206, 333

OR function, gradient descent
learning, 128
Orthogonal patterns
definition of, 92
as eigenvectors in linear auto-
associators, 163-165
examples of, 92
learning of, 112-113
Ortony, A., 63, 334
Ozog, G., 17, 334
pa program
command descriptions for, 104-105
core routines in, 100-103
error criterion in, 100
overview of, 100
overview of commands in, 103
overview of variables in, 103-104
training commands for, 100
variable list for, 105-108

Papert, S., 50, 89, 122, 123, 125,
126, 333
Parameter changes in IAC
networks, 46
Past-tense learning, pattern associator
model of, 115-118, 119
Pattern associator models, 97-103
activation functions in, 97-98
environment for, 98
family of, 97-98
implementation of, 100-103
learning rules for, 98-99
performance measures for, 99
training epochs in, 98
Pattern associators. See also pattern
associator models; learning in PDP
models; Hebb rule; delta rule
architecture of, 89
delta rule in, 93-96, 112-114, 114-118
exercises on, 108-119
general properties of, 83-84
Hebb rule in, 90-93, 108-112
illustration of, 89-90
introduction of, 83-84
learning in, 90-95
learning sets of patterns in, 92-93,
94-96
nonlinear 96, 114-119
output of in relation to learned
patterns, 91-93

INDEX 341

Pattern completion in auto-associators,
164, 178-179
Pattern (.par) files, format of, 280-281
Pattern rectification in auto-associators,
164, 178-179
Pattern similarity, 91
dot product as measure of, 91
Pattern sum of squares, {pss) definition
of, 100
in back propagation, 140
Patterns
learning sets of, 112-113
linear independence of, 95-96
orthogonal set of, 92
uncorrelated vs. anticorrelated, 92
Patterns package, 20
PDP:1, 4, 11, 39, 40
PDP:2, 53,72, 130
PDP:5, 4, 166, 188, 191, 201
PDP:6, 4, 49, 68, 70, 75, 76, 78, 79
PDP:7, 3, 49, 66, 68, 70, 73 .
PDP:8, 4, 123, 130, 136, 145, 146,
152, 155
PDP:9, 4, 90, 99
PDP:11, 4, 83, 90, 95, 108, 114
PDP:14, 3, 49, 53, 58, 59, 60, 63, 64,
65, 66, 68, 294
PDP:16, 4
PDP:17, 4, 89, 162, 165, 166, 168,
169, 174, 181, 182, 184,
186, 188, 311
PDP:18, 4, 83, 90, 115, 116
PDP:19, 5, 83
PDP:21, 208
PDP:25, 4,114, 162, 168, 169, 181,
311 ‘
PDP Research Group, vii, 1, 333, 334
PDP software package, 20-21, 25-35,
40-42, 321-329
command and variable summary for,
245-262
command descriptions for, 30-33
command interpreter, 20, 25-27,
28-29
displays in, 20, 29, 41-42
error messages, 27
example of use of, 40-44
formats for files used with, 263-281
hardware requirements for, 2
interruption of processing, 27

342 INDEX

PDP software package (continued)
need for math co-processor, 2
network configuration package, 20
overview.of, 20-21, 321-324
quitting programs, 29
recompilation of, 325-329
running commands outside the

programs, 28
setting up on PC, 241-244
setting up on UNIX systems, 328-329
single stepping, 27
starting up, 24-25
use of, 24-30, 40-42
variable types in, 33-35
what is provided, 2
Perceptron, 121-126. See also delta
rule
definition of, 121-123
limitations of, 123-125
linear separability and, 123-126
Perceptrons, 123
Physics analogy to constraint
satisfaction systems, 70-73

Pillsbury, W. B., 203, 333

Pinker, S., 118, 333

plot program, use of, 285-288

Prince, A., 118, 333

probability routine, 74

Programs, relation to models, 5. See

also PDP software package; aa, bp,
¢l, cs, ia, iac, pa programs

Prototype learning in auto-associators,

179, 182-188
Pseudo-C code, conventions used in,
7-9
array indexes, 8-9
comments, 7
curly braces, 8
if statements, 7
incrementing, 8, 9
loop constructs, 8
semicolons, 8
Pseudowords, perception of, 232-233,
233-236, 236-239

Psychological modeling
approach to in IA model, 207-208
role of simplifying assumptions in,

207-208

Questions in exercises, answers to,
289-320

Recurrent networks, back propagation
in, 155-156
shift register as example of, 155-156
Reicher, G. M., 204, 206, 207, 212,
223, 333
reset routine in iac, 21
Resetting, commands for, 55-56
Resonance in IAC networks, 15-16
Retrieval and generalization in IAC
" networks, exercises on, 38-46
retrieval, graceful degradation in, 45
retrieval by name, 40-44
retrieval from partial description, 44-
45
Riley, M. S., 78, 333
Ritchie, D. M., 9, 321, 332
Ritz, S. A., 162, 331
rnd routine, 74
Rosenblatt, F., 83, 87, 97, 121, 333
Routines. See core routines; PDP
software package
Rule learning in pattern associators,
114-118
Rule of 78, 115-118
Rules and exceptions, handling of in
pattern associators, 118
Rumelhart, D. E., vii, 1, 4, 11, 37, 63,
162, 183, 185, 186, 187, 189, 190,
192, 203, 206, 207, 208, 209, 210,
218, 224, 227, 228, 231, 234, 236,
237, 290, 317, 319, 320, 333, 334
rupdate routine incs
Boltzmann version, 73
harmony version, 78
schema model version, 54-55

Schema model, 53-73
cube example, exercises with, 58-63
exercises for, overview of, 58
implementation of, 54-55
Jets and Sharks example, exercise

with, 67-68

local minima in, 61-63
purpose of, 53

1

g

room example, exercises with, 63-67
sequential processes in, 68
tic-tac-toe example for, 68
update rule for, 53
Schemata, 63-65
completion and, 64
conventional view of, 63
maxima and, 64
prototypes and, 64
room example of, 64-67
subunits in, 66-67
view of in PDP, 64
Sejnowski, T. I., 66, 68, 70, 71, 73,
208, 332
Selfridge, O. G., 206, 334
Sequence generation, plan-dependent,
in sequential back propagation
networks, exercise on, 158-159
Sequential networks, 156-159
exercise on, 158
implementation of in bp
program, 157
Sequential processing, 68, 81
setinput routine in bp, 219
Setting up a PDP program, discussion
of, 241-244
script for, 243-244
Shift register, learning of in recurrent
back propagation networks, 155-156
Sigma (o), parameter in harmony
theory, 76
Silverstein, J. W., 162, 331
Simulated annealing, 71-72
Single stepping, 27
Siple, P., 203, 209, 210, 218, 224, 334
Smith, E., 204, 334
Smolensky, P., 68, 70, 71, 75, 78, 81,
256, 296, 333, 334
Spoehr, K., 204, 334
Starting up PDP programs, 24-25
Start-up (.str) files, use of at run time,
24,25, 40
Stochastic, definition of, 71
Subroutines. See core routines
sum_linked_weds routine inbp, 140
Synchronous update, 52
Szoc, R., 17, 334

INDEX 343

Temperature, 71-72
Template (.tem) files, format of,
271-278
layout section of, 271-272
template specifications for, 272-275,
277-278
template types, 275-278
use of at run time, 24, 25, 40
Thurston, 1., 204, 331
Total sum of squares, (tss) definition
of, 88, 100
in back propagation, 140
trial routine inpa, 101
train routine in pa, 100-101
Turvey, M., 206, 334
update routine
inia, 219, 221-222
iniac
Grossberg version, 24 N
standard version, 23

Update
asynchronous, 52
synchronous, 52
Utility programs plet and colex, use of,
283-288

Variables, types of, 33-35
accessing, 35
configuration variables, 34
environment variabies, 34
mode variables, 34
parameter variables, 34
state variables, 34
top-level variables, 35
VIR problem, exercise on, 78-81
von der Malsberg, C., 4, 189, 334

Weight error derivative, in back
propagation, 131

Weights, constraints on, in back
propagation, 137

weights (wis) files, format of, 269-271

example of, 270-271

Weisstein, N., 17, 334

Wheeler, D. D., 204, 206, 334

Whittlesea, B. W. A., 311, 334

344 INDEX

Widrow, G., 83, 87, 121, 126, 334
Word superiority effect
bigram frequency effects in, 233-235
effects of contextual constraint in,
235-236
extension to pseudowords, 232-233
introduction of, 203-204
simulation of the basic effect,
231-233
simulation of subtler aspects of,
233-236
Working directories, how to set up,
242-244

XOR
in a cascaded feedforward network,
exercise on, 154-155
as an illustration of problems with
perceptrons, 123-126
linear separability and, 125-126
solution of by error propagation,
exercises on, 145-152
solution involving hidden units,
125-126
Zipser, D., 189, 190, 192, 334

