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2 Capturing Gradience,
Continuous Change, and
Quasi-Regularity in Sound,
Word, Phrase, and Meaning

JAMES L. MCCLELLAND

1. Visions of Language

One vision of the nature of language holds that a language consists of a set of symbolic
unit types, and a set of units of each type, together with a set of grammatical princi-
ples that constrain how these units can be used to compose other units, and a system of
rules that project structured arrangements of such units onto other structured arrange- ‘E‘}
ments of units (for example, from syntactic to semantic structure). An alternative vision
of the nature of language holds that it is often useful to characterize language as if the
above statements were true, but only as a way of approximately notating or summa-
rizing aspects of language. In reality, according to this alternative vision, approximate
conformity to structured systems of symbolic units and rules arises historically, devel-
opmentally, and in the moment, from the processes that operate as users communicate
with each other using sound or gesture as their medium of communication. These acts
of communication leave residues that can be thought of as storing knowledge in the
form of the continuous-valued parameters of a complex dynamical system (i.e. a system
characterized by continuous, stochastic, and non-linear differential equations). Greatly
influenced by the work of Joan Bybee (1985, 2001) and others who have pointed out some
of its advantages, I am a disciple of this alternative vision (Bybee and McClelland, 2005;
McClelland and Bybee, 2007).

As argued in the Bybee and McClelland papers just cited, neural network mod-
els that rely on distributed representations (sometimes called connectionist or
parallel-distributed processing models) provide one useful way of capturing features of
this vision. Such models are, in general, just the sort of continuous, stochastic, non-linear
systems that are needed to capture the key phenomena, and the connection weights
and other variables in such networks are the continuous-valued parameters in which
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the relevant knowledge is stored. The present chapter reviews this vision and the use of
distributed neural networks to capture it, covering motivations for the approach based
on phenomena of language, some extant models using the approach, and prospects for
the further development of this approach to understanding the emergence of language.

2. Motivations for an Emergentist Vision

2.1 Continuous variation and continuity of change
in the units of language

Some of the basic elements of motivation for this alternative vision have been laid out
in the papers cited above; here I review some of the key elements. First, a fundamental
motivation for avoiding a fixed taxonomy of units is the existence of continuous vari-
ation in the characteristics of the purported building-blocks of language. Indeed, even
the presence vs. absence of a purported linguistic unit can be a matter of degree. To
mention but a few examples: (1) Attempts to identify a universal phonemic inventory
founder in the face of graded differences in the realizations of phonemes both within
and across languages. Even within a local dialectal community and in identical local
phonetic context, phonemes vary continuously in a way that depends on frequency. For
example, the /t/’s in softly and swiftly differ in the duration of silence and the amplitude
of the burst: the former is shorter and the latter is smaller in softly, the more frequent
of the two words. (2) Similar factors affect syllabic status. The word livery clearly has
three syllables, and every generally only has two, but memory is intermediate, and greater
reduction is associated with greater frequency. (3) Morphology — even the presence of an
inflectional marker — can be a matter of degree. The regular English past-tense marking is
more reduced in some words than others, and again frequency is a factor that affects this.
Many frequent words that are past tense-like lack differentiation between their present-
and past-tense forms (hit and cut being two examples). (4) In derivational morphology
we see clear signs of variation in the extent to which a word should be treated as a single
unit or as a composition of two or more subunits. Bybee (1985) illustrated the problem
by considering a range of words beginning in pre. In some cases, such as prefabricate, it
seems adequate to treat the item as consisting of two morphemes, while in others, this is
less adequate: In cases like predict and (to a greater extent) prefer, pre loses its phonolog-
ical identity (with the vowel becoming weaker and weaker), the remainder of the word
has little or no independent status, but treating the item as a single atomic unit loses the
characteristic of coming or being placed before that is still present. (5) One other domain
in which a taxonomy of units seems particularly problematic is that of word meanings
(McClelland, 1992). Fodor and Pylyshyn (1988) claimed that the verb love contributes the
same thing to the meaning of John loves Mary and Mary loves John. However, the mean-
ing of love changes in John loves ice cream, The pope loves sinners, and Jimmy Swaggart loves
prostitutes. It could be argued that love has many different meanings, each of which can
be listed separately in the lexicon, but where do we draw the line? I would argue that
even in the case of John loves Mary and Mary loves John, the meaning of love is slightly
different, and that, in general, the meanings of words are not selected from a fixed tax-
onomy of alternatives, but take on different shades in different contexts that cannot be
captured by a fixed taxonomy.
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In summary, the constituents of linguistic expressions appear to exhibit continuous
variation that makes any fixed taxonomy of types problematic. Very importantly, there
is a tendency for fragments of utterances to become more and more compressed and less
and less analyzable as languages evolve over time (Bybee, 2006). One seeks a modeling
framework that avoids any pre-commitment to any particular taxonomy of types, allows
the presence of constituent elements within larger items to be a matter of degree, and
also allows for a completely gradual and continuous change in the extent of presence
and the detailed characteristics of these constituents to the point of their disappearance
or merger with other constituents.

2.2 Quasi-regularity and sub-regularity

A further set of issues arises when one attempts to characterize lawful relationships with
a system of rules. The problem starts with the fact that linguistic systems (as well as other
structured bodies of knowledge) exhibit both regular items and exceptions. One can
attempt to address this while maintaining a relatively pure and abstract system of rules
by treating the exceptions as items that must simply be listed explicitly as such, but sim-
ple forms of this idea miss two pervasive characteristics of exceptions: the fact that they
often share in the regular patterns at least to a degree and the fact that they tend to come
in clusters. Seidenberg and McClelland (1989) introduced the term quasi-reqularity to
refer to these characteristics. For present purposes, I will use the term quasi-regularity
to refer to the tendency for forms to exhibit partial consistency with the so-called reg-
ular patterns typical of other forms and/or with so-called regular mappings typical of
other items; a quasi-regular item will be one that exhibits such partial consistency. I will
use the term sub-regularity to refer to the tendency for irregular forms to exist in clus-
ters with similar characteristics: a sub-regular item will be an item that participates in
one of these structures. I begin with two simple example domains that illustrate the con-
cept, one from the English past tense and one from the English spelling—sound system.
As we shall see, in both cases, quasi-regularity and sub-regularity often co-occur with
each other.

2.2.1 The English past tense The English past tense is characterized by a fairly pervasive
regularity: we form the past tense of a verb by adding /d/, /t/, or /1d/ depending only
on simple phonological features of the final segment of the stem. However, the past tense
of the word say does not rhyme with played as it would if it were fully regular: Instead,
the past tense of say is said. This is a quasi-regular item in that the past tense preserves
most of the phonological properties of the stem, and, like other words ending in a vowel,
adds the voiced stop, /d/. The item would be fully regular were it not for a reduction
of the vowel. An example of a simultaneously quasi-regular and sub-regular pattern is
the pattern exhibited by keep and many other verbs ending in -eep (including creep, weep,
and sleep, but not beep). Here, the unvoiced stop /t/ is added after the final unvoiced
consonant of the stem as it would be in fully regular items, but the items are exceptions
to this pattern in that the vowel is reduced. Similar points apply to a set of verbs that
rhyme with feel, though here what would regularly be a /d/ becomes a /t/, as in feel-felt,
deal-dealt, kneel-knelt, etc. (McClelland and Patterson, 2002b). The English past tense also
includes sub-regular patterns that do not add a /d/ or /t/ to a past-tense form, as in
clusters of items like sing-sang, ring-rang, etc.
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2.2.2  Mapping from spelling to sound Although the mapping from spelling to sound
in English is known to be rife with exceptions, nearly every exceptional form is
quasi-regular, and quasi-regularity generally co-exists with sub-regularity. The case
of the word PINT is typical: its pronunciation is not regular /pmt/ where /1/ rep-
resents the vowel in HINT, MINT, LINT, but /pa:int/, where /a:i/ represents the
vowel in WINE, PIKE, TIDE, etc. Two things are critical here. The first is that the
phonemes corresponding to the letters P, N, and T are completely consistent with
the most typical case, so that PINT could be said to be at least three-quarters regular.
The second is that the exceptional pronunciation of the letter I is not completely
inconsistent with its use in other cases. Not only is this the typical pronunciation of
I in the context of a following consonant and a final E as in the examples above, but
it also arises in cases like BIND, MIND, FIND, and KIND, which share orthographic
and phonological features with PINT. Again, there is nothing atypical about these
characteristics; quasi-regularity and sub-regularity are pervasive characteristics of the
spelling—sound system of English. In summary, in these two domains we find that
nearly all exceptional items are largely consistent with the regular pattern found in
other items and/or that their idiosyncratic properties are shared with other items.
Such sharing with other items is especially likely for items that are themselves of low
frequency.

The presence of quasi-regularity as well as sub-regularity in the English past tense
challenges the approach of characterizing language knowledge as a system of rules since
it requires decisions to be made about (1) when a rule should be invoked and (2) whether
a rule applies to an item or not. Attempts have been made to address these issues, and
I do not wish to suggest that systems with these characteristics could not be made to
work in particular cases. The phenomena do, however, strongly blur the line between the
productive and the non-productive elements of language, and have motivated many to
search for explanatory frameworks in which a single homogeneous mechanistic frame-
work deals simultaneously with regular and exceptional items. Before turning to a con-
sideration of such models, we briefly consider three other domains in which similar
issues arise.

2.2.3 Natural kinds While this domain might be excluded from language by some,
for those who see language as exemplifying domain-general principles, not to mention
reflecting the structure of the natural world, this is an important domain to consider
alongside of more properly linguistic domains. It might even be argued that cogni-
tive mechanisms that evolved in pre-linguistic hominids evolved to be useful for cap-
turing the quasi-regular structure of the natural world. This domain clearly exhibits
quasi-regularity, in the sense that many items are partially but not totally consistent with
the typical features of their taxonomic category. Elephants and turkeys are good examples.
Elephants have many of the typical properties of mammals, so it is clearly useful to see
them as members of this class, but they also have several idiosyncratic properties. Their
large floppy ears and trunks are unique, while they share having tusks with a few other
animals. Turkeys share many properties of birds, but are members of a sub-regular clus-
ter of flightless birds (though flightlessness itself a matter of degree — wild turkeys can
get off the ground for short distances), and they tend to share with such birds their supe-
rior edibility compared to many birds that fly. Clearly, then, the domain of natural kinds
exhibits both quasi-regularity and sub-regularities.
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2.2.3.1 Derivational morphology Returning to a topic within language, derivational
morphology is also rife with quasi-regular and sub-regular patterns. Derived morpho-
logical forms include cases that appear to arise from a very productive process (e.g. the
addition of ness to turn an adjective into a noun, as in bold-boldness) as well as cases that
arise from less productive processes (e.g. profound-profundity; Aronoff, 1976). The less
productive cases could be thought of as sub-regular patterns, but with the twist that the
meanings of the participating derived forms tend to exhibit a degree of idiosyncrasy
while also partially reflecting the semantic characteristics of the other items sharing the
same affix. Bybee’s (1985) examples predict and prefer both illustrate this: In both cases,
there is a sense of priority (either in time or attractiveness), though the exact sense is not
fully predictable by a simple rule or by a strict composition of the meanings of the parts.
I see these cases as being yet another example of quasi-regularity, which is to say: we
cannot account for the item’s properties fully by treating it as part of a regular pattern or
superordinate class, but we would be ignoring some degree of participation in a pattern
shared by other items if we treated the item as though it were a completely unanalyzable
word form separate from other forms with which it partially shares structure.

2.2.3.2 Meanings of multi-word patterns As a final example, I consider the
quasi-regularity associated with the meanings of multi-word structures. These phe-
nomena are generally discussed under the heading of constructions (Goldberg, 1995;
Croft, 2001). Again we see a range of cases, from those that seem predictable enough
from a rule-based compositional perspective to those that seem highly idiosyncratic. She
hit the ball falls at one end, recognizably instantiating the canonical NP-(V-NP) pattern
referenced in Syntactic Structures and triggering the mapping SVO— Actor-Action-Object
proposed by Bever (1970), but what about She hit the scene or She hit the wall? The first of
these is an instance of a relatively open construction (X hit the Y, where X is a person
and Y is a social event or setting), whereas the second is far more restrictive at least with
respect to the object constituent. In both cases, however, there is a degree of idiosyncrasy
and context-specificity of the contribution of the verb (hit) to the overall meaning of
the expression. Furthermore, there are additional cases such as She cooked his goose and
She kicked the bucket where the meaning of the whole appears to be progressively more
“opaque” and idiosyncratic. It may be useful to see the range of cases as divided into
types with different labels (fully productive, constructions, collocations, and idioms,
perhaps) —but at the same time it is important to see that they all admit to some
degree of variation in such things as tense, aspect, and number, in accordance with
standard patterns. In all cases, there is a degree of consistency with the regular patterns
in language, with progressively increasing degrees of specificity and idiosyncrasy:
treating different types of cases differently ignores the continuity among them. A goal
for a theory of language would then be to offer a single homogeneous approach to
address the full range of cases.

3. Modeling Graded Constituency, Continuous Change,
and Quasi-Regularity

Having noted the graded nature and gradual changes in linguistic units and the
quasi-regularity that characterizes all kinds of linguistic expressions, we consider
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ways of approaching the development of models that might address these kinds of
phenomenona.

3.1 Rules plus similarity-based generalization
among exceptions

One approach is the rules-and-exceptions approach advocated by Pinker (1991, 1999)
and subsequently by Jackendoff (2007). According to this approach, there are two types
of items: those that are fully consistent with the regular patterns of language and those
that are not. Similar ideas have been proposed by Coltheart, Curtis, Atkins, and Haller
(1993) in the domain of reading. A problem for the simplest form of such views is that
they offer no basis for understanding either the sub-regularity or the quasi-regularity
that one finds in exceptions. Pinker (1991), recognizing the presence of sub-regular
clusters in exceptions, proposed that the exception system exploits a similarity-based
activation mechanism, similar to that offered by the connectionist model of past-tense
formation that Rumelhart and I proposed (Rumelhart and McClelland, 1986). Items
that are similar to other items could then enjoy support from such items, explaining the
tendency for low-frequency exceptions only to be found in the present-day language
if they are parts of a cluster of similar items, and even explaining the observation
that occasionally, forms are attracted into such clusters (Pinker and Prince, 1988, cited
kneel-knelt as a possible example of this kind, joining a cluster including deal-dealt
and other items). However, Pinker and colleagues argued that such processes were
characteristic only of the lexicon, and not the rule systems of language, which are fully
categorical and “algebra-like” in nature.

While the rules-plus-similarity-based-generalization-among-exceptions view can
address sub-regularities, it does not explain why so many irregular items have so much
in common with the regular forms, and it made claims about dissociations between
regular and exceptional forms that did not stand up to further scrutiny (McClelland
and Patterson, 2002a; Seidenberg and Plaut, in press). In my view the fundamental
problem facing this approach is to explain why so many exceptions are quasi-regular,
if regulars and exceptions are produced by distinct processing mechanisms. The above
review of the pervasiveness of quasi-regularity suggests that quasi-regularity is not
an accident but is instead a fundamental characteristic of language and other natural
forms of structured knowledge.

Exemplar models. Another framework that can capture many of the phenomena is an
exemplar model framework (Nosofsky, 1984; Pierrehumbert, 2001). The idea here is that
items that are similar in, say, phonological form to a given input will all be partially acti-
vated when the form is experienced. Semantic features of these items will then contribute
to the representation of meaning. In this way phonological forms that are similar to other
past tenses will seem to convey pastness, even if they lack a past-tense morpheme. In
exemplar models, highly similar forms generally carry greater weight than those that are
less similar, thereby providing a mechanism for the partial override of general patterns
by a cluster of similar examples that have similar features. Such models can address
change over time and with experience if they include a further process whereby items
that are predictable and/or occur frequently will be subject to a compressive shorten-
ing which can then rob the item of its similarity to other forms, allowing it to become
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more independent of these in meaning (Bybee, 2001; Pierrehumbert, 2001). Reciprocally,
similarity in meaning can help preserve similarity of form, and this too can perhaps be
captured in exemplar models. The idea would be that semantic similarity of a given
item x to a collection of other known items would cause aspects of the known items’
form to become active, helping to protect the form of item x from changing as much as it
would in the absence of such similarity of meaning. Such situations arise, for example,
in inflectional morphology, where the meaning of the inflection (e.g., tense or number) is
largely independent of the meaning of the item inflected. The consistency of meaning in
these cases, as Bybee (1985) argued, helps explain the consistency of form, and exemplar
models can help explain this.

Even though I have often relied on exemplar models myself (McClelland, 1981;
McClelland and Rumelhart, 1981; Kumaran and McClelland, 2012), I see these models
as another form of sometimes useful approximate characterizations of what are under-
lyingly distributed neural networks. Going to the distributed network level allows us to
address two problems facing such models. The first is the problem of specifying whether
exemplars should be represented at the type or the token level. If we have one exemplar
for each alternative type, we must then confront the problem of deciding when an
item is just another example of an existing type, and when a new type representation
should be created (Plaut and McClelland, 2010). That is, in the face of the considerable
variability among tokens of the same item, how can we know which ones to combine
in a single type representation and which ones are actually tokens of different types?
The alternative of assuming complete storage of full detail of each encountered token
of each type may be a way to avoid this issue, but it creates a new problem, namely that
every experience must be stored, severely taxing memory capacity. The second problem
is that of specifying a similarity metric for exemplar models. This arises in assigning
tokens to types in models that represent exemplars at the type level, and in deciding on
the contribution of each stored exemplar during processing of a current input in both
types of exemplar models. In my view, it is unlikely that a fixed, universal similarity
metric exists; rather, similarity is a matter of language- and culture-specific convention
and so the similarity metric must arise in part from experience-dependent processes.
While there are exemplar models of categorization that provide a rudimentary form of
adjustment of the similarity metric by allowing differential weighting of pre-specified
dimensions (Nosofsky, 1984; Kruschke, 1992), neither model allows the construction of
the actual dimensions of similarity themselves, something that is possible with learned
distributed representations, as we shall discuss below.

4. Distributed Neural Network Models

4.1 Earliest efforts

The type/token issues facing exemplar models were among those that led me and
Rumelhart to our early explorations of models that used distributed representations.
We explored this idea in a distributed model of memory (McClelland and Rumelhart,
1985), and in our model of past-tense inflection (Rumelhart and McClelland, 1986). Such
models do preserve a shred of the key idea in exemplar models — each experience leaves
a residue in the system —but unlike exemplar models, the residue left behind is not
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construed to be a distinct memory trace requiring separate storage. Instead, the residue
is the set of adjustments that the experience makes to the connection weights among the
processing units in the system. The adjustments made by different experiences are all
superimposed in the ensemble of connection weights, so that experiences can cumulate
without requiring the allocation of additional storage for each new experience, and
each experience can have an effect on processing without requiring it to be stored
separately. Items in memory (objects and their names in the memory model) and
examples of present- and past-tense forms (in the past-tense inflection model) are not
stored as such: all that is stored is the superimposed, cumulated result of the set of
example-by-example changes that have been made to the connections.

Importantly for the issues under consideration here, both of these early models
showed how one and the same ensemble of connection weights could simultaneously
exhibit sensitivity to typical or regular patterns while also capturing idiosyncratic prop-
erties of individual items. In both cases exceptional items were generally quasi-regular,
in that they shared some properties with other examples. For example, in the dis-
tributed memory model, McClelland and Rumelhart (1985) considered an exceptional
dog that had some idiosyncratic properties as well as some properties it shared with
other dogs, and to a degree with cats also seen by the model. In the past-tense model,
Rumelhart and McClelland (1986) examined the model’s performance with fully regular
past-tense items (shape-shaped), arbitrary one-off exceptions (go-went), quasi-regular
items (say-said), including those occurring in clusters (keep-kept), and items occurring
in other types of sub-regular clusters (sing-sang, etc.). In both cases the models used a
simple, homogeneous, learning procedure and a single integrated network architecture
to simultaneously deal with all of these different kinds of items. In particular, the
same connections that were used to inflect regular shape to form its past tense shaped
contributed in inflecting quasi- and sub-regular keep and sleep to their past-tense forms
kept and slept; and the connections that allowed the network to capture the reduction in
the vowels were shared, so that the similar items contributed to the knowledge each
used in the formation of its past tense. Not only did the model capture all of these types
of known forms; it also exhibited a tendency to capture the productivity of both the
regular and the irregular past tense, producing regular inflections for most of the novel
items it encountered as well as extending quasi- and sub-regular patterns to previously
unseen examples (weep-wept, cling-clung).

4.2 Learning in distributed neural network models

Distributed neural network models generally make use of what is often called an
“error-correcting learning algorithm.” A good way to view these algorithms is to
see them as imposing a constraint on the values of connection weights based on the
characteristics of the full ensemble of patterns used to train them. The models already
reviewed used the two basic paradigms that are used in many neural network learning
models: pattern-association and auto-association. In pattern association, used in the
past-tense model, one pattern is associated with another: in this case the pattern for
the present tense of a word is associated with the pattern for the word’s past tense.
In auto-association, used in the distributed memory model, a pattern is essentially
associated with itself. The two ideas can blur into each other, when we consider that two
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patterns can often be considered to be parts of a single larger pattern or as sub-patterns
to be self- and inter-associated.

The models just reviewed differed from almost all of their successors in using a single
layer of modifiable connection weights, thereby limiting their learning capabilities. Just
after this work was completed, it became possible to train multiple layers of connec-
tion weights, using the back-propagation learning algorithm (Rumelhart, Hinton, and
Williams, 1986), which extends the error-correcting learning idea to networks with hid-
den units — units whose activation values are not specified directly by the inputs or target
patterns presented to the network. Such models have the potential to learn both how to
represent their inputs as patterns of activation across their hidden units and how to use
these representations, and so have the potential to address how learning and experience
can affect the representations used for given inputs, and to address how representations
change dynamically over developmental and historical time.

The remainder of this chapter considers such distributed neural network models
further. I argue that, in spite of the trenchant criticisms of early versions of such models,
they have much to offer — certainly, as one among several approaches —in helping us
capture the gradient nature of linguistic structures and processes, the gradual nature of
change, and the presence of quasi-regular and sub-regular structure among items that
other approaches often exclude from the core mechanisms of language as exceptions.
These models are useful, I believe, because they have the potential to allow us to address
the problem of understanding how languages map between meaning and sound without
pre-specification of a taxonomy of units and unit types and without relying on an arti-
ficial division between regular and exceptional items that prevents the quasi-regularity
in the exceptions from being captured in the regular system. I will proceed by (1)
briefly noting several of the bodies of modeling work that have attempted to address
each of the domains discussed above, (2) examining some of the challenges that have
confronted these models, and (3) describing exciting new directions in the exploration
of such models that indicate that some of the limitations have been or may soon
be overcome.

4.3 Distributed neural network models applied to language,
reading and semantic representation

4.3.1 The English past tense The distributed neural network model of the English past
tense introduced by Rumelhart and McClelland had the positive features noted above,
but led to a barrage of criticisms addressing limitations of the model and calling its
core tenets into question (Pinker and Prince, 1988). One criticism fell on the choice of
input representation, said by Lachter and Bever (1988) to presuppose the solution to the
problem, but said by Pinker and Prince to be woefully insufficient to capture aspects
of linguistic regularities. Another fell on the fact that the model was only partially
successful in applying the regular pattern of the English to novel forms; and a third fell
on the model’s unrealistic characterization of the training experiences that allowed it
to capture U-shaped over-regularization of exceptions (Marcus, Pinker, Ullman et al.,
1992). All three of these criticisms were addressed by subsequent simulations by others.
MacWhinney and Leinbach (1991) showed how, with a different choice of input repre-
sentation, a distributed neural network model could easily master the pervasive regular
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pattern. Plunkett and Marchman (1991) chose to focus on the U-shaped pattern of
over-regularization, showing that this pattern, as it is exhibited in the corpora of Adam,
Eve, and Sarah (Brown, 1973), can arise with much more realistic assumptions about
the training experiences of young children. Other work, by Daugherty, MacDonald,
Petersen, and Seidenberg (1992) and Hoeffner and McClelland (1993), extended the
model to address the important role of semantic as well as phonological influences on
past-tense inflections. The work of Plunkett and Marchman (1993) was very important
in stressing how a distributed neural network model would naturally capture the
tendency for exceptions to occur in clusters.

In all of these models, the knowledge that underlies the correct production of the reg-
ular past tense is at work in the network whenever an item is presented. To take the
MacWhinney and Leinbach model as an example, this knowledge would largely have
been confined to connections from the input units representing post-vocalic segments
of the final syllable of the uninflected form of a word and connections to output units
for a possible post-stem inflection (/d/, /t/ or /1d/). These connections would have
been in play whenever a regular item such as play or beep was presented or a excep-
tional item such as say, keep, or feel was presented, and so they would participate in the
production of the regular aspects of the past tenses of such forms. The network would
learn to capture idiosyncratic aspects of particular exceptions by using connections aris-
ing from throughout the input to adjust the output in item-specific ways. The ability
to do this was, quite naturally, a joint result of the extent of the modification required
(thereby favoring modest stem-to-past alterations), the frequency of the item itself, and
the combined frequency of other similar items involving similar modifications.

4.3.2  Other aspects of morphology and sound—meaning relationships Although the past
tense of English has been subject to the most intense scrutiny, aspects of derivational
morphology have also been considered using neural network modeling approaches. At
issue here is the graded semantic compositionality of many kinds of inflectional forms,
including those signaled by phonological and sometimes orthographic changes, and
those not signaled by such changes (e.g., rewrite vs. return, Gonnerman, Seidenberg,
and Andersen, 2007). Distributed neural network models have been used to capture
graded priming effects observed with such items (Plaut and Gonnerman, 2000). It is also
worth noting the usefulness of distributed neural network models to capture the graded
constraints that shape the phonological patterns associated with grammatical gender
(MacWhinney, Leinbach, Taraban, and MacDonald, 1989), including subtle influences of
the partial association of grammatical gender with biological gender (Dilkina, McClel-
land, and Boroditsky, 2007). The German —s plural, treated by Marcus, Brinkmann, Clah-
sen, Wiese, and Pinker (1995) as an example par excellence of a case of an algebra-like rule
of language, has not yet been modeled using a distributed neural network approach,
but it is worth noting that it exhibits sensitivity to complex phonological and seman-
tic influences as generally expected under the present perspective (see McClelland and
Patterson, 2002a, for a review of the relevant findings). This and many other aspects of
inflectional systems found in the world’s languages are ripe for future modeling within
a distributed neural network framework.

4.3.3 Spelling-to-sound models The initial effort in this domain was undertaken by
Sejnowski and Rosenberg (1987), using a simple distributed neural network model in
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which each letter in a text was moved sequentially across the inputs to a multi-layer
network. For each letter, the network was trained to produce the corresponding
phoneme or (in the case of silent letters or letters after the first in multi-letter graphemes
such as SH) no phoneme in its output. The network successfully learned to translate
text into the appropriate sequence of outputs as specified in its training corpus and
exhibited suggestive developmental transitions but was not systematically applied to
reading data.

Seidenberg and McClelland (1989) used input and output representations similar
to those used in the Rumelhart and McClelland (1986) past tense model to begin to
address developmental and adult patterns in reading words aloud. This model cap-
tured a considerable body of word reading data but like the Rumelhart and McClelland
past tense model it did not adequately capture the human ability to read non-words,
leading critics to argue for the importance of maintaining a separation of systems
for processing exceptions on the one hand and novel items consistent with rules of
spelling—sound correspondence on the other. However, subsequent models by Plaut,
McClelland, Seidenberg, and Patterson (1996) used an improved input representation,
and successfully demonstrated that a simple, three-layer distributed neural network
model with an appropriate choice of input and output representations could adequately
address the same body of word reading data addressed by the earlier model, and
could also achieve human-like levels of success in reading non-words. Plaut et al.’s
analysis of the model centered on the way in which its reading of exceptional items
such as PINT and BOOK simultaneously exploited the same connections underlying
the reading of other items with which each item overlapped. All items beginning with,
say, B would naturally exploit the same connection weights (from the input unit for
orthographic onset B to the hidden layer, and from the hidden layer to the output unit
for phonological onset /b/). Input units for vowel graphemes such as I or OO tended
to activate all possible correspondences of these when presented in isolation. When
surrounded by other letters, such as final K in the case of the word BOOK, these acti-
vations would be shifted to favor the short-vowel reading of OO typical of short-vowel
contexts; but onset SP as in SPOOK would override this and shift the activation back
toward the long-vowel correspondence found in this item. In general, all context letters
were necessary for the model to read an exception word correctly; with less context it
generally tended to activate the most probable correspondence for the given fragment.
In reading non-words such as GROOK the model distributed its responses among what
Patterson, Ralph, Jefferies et al. (2006) have called the alternative legitimate renderings of
OO, in this case the vowel in BOOK and the vowel in SPOOK and TOOL, just as human
participants do. When subjected to damage, frequent and regular items tended to be
preserved much more than less frequent and less regular items, as observed in patients
with brain damage producing reading disorders (for details, see Plaut et al., 1996).

4.3.4  Models of natural kind semantics The characteristics of the distributed neural net-
work models described above were very much in mind as Rogers and I began to consider
the interesting patterns of behavior exhibited by neuropsychological patients undergo-
ing progressive degeneration of the anterior temporal lobes, producing the condition
known as semantic dementia. Such patients exhibited a striking pattern of errors as their
disease progressed, revealing strong sensitivity to typicality and frequency (see McClel-
land, Rogers, Patterson, Dilkina, and Lambon Ralph 2009 for a review). Perhaps the most
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striking finding is the tendency of such patients to exhibit over-regularization errors in
past tense inflection, in spelling—sound correspondence, and in the generation of prop-
erties of objects (Patterson et al., 2006). When reading PINT, the patient might produce
the regular form /pmt/; when inflecting sing, the patient might say singed; and when
drawing a picture of a duck, the patient might add two extra legs, consistent with other
animals often seen walking about on the ground. Correspondingly Rogers and I were
struck by the existence of parallel phenomena in semantic development, whereby young
children attribute to objects properties that they do not have in accordance with typical
properties of superordinate categories (a phenomenon some had termed “illusory corre-
lations”), or in which they overgeneralize names of frequently occurring objects. Using
the distributed neural network of semantics introduced by Rumelhart (1990; Rumelhart
and Todd, 1993), Rogers and I simulated the semantic findings described above as well
as many other aspects of semantic and conceptual development and the disintegration
of semantic knowledge in semantic dementia (Rogers and McClelland, 2004; Rogers,
Lambon Ralph, Garrard et al., 2004), and there are now models that simultaneously cap-
ture aspects of both the spelling-to-sound and the semantic errors seen in such patients
(Dilkina, McClelland, and Plaut, 2008). These models, like the ones described above, all
use relatively generic neural network architectures involving input and output units for
each of several different types of information about an item (for example, the semantic,
visual characteristics of an item and the orthographic and phonological characteristics
of the word of the item). As before, the knowledge responsible for generating the typi-
cal aspects of an item (be they orthographic, phonological, visual, or semantic aspects)
is shared across many items and is more robustly represented because of this sharing,
accounting for its tendency to override less pervasive and idiosyncratic information both
in development and in degeneration.

4.3.5 Distributed neural network models of sentence processing Shortly after the initial
wave of distributed neural network modeling work on past tense and spelling to
sound, interest arose in applying similar ideas in the domain of sentence processing.
Miikkulainen and Dyer (1991) and Pollack (1990) were among those exploring this issue
from a computer science perspective. While the modeling work here tended to address
issues other than gradedness and quasi-regularity per se, the models nevertheless shared
the characteristics of the above models in that they sought to avoid commitment to
linguistic units of particular types or the explicit formulation of linguistic rules. Elman’s
(1990, 1991) use of simple recurrent networks exemplifies the approach. These papers
showed that a very simple distributed neural network could learn to make appropriate
predictions consistent with various types of explicit linguistic representations and rules:
that is, the networks acquired sensitivity to key features of the sequential dependency
structure of English. From a training corpus consisting only of a steady stream of
words generated according to a generative grammar, the network learned to predict
each upcoming word by using preceding words. With training, it came to be able to
predict successor words of the appropriate syntactic category, and, within these, to
restrict its predictions to items that obeyed selectional restrictions embodied in the
generative grammar. No negative evidence was needed: the network learned simply
from the stream of words that formed grammar-consistent sentences. In the 1991
paper, the grammar included embeddings that required the neural network to learn
grammar-appropriate sensitivity to long-distance dependencies. This occurred without
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the network having any prior knowledge of syntactic categories or of the characteristics
of the grammar that generated the training examples.

In a parallel effort undertaken at about the same time, St. John and McClelland (1990;
McClelland, St. John, and Taraban, 1989) undertook to address the problem of mapping
from strings of words to meanings. This work was an example of a radical eliminative or
emergentist approach in that it completely avoided making any commitments to explicit
representation of syntactic structure as an intermediary between a string of words on the
one hand and the meaning of the sentence on the other. Instead, the model learned sim-
ply from pairings of strings of words representing stripped-down sentences (e.g. The
boy kissed the girl, The bus driver ate the steak with gusto) and a simplified representation
of the set of role-filler pairs in a simple frame-like representation of the sentence. Even
though it lacked any explicit notion of syntactic structure the model could successfully
learn to recover the appropriate meaning representation for both active and passive sen-
tences. The model also correctly inferred implied arguments (e.g. the instrument in The
boy cut the steak), correctly conformed to selectional restrictions on arguments embod-
ied in the sentence—event pairs it was trained on (e.g., since all kissing in the model
was between humans of opposite sexes, the model could anticipate that the object of the
incomplete sentence The boy kissed ... must be a human female). The knowledge of lex-
ical meaning, syntactic convention, and selectional constraints among constituents was
embedded homogeneously in the connection weights in the network and acquired as a
result of exposure to examples of sentence—event pairs.

There has been a large body of other relevant work using distributed neural networks
to address aspects of sentence processing and comprehension (Reali and Christiansen,
2005; Chang, Dell, and Bock, 2006; Bryant and Miikkulainen, 2001; Rohde, 2002). Some of {‘}
this work has improved on the models described above by exploring the consequences
of learning using naturalistic corpora and/or has addressed shortcomings of the earlier
work, such as the restriction of event representations to a flat role-filler representation
in St. John and McClelland (1990). This effort appears to have slowed in recent years,
however, due in part to computational limitations. As we shall see below, some of these
limitations have recently been overcome by research in machine learning.

4.3.6  Representations learned by the models As important as the successes of these mod-
els in capturing linguistic and semantic knowledge and human language-processing
behavior was the analysis of the internal representations the models used in achiev-
ing the solutions they found, and the progressive changes in these representations over
the course of learning. We focus first on the findings from Elman’s 1990 model, trained
strictly on word sequences forming sentences generated by a simple generative gram-
mar. The key point is that the representations found capture key syntactic categories and
subcategorizations identified by linguists without having these categories pre-specified
for them. That is, the models assigned to words distributed internal representations such
that (1) all nouns were more similar to each other than to verbs and vice versa, (2) within
nouns, animates were distinguished from inanimates, and (3) within verbs, intransitive,
transitive, and ditransitive subtypes were all distinguished. Importantly also, these rep-
resentations were modulated by context, in ways that were systematic with respect to
the selectional restrictions applying to a given word in a given context. For example,
the patterns representing the nouns boy and girl would change similarly when these
words occurred in subject vs. object position. Thus, the model captured general aspects
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of grammar as well as structured context-specific variation. The issue of context-specific
variation was further explored in Elman 1991, where it was found that the representa-
tion associated with the head noun of a main-clause noun (such as man in the man who
the boys chase walks dogs) would be approximately the same both at the end of the simple
noun phrase the man and at the end of the entire complex noun phrase the man who the
boys chase, indicating that the model had learned structured expectations consistent with
the structural constraints embodied in the training corpus.

The representations that emerged from learning in the model of word semantics by
Rogers and McClelland (2004) had characteristics similar to those arising in Elman’s
model, but Rogers and McClelland explored both the developmental course of such
representational changes and issues related to sub-regularities and quasi-regularity.
Here the key findings were that: (1) the representations used in the model undergo
progressive differentiation in the course of development, first capturing the gross,
superordinate category distinctions (e.g. between animate and inanimate objects) and
then later capturing finer and finer distinctions; the representations in the network
exhibited periods of relatively little change punctuated by relatively rapid transitions
in which subcategories became differentiated, capturing finer categorical distinctions;
(2) developmentally and as a function of frequency and degree of typicality, represen-
tations of items captured shared and idiosyncratic aspects of items to varying degrees,
with more overall experience, higher frequency of an item, and greater idiosyncrasy of
an item leading to relatively greater degrees of differentiation; yet (3) even differentiated
representations still captured the gross categorical structure of the domain, in that even
highly differentiated animals remained more similar to each other than any of the
animals were to any of the plants.

4.3.7 Complementary learning systems All of the distributed neural network models
considered thus far rely on the back-propagation learning algorithm or other closely
related error-correcting learning algorithms. A characteristic of such models is that they
tend to learn relatively slowly: change occurs gradually, in what I have often termed
“developmental time.” In general such gradual learning appears psychologically
well justified, capturing the gradual change in children’s acquisition of inflectional
patterns (as Brown, 1973 first noted — and contra claims by Marcus, Pinker, Ullman et al.
1992 —all of the different inflections in English are acquired gradually over a period
of about a year: see McClelland and Patterson, 2002a for details), the gradual change
in children’s ability to read (as modeled by Seidenberg and McClelland, 1989), and
gradual changes in semantic cognitive abilities, including reorganization of semantic
representations (as modeled by Rogers and McClelland, 2004), over the age range
from six to 12 and beyond. Yet children and adults can learn new things quickly. Early
attempts to explore such rapid learning using distributed neural networks led to the
discovery that they were susceptible to catastrophic interference: Any attempt to rapidly
learn new information even partially inconsistent with knowledge already stored in the
system led to disruption of the knowledge already stored in the connections (McCloskey
and Cohen, 1989). This finding contributed to a loss of enthusiasm for distributed neural
networks as models of learning and memory among some researchers.

However, a consideration of the human amnesic syndrome, as exhibited by patients
with bilateral damage to the specialized brain areas in the medial temporal lobes,
suggested that the brain might have evolved two complementary learning systems
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that provide a solution to the catastrophic interference problem — something it would
have to do if the basis of knowledge of language, semantics, and many other things is
indeed to be found in the kinds of distributed neural network models reviewed above.
In the amnesic syndrome, patients exhibit a profound inability to learn new arbitrary
information rapidly, while still retaining the full complement of linguistic and semantic
knowledge they had acquired prior to sustaining damage. Critically, all aspects of prior
linguistic and semantic knowledge — including knowledge of exceptional aspects of
words and things — are spared in the amnesic syndrome. Such patients do have difficulty
with the rapid acquisition of new lexical items and with the formation of new episodic
memories, and exhibit selective loss of memory for episodes occurring within a window
of time ranging from months to years prior to the loss of medial temporal lobe function.

To address these findings, my colleagues and I proposed the complementary learn-
ing systems theory (McClelland, McNaughton and O’Reilly, 1995). In this theory it is
proposed that the bulk of the forebrain including all areas of the neocortex outside
of the medial temporal lobes is part of a structured learning system in which highly
overlapping patterns of activation and therefore highly overlapping ensembles of con-
nection weights are used for the representation and processing of related items. All of
the models reviewed above exemplify these characteristics. In relevant simulations, we
focused on the semantic network model introduced by Rumelhart (1990) and explored
further by Rogers and McClelland (2004). Attempts to teach such networks new arbi-
trary information in a focused manner (without interleaving with ongoing exposure to
examples illustrating the full distribution of characteristics across items) led to catas-
trophic interference (see McClelland, 2013, for a recent detailed examination of these
issues). We argued (drawing on an earlier related proposal by Marr, 1971) that the pat-
tern of findings in amnesia suggested that the rapid learning of the contents of new
experiences — including experiences of objects and linguistic expressions — was primar-
ily subserved by learning mechanisms in the medial temporal lobes. This scheme allows
the rapid learning of new material without interference with existing knowledge; ulti-
mately, though, our theory (like Marr’s, and consistent with the suggestions of Milner,
1966 and Squire, 1992) still proposes that semantic and linguistic knowledge becomes
integrated into the distributed neural networks in the neocortex. This integration occurs
through gradual learning, interleaved with learning of other items, as all of the above
models propose. Such learning may occur either through ongoing experience with rel-
evant information during waking life or through replay of relevant patterns initially
stored in the medial temporal lobes during off-line activities, including sleep.

An important aspect of the theory is that the medial temporal lobes are heavily inter-
connected with the neocortex: they receive their inputs from it, and send their outputs
back to it. While the representations used for individual items in the medial temporal
lobes are thought to be distributed patterns of activation, the theory holds that these
patterns are relatively sparse and rely on specialized hippocampal circuitry to minimize
overlap, so that they can be usefully approximated as though they were exemplar-like
in character (Kumaran and McClelland, 2012). Critically, however, the inputs to the hip-
pocampus arise from the neocortex, and so depend on the learned distributed represen-
tations that arise gradually in the neocortical learning system (McClelland and Goddard,
1996). This allows even the exemplar representations to depend critically on gradual
structured learning, overcoming one of the key limitations of classical exemplar models
noted above.
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In summary, the complementary learning systems theory provides a more complete
overall theory of learning and memory than that provided by the various distributed
neural network models described above. The simple exemplar-like learning system in
the hippocampus complements the more structured learning system in the neocortex,
which remains the principal substrate for semantic and linguistic knowledge, and which
plays the critical role in addressing both regular and quasi-regular aspects of language
and other forms of skilled knowledge-dependent cognition.

5. Modeling the Emergence of Quasi-Regular Forms
through Graded Constraints on Phonological
Representations

I'have argued above that distributed neural network models provide an opportunity to
model the process of gradual language change over historical time as well as gradual
representational change over developmental time. Several neural network models have
been applied to language change, including an early model of the coalescence of the
English regular past tense out of the strong and weak verb system characteristic of Mid-
dle English (Hare and Elman, 1995). Here we briefly consider a model offered by Lupyan
and McClelland (2003) that re-examined this issue with specific reference to several of
the themes of the present chapter.

We began from an observation by Burzio (2002) that regular English past tenses have
phonological forms that violate the phonotactic constraints observed by monomor-
phemic English word forms, but irregular past tenses do not violate these constraints.
As examples, consider regular taped and irregular kept. There are no monomorphemic
English word forms whose rhymes contain both a long vowel and two stop consonants,
but there are such word forms that contain both a short vowel and two stop consonants,
such as inept, apt, and act. Reducing the vowel in keep preserves these phonotactic
constraints. Regular words like taped maintain the stem of the verb, and thus are
both regular and transparent but at the expense of excessive phonological complexity,
while irregular kept reduces this complexity, paying a price in terms of reduced (but,
importantly, not completely eliminated) regularity and transparency. For the most
part, as Burzio noticed, the irregular past tense forms of English are no more complex
phonologically than their stems, and sometimes they can even be seen as slightly less
complex. In other cases, they trade the addition of a segment (e.g. the final /t/ added
to keep) for a vowel reduction, at least partially ameliorating the added complexity due
to the added segment. A key further observation is that many quasi-regular past tense
forms with this or similar reductions are past tenses of very high frequency, including
did, said, had, and made: the first two of these involve the regular inflection with a vowel
reduction while the second two involve the regular inflection on a reduction of the
stem. It is clear that at least some of these forms evolved to their reduced forms since
Middle English, where, for example, the verb that is now make was a regular member
of the weak verb system, with past tense makode. Thus irreqularization occurred for this
form over historical type.

Lupyan and McClelland sought to model these changes using a distributed neural
network model that simultaneously embodied the constraints of (1) correctly specifying
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the semantic content of each verb (including its tense semantics) when presented with
either the present or the past tense phonology of the item, while (2) adjusting the
phonological form of each item to minimize its length while still leaving it sufficient
for successful communication of its meaning. The model was not intended to represent
a single learner, but rather to capture the pressures operating on the language system
over historical time, and to capture how these pressures could produce the gradual
reduction and in some cases the complete elimination of particular phonemes as the
system of verb forms evolved under these joint pressures.

The model employed a set of input units over which the phonology of monosyllabic,
monomorphemic word forms could be represented by activating units corresponding to
individual phonemes in sets corresponding to the onset, vowel nucleus, and consonant
coda of the word form, while one additional unit was provided to allow for a possible
additional /d/ or /t/ phoneme corresponding to an inflection. To capture differences
in vowel complexity, each simple vowel was represented by a single active unit in the
vowel pool while each long vowel or diphthong was represented by two active units.
The degree to which a phoneme was present in a word form was captured by the extent
of its activation, represented as a real number between 0 and 1. Each word form in the
corpus had paired with it a semantic pattern; each word was presented in both a present
and a past tense form. We compared learning of two corpora, one in which the semantics
was fully compositional (same semantic pattern for the present and past tense form, with
past tense represented by the same small set of additional active units added to the base
semantic patterns of the item), and another in which there were small, idiosyncratic (ran-
domly generated) differences in the semantics associated with the present and past tense
forms, so that the semantic representations might be described as quasi-compositional.

The phonological representations used in the model were subjected to two graded
pressures: first, to correctly produce the semantic pattern corresponding to the present
and past tense phonology of each stem, and, second, to keep the phonology as simple
as possible. To capture the first pressure, back-propagation was used not only to adjust
the connection weights in the network, but also to adjust the activations of the phoneme
units to ensure that the phonological input was capable of producing the correct target
activation (this technique was first used by Miikkulainen and Dyer, 1987, to learn rep-
resentations for words in distributed neural network models). To capture the second
pressure, there was a cost associated with the degree of activation of each phoneme
unit. This cost was imposed directly on the activation of each phoneme in each word,
so that there would be a tendency to reduce its activation, allowing phonemes to gradu-
ally disappear from the representations of words if they were unnecessary for successful
communication (see Lupyan and McClelland, 2003 for details).

The simulations were successful in showing how the two graded pressures described
above could allow for the emergence of quasi-regular items. In one simulation, a fully
regular initial training corpus was used, and this led to a reduction of the stem in most
of the highest-frequency items. In a second simulation, verbs from several Old English
strong verb clusters (such as those exemplified by sing and think) were included in the
corpus together with their irregular past tenses (sang, thought). These clusters tended to
be preserved while initially regular high-frequency items like make became quasi-regular
by reduction or elimination of activation of stem phonemes. The model is but a first step
toward addressing language change and has several limitations, one of which we con-
sider below. Nevertheless, it successfully illustrated the gradual, continuous reduction
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of phonological content of items. The joint effects of a pressure to communicate effec-
tively while maintaining the simplest possible representation of each item resulted in
the emergence of quasi-regular forms with phonological reductions similar to many of
the quasi-regular past tense forms in English.

6. Evaluation of the Distributed Neural Network Models
and Comparison to Other Contemporary Approaches

Most of the distributed neural network models reviewed above were introduced in
the 1980s or early 1990s. Although work with such models is ongoing, many investi-
gators now pursue other approaches, including structured probabilistic models and
dynamical systems models. One might reflect on this and ask whether these alternative
frameworks (or others yet to be introduced) should replace distributed neural network
models, because of limitations inherent in the approach that the other approaches might
be able to overcome, or whether, instead, apparent limitations of distributed neural
network models that might have led some to explore alternatives might eventually be
addressed. Here, I will first consider what I see as the specific advantages of distributed
neural network models relative to structured probabilistic models and dynamical
systems models. Then I will consider some of the factors that may have limited the
appeal of existing distributed neural network models. Finally, I will point to recent
signs of resurgence of interest in such models, and to reasons for believing that they will
continue to play an important role in the future development of attempts to understand
processing, representation, development, and historical change in natural cognitive
domains such as language and natural kind semantics.

6.1 Comparison to structured statistical models

Many contemporary approaches to understanding cognition and language rely on struc-
tured statistical models (Griffiths, Chater, Kemp, Perfors, and Tenenbaum, 2010). Such
models approach language and cognition as abstract computational problems framed
as a search for a structured ensemble of hypotheses selected from a complex hypothesis
space. Selection among hypotheses is constrained jointly by considerations of simplic-
ity and of correctly accounting for the training data, which might be, for example, a
corpus of sentences. These models have much in common with distributed neural net-
work models in that both can involve finding a good solution to a set of simultaneous
constraints, which may be graded or continuous in nature.

The key differences between such approaches and distributed neural network
approaches appear to be differences in the pre-specification of a formal representation
language for capturing alternative hypotheses. While structured statistical models
pre-specify a space of possible hypotheses, sometimes in a formal language such as
context-free rewrite rules, Boolean expressions, or first-order predicate logic, distributed
neural network models attempt to make minimal assumptions about such representa-
tions, and leave the representation of such structure implicit in the knowledge stored in
the connections among the units in the system. For example, Perfors, Tenenbaum, and
Regier (2011) considered how a structured statistical model could use training data to
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select among three alternative hypotheses about the nature of the grammar underlying
the sentences heard by a child learning language. They found that a context-free rewrite
grammar provided a better account than a simple transition network grammar or a third
alternative. The approach appears to show, as distributed neural network researchers
have known since Elman’s work, that aspects of English grammar can be learned from
a training corpus, but on close inspection, Perfors et al. only shows that once one has
the right form of hypothesis to compare to other alternatives, selection among them
can be made using statistics. Elman’s work appears to go further in showing that
no pre-commitment to any formal representation language (other than the generic
language of multi-layer neural networks) is necessary to acquire the structure of natural
language. Similar points can be made about the approach to representing the structured
knowledge people have of natural kind statistics taken by Kemp and Tenenbaum
(2009). Recent work with analytically tractable versions of models like those used by
Rogers and McClelland shows that learned distributed representations that capture
human knowledge of natural kind semantics can closely approximate the hierarchical
and other structures considered by Kemp and Tenenbaum, without needing to build
such representations in advance (Saxe, McClelland, and Ganguli, 2013).

More recent work within the structured statistical framework has been useful in cap-
turing aspects of language structure, such as the distribution of kinship terms (Regier,
Kemp, and Kay, chapter 11, this volume). This model, however, adheres to the charac-
teristics of classical models in that it adopts a pre-specified taxonomy of concepts and
a system of rules for constructing complex expressions from other expressions. These
representations provide a useful high-level summary of some of the factors that affect
the selection of kinship systems, but take a great deal as given. I would conjecture that
further research from a more fully emergentist perspective will acquire representational
systems of comparable expressivity without prior stipulation of such concepts and rules.

6.2 Comparison to dynamical systems models

A comparison of neural network models with dynamical systems models is made
difficult in part by the diversity of approaches that fall under the heading of “dynam-
ical systems” (see the chapters in Spencer, Thomas, and McClelland, 2009 for many
examples). Dynamical systems researchers tend to seek simple characterizations of
complex systems in terms of qualitative signatures, including such concepts as attrac-
tors, bi- or multi-stability, inaccessible regions, bifurcations, and so on. If, however,
a dynamical system is thought of as a continuous time-varying system governed by
non-linear, stochastic differential equations, then neural networks are examples of
dynamical systems, and the concepts of dynamical systems analysis can be applied
to them (McClelland and Vallabha, 2009). I believe that stochastic, continuous time
activation dynamics applies to all aspects of human cognitive processing (McClel-
land, 1993), and the presence of trial-to-trial variability in human response times in
every task supports this belief. Some distributed networks use a single deterministic
activation step to compute outputs from given inputs, but to me this is a simplifica-
tion adopted for tractability (McClelland, 2009) rather than a claim about the nature
of processing.

Treated as examples of dynamical systems, neural networks exhibit many of the
features that protagonists of dynamical systems approaches point to, though some
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neural networks models exhibit such features more clearly than others. Perhaps, for
example, the transitions between states of knowledge exhibited by some neural network
models are not as abrupt or noisy as those seen in certain human developmental transi-
tions. However, close scrutiny of developmental data often reveals that transitions are
more gradual than previously thought, leaving open questions about whether existing
distributed neural network models are sufficient or not (Schapiro and McClelland,
2009).

One last, but very important, point worth making about the difference between dis-
tributed neural network models and dynamical systems models is the fact that the latter
often fail to provide a mechanistic or process-based characterization of developmental or
learning-based change (McClelland and Vallabha, 2009). For example, Schutte, Spencer,
and Schoéner (2003) offer a dynamical systems characterization of differences between
children of different ages, in terms of differences in the widths of the basins of attraction
these investigators use in characterizing distortions in the reaching behavior of young
children. While the width of a basin of attraction may provide an adequate descrip-
tive characterization of the patterns of responses made by children of different ages, it
fails to provide an explanation of how it is that the widths of these basins of attrac-
tion change. One view of this matter is to construe the characterization Schutte and
colleagues offer as a higher-level descriptive account of the characteristics that might
arise in a distributed neural network model that gradually improves the precision of its
representations through learning.

In spite of the differences between dynamical systems and neural network modeling
approaches, I would certainly encourage further efforts to integrate the two approaches,
as proposed in Spencer, Thomas, and McClelland (2009).

6.3 Limitations of distributed neural networks

While distributed neural network models have many virtues, many of which I have
attempted to enumerate above, they suffer also from limitations that have contributed
to the appeal of alternative approaches. Here I will briefly mention two such limitations,
as well as two other areas of controversy surrounding many of the distributed neural
network models reviewed above.

6.3.1 Stipulation and discreteness of input representations Virtually all of the distributed
neural networks considered in this chapter employed surface representations (i.e., pat-
terns used as inputs or outputs of the distributed neural network) that were specified
by the modeler, and quite often characteristics of these surface representations are them-
selves problematic, particularly in that they tend to be discrete and categorical in nature.
Sometimes, “localist” input representations for items such as letters or words are used;
these representations presuppose, and treat as discrete, units such as phonemes, and
words, even though they are in fact far from discrete in real spoken language. Such units
are often used in models that show that more abstract levels of structure can emerge, but
the use of such units still presupposes and builds in too much in my view. One case in
point is the phonological representation used in the model of Lupyan and McClelland,
where separate units were provided for onset, nucleus, and coda phonemes. Though
the presence of each phoneme could, in this model, be treated as a matter of degree, the
phonemes themselves were still discrete and such reductive processes as palatalization
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or neutralization could not be effectively modeled. What is needed is a way to model
the processing of spoken input directly from the speech stream, so that representations
at all levels of structure can be captured directly as emergent phenomena.

6.3.2  Use of restricted corpora A second limitation of many of the models considered
above is the very limited nature of the training corpora they employ. While the models of
single-word reading and inflection have tended to use corpora based on characteristics
of real language, models of sentence processing and semantic knowledge representation
have tended to use far more restricted, and often entirely synthetic, corpora, thereby
leaving themselves open to the criticism that they might not scale up to address the full
complexity of real natural language. With regard to the first point, many models have
restricted themselves to simple forms, such as monosyllabic word forms or one-clause
sentences, thereby raising questions about the framework’s ability to extend to these
more complex structures.

The two remaining issues we now consider are potentially more controversial. While
many consider these inherent weaknesses, it is not entirely clear that they really are
intrinsic shortcomings of the models.

6.3.3 Lack of transparency and analytic tractability The first such issue we will consider
is the lack of transparency of the representations and processes embedded in distributed
neural network models. When such models succeed, their success may still require fur-
ther explication. Why did they succeed? What features of the model were essential and
which only incidental? What features are responsible for insufficiencies of the models?
Difficulties of this sort have led some to wonder in just what sense we ought to see such
models as offering any explanation for observed patterns of behavior. In contrast, the
stipulation of a simple rule or set of rules may appear to offer a sense of greater clarity
at least about what is being claimed by the protagonists of a particular model. My own
position on this issue is somewhat circumspect. I appreciate that it is often useful to be
able to offer an explicit quantitative theory capturing the processes at work in a model;
but we should not necessarily expect such a theory to be easy to develop, nor should we
expect a truly simple formal system to provide a fully adequate characterization. The
beauty and simplicity of the grammars Chomsky enticed us with in Syntactic Structures
(1957) and Aspects (1965) turned out to be illusory, as have similar claims for the more
contemporary Minimalist program (Chomsky, 1995; see Newmeyer, 2003). While some
may still seek the deep insight that would allow a very simple and still complete char-
acterization, an emergentist perspective holds that such a characterization must always
be partial and approximate.

6.3.4 Insufficient respect for structure The second controversial issue lies in the concern
that the representations used in distributed neural network models are insufficient to
allow them to capture the full systematicity and productivity of language or other forms
of human cognition (Fodor and Pylyshyn, 1988; Griffiths, Chater, Kemp, Perfors, and
Tenenbaum, 2010). To be sure, some models use restricted inputs that cannot do full
justice to the complexities of the thoughts that minds can entertain. For example, the
Rumelhart network used in the simulations of natural kind semantics by Rogers and
McClelland (2004) can only process simple propositions consisting of an item, a relation,
and a single attribute or other item, such as canary can fly or robin is a bird. Clearly these
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propositions do not reflect the full expressive power of natural languages. The question
that remains open for debate is whether the use of explicit recursively defined and hier-
archically structured representations of the kind provided by a syntactic parse tree is a
necessary component of a successful model of language, as has recently been argued by
Berwick, Pietroski, Yankama and Chomsky (2011). While it seems clear that sentences
have constituent structure, this structure may not always be clear and in any case may
be emergent; the explicit representation of that structure as such may turn out not to
be necessary.

6.4 Future prospects for distributed neural network models

The question we now face is whether the above limitations and controversies facing
distributed neural network models are inherent and insurmountable or whether the
future will lead to superior models that address these issues. While I have no crystal
ball, I see reasons for optimism in the recent work using neural networks in large-scale
machine learning applications and in developing deeper mathematical analyses of such
networks. Below I consider some of these developments.

6.4.1 Awvoiding stipulation and discreteness in surface representations The ultimate inputs
to the human cognitive system are the time-varying patterns of light of various wave-
lengths that reach the retina, the time-varying pattern of acoustic pressure that reaches
the ear, and time-varying inputs in other sensory modalities. In accordance with this,
in the domains of both vision and speech, contemporary distributed neural networks
used in the field of machine learning are working directly from minimally preprocessed
inputs. Such neural networks now allow mobile phone service providers to interpret
spoken requests involving arbitrarily complex naturally spoken sentences (Mohamed,
Dahl and Hinton, 2009), and allow machine categorization and detection of the objects
present in images and videos at ever-improving degrees of specificity (10,000 distinct
categories, including a large number of subcategories, are included in current category
taxonomies; Le, Ranzato, Monga et al., 2012). These neural networks often involve many
layers, each trained using back-propagation or a related algorithm to form an internal
representation sufficient to reconstruct its input on its output, and also constrained to
minimize complexity of the internal representation. The successes of such models in
capturing aspects of the representations neurophysiologists find when recording from
neurons suggest that the constraints operating on learning in such systems are sufficient
to extract human-like representations without supervision, and thereby allow one to
imagine future cognitive models that would place much less reliance than earlier models
did on stipulation of features of input representations. Use of restricted corpora. Contem-
porary neural network research in machine learning has also overcome the restricted
scope of the corpora used in the models described earlier in this chapter. Huge corpora
are used to train the networks for machine speech perception and object recognition
cited above, and Socher, Bauer, Manning, and Ng (2013) have trained what they call
a “Matrix-Vector Neural Network Model” of sentence processing to classify the senti-
ment expressed in single-sentence descriptions of movies, using a corpus of 10,000 such
sentences for which humans have provided sentiment ratings. While some of the expres-
sions of sentiment are fairly easy to categorize, others are conveyed in highly complex
sentences, including the following examples: “Doesn’t come close to justifying the hype
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that surrounded its debut at the Sundance film festival two years ago,” and “Not always
too whimsical for its own good, this strange hybrid of crime thriller, quirky character
study, third-rate romance and female empowerment fantasy never really finds the tonal
or thematic glue it needs.” Currently this model represents the state of the art, beating
other models of sentiment classification. The contemporary machine learning models
make use of a number of enhancements to the most basic multi-layer neural network
architectures, but none of these enhancements fundamentally changes the basic com-
mitment to the use of simple neuron-like processing units without predefined meaning
which is the hallmark of distributed neural network research since the introduction of
back-propagation. While these enhancements are likely to contribute to the success of
these current models, another reason for their success may be the large-scale corpora
(and large-scale computer clusters) that are available for use in these models’ training.

6.4.2 Use of compressed compositional representations The model of Socher and col-
leagues does make use of a tree-like representation of sentence structure. That is, the
model derives representations of word sequences by combining pairs of constituents
from the bottom of the tree upward, and replacing each pair with an equal-length
pattern vector representing the combined expression as a whole, as proposed initially
by Pollack (1990). Interestingly, the choice of which constituents to combine may be
guided either by an explicit parse tree provided by a structured probabilistic syntactic
parser, or by considering at each step in the upward pass which pairs of constituents
fit together best (see Socher, Perelygin, Wu et al., 2013 for details). Thus, while some
reliance on grouping words into larger constituents may contribute to the model’s
success, future research is needed to determine whether even this level of concession
to an explicitly structured sentence representation is necessary. One alternative is the
possibility that a future model trained with the same amount of data could work as well,
simply progressively updating a representation of sentiment (or other evaluation of an
aspect of the meaning conveyed by the sentence) as it works its way forward through a
spoken sentence, as in the Sentence Gestalt model of St. John and McClelland (1990).

6.4.3 Developments in formal theory of learning in multi-layer neural networks The recent
success of neural networks for machine learning comes, for the most part, from using
“deep networks,” composed on many layers between inputs and outputs, and/or from
the use of learned distributed representations of words and larger constituents that are
not explicit with respect to their meaning or content. This being so, these models may
be even less analyzable than the models reviewed earlier in this chapter. There has,
however, been some progress in developing an analytic understanding of the learn-
ing trajectories of a useful simplified version of multi-layer neural networks, one in
which the non-linear processing units standard in such networks are replaced for ana-
lytic tractability with simpler, linear processing units. Multi-layer networks of linear
units are restricted in the computations they can perform, but nevertheless reveal inter-
estingly complex learning dynamics similar to what is seen in networks with non-linear
processing units (one reason for this is that networks are typically initialized in such
a way that they perform in an approximately linear regime, at least during the initial
stages of learning). For example, the progressive differentiation of representations of
natural kinds seen in the deep non-linear networks used by Rogers and McClelland is
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also exhibited by simplified networks that employ linear units, and closed-form math-
ematical expressions that characterize the trajectory of learning in such networks as a
function of the statistical structure present in the training corpus have been developed
(Saxe, McClelland, and Ganguli, 2013). It will be interesting to see whether such analy-
ses can be extended further, to allow greater analytic understanding of the outcome and
trajectory of learning in a fuller range of contemporary network architectures.

7. Summary and Conclusion

In this chapter I have reviewed the evidence for graded constituent structure, gradual
change, and quasi-regularity in several sub-domains of language and cognition. This
evidence motivated the use of distributed neural network models to explore how well
they could capture aspects of language without requiring an explicit taxonomy of units
and rules for combining and manipulating them. The models reviewed in the main
body of the chapter captured many of the motivating aspects of language, although
these models do have some limitations. While the attention of some has recently shifted
toward structured probabilistic and dynamical systems models, I have argued that
the future prospects for modeling language and cognition using distributed neural
networks are very bright. The ability to avoid stipulating and discretizing the surface
representations used as inputs to such models and the availability of large training cor-
pora and large-scale computational resources for training such models may overcome
many of the earlier models” limitations. It remains to be seen how far such models can
go in allowing language to be captured as arising historically, developmentally, and G}
in the moment from the processes that operate as users communicate with each other
using sound or gesture as their medium of communication.
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