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How should we think about the nature of our knowledge of mathematical concepts, and the 
mechanisms we use to learn and use these concepts when we do mathematics?   Here we describe a 
perspective on the answers to these questions  and a future research program to address them that is 
grounded, in part, in the parallel distributed processing [PDP] approach to cognition and learning [1,2] 
implemented in artificial neural networks.    We begin with a more basic question, namely the nature of 
mathematics and mathematical reasoning, and proceed from there to consider mathematical 
knowledge, learning, and thinking, stressing the roles of culture and experience in the creation and 
learning of mathematics. We then review the PDP perspective on the nature of knowledge and learning, 
and consider how it can address many findings in the mathematical cognition literature, and how it 
provides alternative ways of understanding what nature may provide and what nurture may create. 
Next we discuss the exciting challenges facing the approach and how they might be addressed, 
organizing the discussion around the question: How might a neural network-based approach meet the 
challenge of learning to achieve a level of competence in algebra and geometry sufficient to pass a high-
school proficiency exam in geometry, in a human-like way, from experiences similar to those of human 
learners?  We conclude with a discussion of the implications of the approach for learners and teachers 
of mathematics and for the processes of teaching and learning.  

What is Mathematics and what is Mathematical Thinking? 

One widely held view of the nature of mathematics is that it is essentially formal.  This view is 
historically associated with Bertrand Russell [3], who famously said ‘all mathematics is symbolic logic’.  
This view may have contributed to the enthusiasm, in the early days of cognitive science, for a formal 
perspective on the nature of thought in general.  Fodor & Pylyshyn [4] captured these ideas by claiming 
that all systematic cognition is symbol processing defined as the manipulation of structured expressions 
according to structure-sensitive rules.  On this view, mathematics is essentially thought itself, and 
thought mathematics.  By the early 1970’s, computer programs were written that could process any 
solvable integro-differential equation using this approach, producing mathematical results by obeying a 
system of structure-sensitive rules without regard to the meanings of the expressions they manipulated 
[5].  These developments may have served to reinforce the view that mathematics is, inherently, a 
matter of structured expressions and structure-sensitive rules, and the related view that mathematical 
thought is a matter of manipulating such expressions according to such rules. 

                                                           
1 Based on Heineken Prize lectures given by JLM at the University of Amsterdam, Autumn, 2014, and at the 
Cognitive Science Society Meeting in Pasedena CA, August, 2015.  We thank David Landy, members of the PDP 
Research Group at Stanford, and many others for useful discussions. 
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The essentially formalist perspective contrasts with an alternative perspective that is adopted by many 
mathematicians, however.  The mathematician Tristan Needham [6] likens studying mathematics as 
symbol manipulation to studying music without ever hearing a note. To him, the things mathematical 
expressions refer to – things we can often draw on paper and see in our minds eye – are the real objects 
of mathematical thought. In line with this, Roger Shephard (a mathematical thinker whose intuitions 
shaped several branches of cognitive science) has claimed that the mental manipulation of visualized 
objects of thought could “convince us of the validity of mathematical and physical laws” [7] such as the 
Pythagorean Theorem (Figure 1).  On this view, mental operations performed on visualized objects of 
mathematical thought are more central to mathematical reasoning than is symbol manipulation [8], and 
play a key role in discovering and proving theorems in mathematics.  The kinds of transformations 
Shephard stresses (mental translation and rotation [9]) are shape- and area-preserving when applied to 
real objects, and if these properties are maintained when these transformations are carried out in the 
mind, they allow mental transformations to reveal the truth of relationships such as the one expressed 
by the Pythagorean theorem.  This view is reflected in systems of geometric and mathematical 
reasoning including Transformational Geometry [10] and in approaches to teaching mathematics that 
stress the importance of viewing mathematical expressions as statements about quantities [11], defined 
as measurable properties of the objects of mathematical thought, such as the area of a square or the 
cardinality of a set.  Mental operations on visualized objects then allow intuition and insight to inform 
mathematical reasoning and may be the basis for many discoveries in mathematics, even if formal 
proofs are often presented in terms of long symbolic derivations that obscure the underlying intuitions 
[12].  Here, obviously, mathematical thought – and thought in general – are far more than merely 
symbol manipulation. 

But if the objects of mathematical thought are not symbols, what, exactly, are they?  According to the 
Platonic view, these objects exist as ideals independent of human minds.  The Platonic view captures the 
ideal nature of these objects – the fact that, for example, no drawn or constructed circle actually 
conforms perfectly to the ideal circle as defined in mathematics.  The Platonic view does not, however, 
help us understand why even the simplest aspects of mathematics emerged late in human evolution and 
are not universal across cultures.  An alternative perspective is provided by the mathematician Rubin 
Hirsh [13], himself building on ideas of others [14].  On this view, mathematics, and the objects found in 
mathematics, are the products of human cultures.  Mathematics consists of a set of constructed 
reasoning systems that arise initially for utilitarian purposes when cultures advance to the point where 
they need them and that then gradually evolve and become systematized over time.  The needs that 
give rise to mathematical systems may include record keeping or reasoning about culturally relevant 
properties of objects or collections of objects, such as the surface area of a flat object (how big is a piece 
of land) or the cardinality of a set of objects (how many baskets of grain are you storing for me?).  The 
systems rely on facts about these properties, such as the fact that the shape of an object is conserved 
under translation, rotation and reflection, and the fact that the cardinality of a set of objects is 
conserved under rearrangement of its members.  Systems that allow reasoning about these properties 
come into use prior to their complete formal characterization, do not depend on a fully adequate formal 
characterization to be of use, and are progressively refined and formalized over time [14].  Of course, 
cultures of mathematics and mathematics education grow up around these systems, and authorities and 
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established practices within these cultures then constitute additional important constraints on what 
mathematics is in practice. 

We take Hirsh’s characterization of the nature of mathematics as the starting point of our own efforts to 
understand human mathematical cognition.  By starting with the view that mathematics consists of 
culturally-constructed reasoning systems that arise for initially utilitarian purposes, we accept a role for 
formalism in mathematics as well as roles for symbol manipulation and visuospatial intuition in 
mathematical thinking.  What we suggest, however, is that both symbol manipulation and visuospatial 
reasoning may depend as much on acquired abilities humans develop in response to the demands of 
culture and education as on inherent characteristics of the human mind.  Our approach reflects the view 
that the human ability to exploit the culturally constructed reasoning systems that constitute 
mathematics need not be an inherent consequence of previously evolved features of the human mind 
that are specifically attuned to the demands imposed on them by mathematics per se, even though this 
ability draws on both specific as well as general characteristics of diverse processing and learning 
systems in the brain. 

Origins of Mathematical Knowledge 

Just as there are several views about the essential nature of mathematics, there are also several views 
about the origins of mathematical knowledge.  Within the Platonic philosophical tradition, the idealized 
objects of mathematical thought are innately known.  This perspective is presented in Plato’s Meno [15], 
in which Socrates purportedly demonstrates that  a completely uneducated slave possesses a pre-

 

Figure 1. A visuospatial proof of the Pythagorean Theorem similar to the one in [7].  This form of 
the proof may have pre-dated Pythagoras.  The theorem states that the sum of the areas of the 
squares on the perpendicular sides (a and b) of a right triangle is equal to the area of the square 
on the hypotenuse (c) of the triangle.  The drawing on the left shows four identical triangles 
arranged within an enclosing square, leaving regions of area a^2 and b^2 uncovered.  After 
moving some of the triangles, the uncovered region takes the form of a square on the 
hypotenuse of area c^2.  The proof depends on the fact that area is conserved under translation, 
a fact that may serve as an intuitive basis for understanding the Pythagorean Theorem. 



Mathematical Cognition  4 

existing understanding of the concept of area and of how to construct a square with twice the area of a 
given square, even though the slave demonstrates several misconceptions during the Socratic dialog. 
Just as the Platonic view is unhelpful in allowing us to understand why mathematics emerged so late in 
human evolution, it also fails to help us understand why many aspects of mathematics are very hard for 
most people to learn. Indeed, a recent study suggests that the slave’s misconceptions are common and 
those who have them fail to gain a productive understanding they can apply to carry out the 
construction of a square with twice the area of a given square on their own [16].  As we will discuss at 
more length below, misconceptions and pervasive patterns of error are found at all stages of 
mathematics learning.  A similar challenge arises for a symbolic approach to mathematical cognition:  If 
the mind is inherently a symbol processing machine and if mathematics is symbol processing, then the 
mind should be well-prepared for mathematics, and mathematics should not be so difficult for so many 
people to learn. 

Among contemporary researchers who consider the origins of mathematical knowledge, many still 
stress the role of innate constraints that are a priori and universal (as proposed in Kant’s Critique of Pure 
Reason[17]) and that serve as the foundation for mathematical learning. However, there is a range of 
views about what these innate constraints may actually be [18], [19], [20], [21].  We are certainly open 
to the possibility that human mathematical reasoning systems may build on intuitions supported in part 
by innate constraints. Even more important, in our view, is the effort to understand the role experience 
may play in shaping mathematical ability and mathematical intuition.  This perspective is consistent with 
a broad tradition on the role of culture in cognition more generally [22,23].  The experiences to which 
we refer include experiences consistent with very basic invariances such as the continued existence of 
objects that have gone out of view, the conservation of number under spatial rearrangement, and the 
conservation of shape of rigid objects under translation, rotation, and change of viewpoint.  These 
invariances are properties of objects and sets of objects in the world.  Culture (including institutionalized 
educational practice) shapes exposure to them and can create structured task settings that isolate, 
idealize, describe, and quantify them.  Systems for counting exemplify this idea.  Counting is not 
culturally universal [24], and there is evidence that adults from cultures lacking exact number systems 
and children in cultures that do have such systems have at best an incomplete understanding of what it 
means for two sets of items to have exactly the same number of members [25],[26], consistent with the 
view that the very idea of exact number is acquired.  Furthermore, counting systems vary widely in 
details across cultures, and vary extensively in how well they support systematic numerical 
computations [27].  The place-value system now in use in the internationally shared culture of science, 
mathematics, and computation and in the educational systems that prepare learners for a place within 
this culture is quite a recent development [13].    

Origins of learning in joint activities structured by cultural practices.  A key element of our perspective is 
the idea that cultural systems for mathematical reasoning can be grounded in operations applied to real 
or depicted objects or sets of objects that can be part of the experience of a learner. The situations in 
which these experiences arise communicate cultural practices through interactions between a learner 
and a more experienced member of the child’s culture, such as a caregiver or a teacher [28].  Consider a 
situation in which a caregiver is showing a child a picture of three frogs.  The caregiver can say ‘look, 
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three frogs – let’s count them – 1,2,3’, touching each frog in turn as she counts.  The caregiver can also 
ask the child to count the frogs, observing the pointing gestures the child makes as well as the final 
result of the count.  In this way the caregiver can provide the child with valid examples of counting 
events and determine whether the child adheres to valid principles of counting at each step in the 
counting process [29].  As a second example, early arithmetic is often taught using fingers or tokens such 
as beans or coins [30].  A child may learn to add 3 plus 2 by first counting out three fingers on one hand, 
then two on the other, then counting all of the fingers raised.  Beyond simple counting and addition of 
small numbers, further examples of externalized representations of number are the abacus and the 
standard place-value system for representing number that all students now learn in school.  Another 
example is the system for manipulation of algebraic expressions taught starting in middle school.  All of 
these are taught, and learned, through experiences in which teachers and learners can watch each other 
as they illustrate and attempt to replicate valid operations on externalized representations. 

Similar points can be made about other mathematical systems for quantifying and for representing 
continuous amount (using a ruler or a scale to measure the length or weight of an object) and for 
reasoning about geometric objects and their properties.  Many babies in conventionally educated 
families may gain relevant experience through the manipulation of toys, such as a shape-sorter, in which 
the child can begin to gain experience about the properties of idealized shapes used in geometry. 
Euclidean geometry is grounded in part on construction of figures relying on a straightedge and 
compass.  Thus, the visuospatial manipulation of the mentally represented objects of thought discussed 
above may have much of its origin in culturally constructed systems for the manipulation and 
construction of such objects and diagrams of such objects.  In general, we suggest that internalized 
mathematical cognition may originate largely from experiences interacting with real or depicted objects 
starting with informal early experiences and progressing through structured experiences provided in 
educational materials and settings.  We can learn to represent and manipulate objects of mathematical 
thought in our minds, building from experience manipulating real objects and externalized depictions of 
them. 

The contrast between the different perspectives on the basis of mathematical cognition is more a 
matter of emphasis – virtually no one would hold today that nature and nurture are not both essential 
to the emergence of mathematical ability.  Accepting this, we still see reason to stress the importance of 
experience.  This message is brought out in considering different conceptions of the concept of a 
‘mental number line’ [31–33].   One very prominent view holds that the mental number line is an innate 
structure localizable to a region of the parietal lobe that intrinsically links magnitude to position to space 
[34,35]. An alternative view holds that the mapping of number onto space is a late cultural invention 
(first attested in the 17th century) [36], one that arises gradually in development through structured 
experiences with numbers and with cultural practices for mapping of numbers onto space [31,33] and 
depends for its use on an acquired understanding of the relationships between numbers [31].  While the 
innate and acquired number-line views are not necessarily mutually exclusive, a consideration of a role 
for experience appears necessary to address a wide range of recent findings showing how performance 
marking numbers on a line gradually changes with development and number knowledge [37–39].  
Among other things, young children may fail to place numbers accurately on a line from 0 to 100 
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because they lack a clear conception of the meaning of 100 and thus cannot gauge how far numbers like 
90 should be placed from an anchor point at 100, or because they rely less on landmarks e.g., at 50 on a 
line from 0 to 100 [38].  Greater appreciation of the meaning of 100 and of its relation to other numbers 
may thus support increases in line marking accuracy.  Viewed in this light, individual differences in the 
precision of number line marking may be a reflection, rather than a cause, of increased understanding of 
numbers and of experience mapping number onto space.  Indeed such experience appears to influence 
number-line marking [40]. 

The view that so much of mathematical cognition is a consequence of learning from experiences that 
vary from culture to culture (or from individual to individual within a culture) may fly in the face of the 
intuitions of expert mathematicians, who attest to the immediacy of a sense of understanding that can 
arise in the tutored mind when watching, for example, an animated version of the proof Shepard 
presented of the Pythagorean theorem.  This immediacy may provide a phenomenological basis for the 
view that aspects of mathematical understanding are immediate or even innate.  According to the 
current perspective, this immediacy reflects a consequence of what the philosopher of science Howard 
Margolis has called acquired habits of mind [41], which allow conventionalized diagrams or even 
symbolic mathematical expressions to come to be mapped automatically (without effort or intention) 
through repeated practice to mental representations structured by the internalization of culturally 
constructed systems of thought.  These experiences can create the illusion that a mathematical truth is 
known directly even though its appreciation depends crucially on an extensive body of accumulated 
experience. 

The Nature of Knowledge, Its Origins, and how it is Affected by Learning 

If so much of mathematics is acquired, how should we think about the nature of what we learn and the 
process by which we learn it?  A classical view is that knowledge consists of explicit systems of rules or 
propositions – representations that we appeal to as such as we think [42,43].  Developmental 
psychologists have often characterized initial knowledge as structured ensembles of propositional 
statements, and subsequent development is viewed as a process of enriching or possibly re-structuring 
such representations [44,45].  Furthermore, given that knowledge is represented in the form of rules or 
propositions, there must be a moment of rule induction – what Pinker [46] called a ‘Eureaka moment’ – 
in which the rule is ‘discovered’.  This view still appears to be held by many leading researchers in the 
field of mathematical cognition.  For example, in a recent discussion of children’s acquisition of the 
cardinality principle (CP, see below), the authors wrote [25]: 

The exact nature of the insight that children experience when they reach the state of CP-knower 
is unclear. In order to understand it better, we need to determine what children know just before 
this insight, what triggers it, and what they finally derive from their newly acquired numeric 
competences.  

We argue for an alternative to this perspective that arises from work within the parallel distributed 
processing (PDP) framework [1,2].  According to this framework, our cognitive abilities – including 
mathematical abilities – depend on processes that arise through the propagation of activation among 
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interconnected networks of neurons. PDP models do not attempt to capture cognition at a detailed 
neurophysiological level – instead, they focus on a functional-level description, aimed at modeling the 
time course and outcome of cognition and at capturing how initial conditions and experience my shape 
cognition, using networks typically containing far fewer simulated neuron-like processing units than are 
actually used in the human brain. The mechanisms that govern learning in such models are also 
characterized at a functional level, and rely on assumptions about the propagation of learning signals 
whose biological realization is not yet fully understood [47].  This framework allows us to rethink the 
very nature of knowledge itself, and then from this to re-think the starting place for knowledge 
acquisition, and the process by which knowledge is acquired and cognitive abilities change.   

The knowledge is in the connections.  According to the PDP approach, the knowledge that governs 
processing is not to be found in explicit rules but in the pattern of connections among the neurons that 
participate in our cognitive activities. Such connections, on this view, underlie perceptual processes such 
as mapping sensory inputs onto more abstract representations as well as conceptual and linguistic 
processes such as mapping linguistic or perceptual input onto underlying representations of objects or 
events and the generation of language outputs such as the mapping from spelling or meaning to sound.  
These models do not actually employ rules as such, although they can often be described as though they 
behave in accordance with rules. 

Initial conditions. If knowledge is in connections, then the initial state of a processing system is to be 
found in the initial pattern of connections.  A key contribution to the development of a connectionist 
perspective on this matter was provided in Rethinking Innateness [48].  Here it was noted that the initial 
conditions of a neural network could dramatically influence the time-course and outcome of learning, 
and could even affect performance of neonates in a range of tasks, without encoding any initial 
knowledge in propositional form.  Exactly how initial tendencies are captured in connections can then be 
explored through neural network modeling.  It is possible for a neural network modeler to build specific 
assumptions about how content is processed directly into the wiring of a neural network, but it is also 
possible to explore how characteristics of processing that are revealed in experiments might arise from 
generic network properties or from variation in meta-parameters of different parts of a network.  An 
early application of this idea was the demonstration that subcortical center-surround cells and, at 
deeper layers, neocortical edge detectors might arise naturally, driven only by random spontaneous 
activity in the retina (occurring in an unborn fetus), a locality constraint on connectivity and Hebbian 
synaptic plasticity, if deeper layers enforce a greater sparsity of representation than more superficial 
layers, through a meta-parameter that regulates the overall firing rate of neurons in the layer [49].   

Gradual learning. Central to our own effort is the idea that much of knowledge acquisition is to be 
understood as resulting from gradual connection strengthening processes in relatively generic neural 
networks.  The PDP model of the English past tense [50] provided an early instantiation of this view, in 
that the model acquired the ability to behave in approximate accordance with explicit rules of English 
past-tense formation without recourse to an explicit representation of the rule.  Though the first version 
of this model had limitations [51], subsequent models overcame them, and other models applied the 
same ideas to learning the mapping from the spelling of a word to its pronunciation [52,53].  Another 
example is the neural-network based TD-gammon model [54] that learned to exceed human and other 
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machines’ backgammon abilities through the use of reinforcement learning to gradually adjust strength 
of connections in a neural network trained only with feedback on the eventual success or failure of its 
play. Recent deep neural networks that learn to classify objects [55], translate one language into 
another [56], and to exceed human abilities in many computer-based action games [57] are more 
modern instantiations of these same ideas.  Interestingly, the deep neural networks that master these 
action games exhibit patterns of play that can be characterized at a high level as discovered strategies, 
even though no explicit strategic level thinking is occurring in the neural network, in the same way that 
the past-tense model did not really infer an explicit linguistic rule. 

We suggest that the learning characteristics of PDP models may be helpful for understanding how 
humans acquire mathematical abilities for three reasons:  They exhibit initially gradual learning that can 
accelerate accounting for changes in readiness to learn; gradually increasing strength, robustness, and 
automaticity; and sensitivity to statistical biases in their experiences.  While inter-related, these three 
characteristics of neural networks are worth considering separately, since each can help explain distinct 
aspects of mathematical cognition.   

Changes in readiness to learn.   Neural network models generally start to learn slowly, and acquire 
structured knowledge over thousands to millions of relevant experiences, while also showing a strong 
non-linear dependency between the strength of existing knowledge and how rapidly they learn.  This 
can help us understand why learning can seem very slow at times, why and how rapid-insight-like 
transitions can occur, and how the ability to learn can depend on what we already know, addressing 
Vygotsky’s ideas that learning depends on presenting learners with experiences within their ‘zone of 
proximal development’ [23].   

These properties are all illustrated by a simple neural [58] model of learning about the roles of weight 
and distance in determining which side of a scale would go down if it were free to move (Figure 2).  
While Siegler [59] initially characterized children’s knowledge of the balance scale according to a system 
of rules, several features of the behavioral data from children’s and adults’ performance with the 
balance scale suggested that the underlying knowledge might be graded and that its acquisition is more 
gradual than expected under a rule-based characterization [60]: (i) though most children could be 
assigned to one of Siegler’s rules, the pattern of their responses deviated from these rules in subtle 
ways; (ii) children show graded sensitivity to degrees of difference in weight or distance not adequately 
captured by the rules and (iii) studies allowing a continuous rather than categorical response establish 
that the sensitivity to both cues gradually strengthens with age.  Most relevant here was a study [59] 
examining the transition from Siegler’s Rule 1 (if the weights differ, the side with the greater weight 
goes down; otherwise the scale will balance) to his Rule 2 (the first part of Rule 1 is retained, but if the 
weights are equal, distance is considered).   Older Rule-1 children were able to progress from a series of 
experiences that challenged their pattern of responding while younger Rule-1 children were not.  The 
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simple neural network model shown in Figure 2 captured all aspects of these findings, and its 
characterization of the developmental process has held up [61] against subsequent empirical evidence 
that appeared to some [62] to be inconsistent with it.  Importantly, change in the connection weights is 
essentially continuous and is very slow at first but accelerates as knowledge builds up, leading to 
apparently abrupt changes that still show signs of graded cue sensitivity. This is why the model, like 
children, progresses from experiences that challenge a ‘Rule 1’ understanding toward the end of its Rule 
1 phase, but fails to do so when challenged earlier in learning.  A rigorous mathematical analysis of why 
this kind of pattern occurs in deep neural networks is available [63]. 

Gradually increasing strength, robustness, and automaticity.  In a neural network model, strength of 
knowledge and learning is always a matter of degree.  Once knowledge in the system is strong enough 
to generate an appropriate response, it nevertheless continues to strengthen, gradually becoming more 
robust and more automatic.  We view the acquired speed and relative automaticity of processing that 
can occur in neural network models as providing the basis for the gradual entrenchment of processing 

 

Figure 2.  Top Left, an example balance scale problem of the type used in [59] and other studies. 
Bottom left, the neural network model of balance scale learning [58,60]. At right, the gradual 
development in the model of connection-based knowledge about the roles of weight and distance in 
balance is illustrated separately for the hidden-to-output connection weights and the input-to-
hidden connection weights.  The quantity plotted on the vertical axis is a measure of the extent to 
which the connection weights in the network vary with variations in weight or distance. 
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habits that effectively automatize certain basic aspects of number processing, such as the processing of 
the magnitude of a numerical stimulus.  This is reflected in the numerical Stroop effect [64], the 
tendency for numerical value to interfere with processing the physical size of a numeral, including the 
emergence of this effect over development [65].  A similar tendency may also be reflected in the SNARC 
effect [66], where association of numbers to space and also to fingers used to count smaller vs larger 
numbers [67] may become entrenched sufficiently that they influence processing even when magnitude 
and numerical value are irrelevant.   In a neural network, automaticity, like strength itself, is a matter of 
degree, and is reflected in (a) how quickly activation occurs, (b) how much the speed and outcome of 
activation depends on top-down control, and (c) how strongly the process will interfere with other 
processes [68].   Such features appear to characterize the effects of extensive practice on human 
perception and cognition, and have been used to account for the role of experience in the Stroop 
interference effect [69]: that is, the finding that a process that was itself initially susceptible to 
interference and did not initially interfere with another process could come, through practice, to exhibit 
both reduced susceptibility to interference and an increased tendency to interfere with another process.  
More speculatively, we suggest that practice leads to entrenched habits of mind [41] that can gradually 
result in an acquired tendency to ‘just see’ that certain mathematical relationships hold without 
apparent intervening processing stages. 

Sensitivity to statistics of experience.  Deep neural networks show sensitivity to statistical properties of 
experience, such as the frequency and typicality of the items they encounter as they learn [50].  These 
effects are very striking during early learning – frequent and typical patterns of responding are the first 
to be acquired, and can initially over-ride correct responses to infrequent or atypical items.  For 
example, a deep neural network model of natural kind semantics [70] exhibits strong overgeneralization 
errors, attributing eyes and legs to animals that do not have them and labeling a less familiar animal 
(e.g. goat) with a more familiar animal’s name (dog).  Similar tendencies are seen in young children 
[71,72].   But as learning progresses, the networks eventually learn to respond correctly (albeit less 
reliably and robustly) even to these infrequent or atypical items, thus giving rise to U-shaped 
developmental trajectories similar to patterns seen in human data [73] in several domains.  As discussed 
below, many findings in mathematics learning are well captured by these aspects of neural networks. 

In summary, the ability to act in a way that is consistent with principles or rules can emerge through a 
sub-symbolic learning process in a neural network. These models exhibit properties that help explain 
gradual, sometimes punctuated development; graded sensitivity to what a symbolic approach would 
treat as categorical distinctions; changes in readiness to learn with experience; sensitivity to frequency 
and typicality, and U-shaped patterns in development. 

Findings in the Mathematical Cognition Literature Considered and Modeled from a PDP Perspective 

The previous section reviewed models applied to topics outside of mathematical cognition. Are findings 
in the mathematical cognition literature consistent with the PDP perspective, and can this perspective 
shed light on their interpretation?  In this section we will argue that they are indeed consistent with the 
overall perspective, and we describe ways in which the perspective is already contributing to an 
understanding of aspects of mathematical cognition. 
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Approximate number. First we consider the concept of an innate Approximate number system (ANS), 
thought to be shared by species as diverse as rats, pigeons and humans, including human neonates.  The 
ANS exhibits what has been called a signature property [18]:  The ability to discriminate differences in 
numerosity of items scattered in visually-presented arrays depends on the ratio, rather than the 
difference, of the numerosities.  Thus we discriminate 10 dots from 7 as well as we discriminate 100 
from 70.  While it has been known for quite some time that ANS acuity sharpens with age (neonates 
discriminate 2:1 ratios, while adults discriminate ratios as small as 8:7) it was previously thought that 
education had little effect [74]. Recent findings, however, show that uneducated indigenous Amazonian 

 

Figure 3. A neural network simulation that captures key characteristics of the approximate number 
system.  (A) Display like that used in many developmental studies of the approximate number 
system [115–117]. (B) The neural network model used to simulate adult performance in the ANS 
task [76].  The network is trained to form a representation of its inputs that can be inverted to 
reproduce the input [118].  Examples of training stimuli illustrating variation in size and number are 
shown.  After network training, a simple classifier is trained to judge whether the number of items 
in the display is greater than or less than a criterial number (N). (C) Simulation results [76] 
capturing ratio-dependent sensitivity together with relevant behavioral data [116].  For both model 
and experiment, similar estimate of the ratio sensitivity index w is obtained for data obtained with 
two different values of N (diamonds: N = 8; squares: N = 16; circles: N = 32).  Ratio dependence is 
indicated by the fact that the classification response (y axis) depends on the ratio of the 
numerosity of the stimulus presented (x axis) to the numerosity of the standard. (D) Simulation of 
initial ability and time course of increased ANS sensitivity [77], along with behavioral data replotted 
from [116,117] with estimate derived from infant studies [119] as estimated by [115,117]. 
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adults show discrimination ratios more characteristic, on average, of 3-5 year old children, leading to the 
conclusion that ANS acuity may be education-dependent [75].  Furthermore, recent studies with deep 
neural network models (Figure 3) show that the representations formed in such networks exhibit ratio-
dependent numerosity sensitivity without being trained to represent numerosity per se [76,77]. In fact 
such models can support initial Weber-law-like sensitivity to numerosity prior to any training, with 
acuity similar to that of 3-5 year old children [77] and from there they exhibit a gradual increase in 
acuity as they are trained simply to form a representation that can be used to reconstruct the network’s 
input.  The networks and learning procedures are completely generic networks with two layers of 
modifiable connection weights.  Thus the results suggest that evolutionary preparation to represent 
numerosity per se, while it may contribute, may not be necessary for exhibiting signatures of the ANS, 
and provide a mechanistic basis for the finding that experience affects ANS sensitivity. 

Exact number. Proposals that an understanding of exact number is innate were common [78] until the 
publication of another study in uneducated Amazonian adults [24] whose language has no words for 
exact number.    This study found that these adults failed to create a set of objects with the same 
cardinality as a given set. While it can be interpreted in other ways [79], the finding is consistent with 
the view that the lack of number words reflects an underlying lack of a concept of exact number, and 
other evidence suggests that young children and uneducated indigenous people fail tasks probing basic 
properties of the exact number concept [25].  Thus, many recent proposals (e.g. [18,80]) exclude a 
concept of exact number from ‘core knowledge’ and recent interest has focused on the development of 
exact numerical ability.  As suggested by the quotation from Izard et al above, some have sought to 
characterize development as the discovery or ‘semantic induction’ of a cardinality principal (CP), indexed 
by the ability to succeed at the so-called give-N task for numbers greater than 4. Indeed, several studies 
do suggest that children who can succeed for N>4 possess a general procedure (independent of the 
specific value of N) since, to a first approximation, if they succeed with 5 they also succeed with larger 
numbers within their known count list.  Sarneca and Carey [81] suggested that success at the give-N task 
for N>4 corresponds to the induction of the Cardinality Principle, and supported this claim by showing 
that the average performance of a group of children who met the Give-N (N>4) criterion exceeded 
chance on other tasks thought to reflect possession of the fundamental principle of exact number, the 
successor principle.  Concerns with this conclusion were raised in a subsequent paper, however [82].  
This study divided children who passed the give-N task for N = 6, 7 and 8 into three groups based on the 
length of their count list, and showed that children with small count lists (10-19) did not exceed chance 
in the other tasks even with numbers in the range of 5-7.  Children with longer count lists succeeded 
more often, but their success was more likely for smaller numbers, and did not extend to the largest 
numbers in their count lists.  The authors concluded that a complete understanding of the successor 
principle arose only after considerable additional experience.  From a PDP perspective, we might go a 
step further and ask whether the characterization of children as possessing a principle as such is the 
right way to think about their knowledge.  Instead we might see this and other principles as approximate 
characterizations of a system of implicit knowledge that is gradually acquired, and we might view the 
sense we as adults have of an intuitive understanding of these principles as reflecting an emergent 
consequence of experience with number.  This experience is likely to include discourse about number 
informed by the efforts of mathematicians to rationalize and formalize number systems [14]. 
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So far we have focused on primitive or at most very basic aspects of mathematical cognition and on the 
performance of those who are very young and/or have minimal education.  However, findings from a 
wide range of aspects of mathematical cognition are consistent with the view that mathematical skills 
and abilities emerge slowly and are subject to strong frequency and typicality biases characteristic of the 
behavior of neural network models that learn gradually from experience (see Box 12 for further evidence 
of such effects and a description of a neural network model that exhibits one of these effects).   We 
highlight here one study that examined understanding and reasoning in geometry across a span from 
grade school to graduate school [83].  The study noted that even high-school students fail to appreciate 
the formal structure of mathematical reasoning systems.  Noteworthy too is the finding [84] that many 
high-school and college students who have been repeatedly exposed to basic facts of trigonometry 
nevertheless make errors that can be seen as reflecting a behavioral tendency driven largely by the 
statistics of their experiences with mathematical expressions.  When given a choice between alternative 
answers to the question ‘which expression has the same value as cos(–30°)?’ they predominantly choose 
–cos(30°) rather than the correct answer which is cos(30°). This response can be seen as an acquired 
response tendency supported by frequency and typicality, since ‘pulling out’ a minus sign from inside an 
expression in parentheses is often correct in an algebraic context.  Those who do not make this error 
have learned instead to treat trigonometric expressions as referring to measurable properties of 
quantities represented in terms of a conceptual structure that integrates two other conceptual 
structures, the Cartesian co-ordinate system and a system for representing angles as points on the unit 
circle [84].  Many students fail to acquire this system, and only those showing evidence of partial prior 
understanding benefit from a brief lesson explaining it [84] (see also [16] ). 

In sum, the characteristics of PDP models seem consistent with findings across many domains of 
mathematics.  On this basis, we conclude that it may be worthwhile to see if we can develop the 
approach further, and also to explore its implications for mathematics teaching and learning. 

 

A Challenge for a 10-year Research Program 

Extending the PDP framework to address all aspects of mathematical cognition will certainly be a 
challenge.  For us the extent of the challenge is brought out by a consideration of what it might take for 
a neural network to do well on a test High-School students must take to demonstrate basic proficiency 
in Geometry.  The quest to build an neural-network based simulation system that could pass one such 
test (the New York State Regent’s exam in Geometry – see Figure 4 for an example problem from the 
test) was inspired by a challenge issued by the Allen Foundation in 2014, and researchers at the Allen 
Institute for Artificial Intelligence have recently achieved a partial success [85]. However, the Allen 
system does not learn – instead it uses knowledge built into it by its programmers and even its 
developers concede it does not ‘understand’ geometry.  We propose a harder challenge: to teach an 
artificial agent grounded in our conception of the culturally constructed context in which mathematical 
abilities are acquired as described above, relying on the conception of cognition and learning embodied 

                                                           
2 Boxes are located after the bibliography at the end of this document. 
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in the PDP framework, and drawing on the technology of artificial neural networks.  The goal is that this 
system should exhibit human like-learning and developmental change, learning from human-like 
naturalistic and educational experiences, gradually building to the point where it can succeed in passing 
the test. Because it is a hard challenge, we expect it will require 10 years to succeed in meeting it.  We 
have begun to pursue this path ourselves, but we believe success will depend on the engagement of a 
larger community; thus we encourage others to join us.  Below we sketch a path forward for this effort. 

We see three main reasons to pursue this challenge. First, it is clear that neural networks, popular in the 
50’s and again in the 80’s and 90’s, are now enjoying a new wave of success as computational models of 
intelligence, but many still question whether neural networks can really think and reason as humans do. 
Until very recently most of the clearest successes of neural networks have involved mapping inputs to 
outputs in a single forward propagation of activation or a single process of settling to a fixed point 
[55,86]   However, many mathematical problems including the one in Figure 4 require a sequence of 
steps that produce intermediate results needed to solve the problem.  We suggest that if a neural 
network model could learn to solve problems as complex as the one shown in the figure – in a human-
like way, when trained with human-like experiences – this would constitute a demonstration that they 
are capable of really thinking in the same way that humans think.    Second, the characteristics of neural 
networks appear well suited to capturing many aspects of mathematical cognition, as reviewed above, 
leading to the conclusion that they might provide concrete instantiations of mechanisms that capture 
the nature of human knowledge and learning within the domain of mathematics, thereby helping us 
understand in more detail why mathematics is hard to learn, leading ultimately to improved practices 
for learners and teachers.   

Third, addressing the challenge will surely require further development of the neural network models 
themselves, both conceptually and technically.  As we will review briefly below, there has been an 
explosion of recent developments in neural network architectures.  Pursuing the challenge we propose 
should help direct these developments toward capturing as-yet uncaptured aspects of the nature of 
human intelligence. 

 

 

Figure 4. An example question from the New York State Regents’ exam in Geometry (2014).  
Students are given a blank page to show their work. 
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The basic tenets of the proposed approach (Table 1) arise from the arguments made above.  Below, we 
provide an overview of our planned approach, and then review recent developments from research on 
artificial neural networks for machine learning that we believe will be helpful as we proceed. 

The project will focus on an artificial agent that lives in a simulated two-dimensional world (Figure 5) 
that it will observe through an eye it can move to fixate at any location [87].  Its input from this world 
will be a bitmap centered at the eye’s point of fixation. The agent will be allowed to explore and 
manipulate its world using a simple simulated hand that it can use to touch, drag, flip, and rotate 
movable objects it encounters in its environment, and it will have a separate character-based input-
output system through which it can receive and produce language (typed sequences of characters) and 
mathematical expressions.  The agent will learn through observation of naturalistic events that may take 
place in its environment, including the movements of simple animats that may move through the 
environment, and through its own exploration.  T will also learn through structured experiences guided 
by supportive teaching inputs, simulating the roles of caregivers, peers, and classroom teachers.    

Initial exploration should allow the agent to acquire, among other things, intuitions of invariance and 
conservation of shape and number like those underlying the proof of the Pythagorean Theorem in 
Figure 1, on which structured experience will then build.  Over the course of development, we will 
expect the agent to learn to act in response to linguistic inputs, to use instructions, demonstrations, and 
explanations presented in language, and even to explain and justify its actions. At later stages of 
development, the agent’s simulated world will contain tools that will allow it to measure, copy and 
construct geometrical diagrams and graphs according to procedures specified by teaching inputs (much 
as Euclidean geometry provides instructions in how to construct figures with specified characteristics 
using compass and straightedge). Through such experiences the agent will progress through a 
curriculum in mathematics similar to that in a good school system in an advanced country, allowing it to 
acquire intuitions and skills related to number, arithmetic, measurement, algebra, and geometry.  This 
idea is similar to the curriculum learning approach frequently explored in contemporary machine 
learning [88]. Through this we propose that the agent should be able to acquire human-like abilities to 
reason mathematically and to carry out multi-step mathematical problem solving activities, under the 

Table 1 – Tenets of the PDP approach to Mathematical Cognition 

• Mathematics offers culturally constructed model systems that support reasoning in number, 
geometry, and many other domains 

• Some characteristics of such systems are implicit in everyday experience interacting with objects 
in the physical world 

• Others arise from structured interactions with physical instantiations of these models, or with 
symbols that are grounded in such models, guided by peers, caregivers, and teachers 

• Neural networks have many of the right characteristics to capture how humans acquire an 
understanding of such models, but need to be extended to succeed. 
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continued guidance of its teachers, up to and including all of the plane geometry questions on the New 
York State Regents exam, including problems like the one in Figure 4, as well as other problems that 
require justification and explanation. 

The framework outlined above follows in the tradition of past PDP models of seeking to keep the model 
as simple as possible while still allowing it to exemplify essential principles and to explore essential 
issues [2,89].  The model is embodied in its simple 2-dimensional world, which is sufficient for it to have 
experience with, for example, the relationship between time and space and of the characteristics of 
paths of objects as they move through space [90].  Yet it avoids a wide range of issues that may not be 
essential to the goals of the project that would arise if the agent were actually embodied in a physical 
robot.   Of course it is possible that there are important aspects of embodied experience that the agent 
will lack – what these may be should become apparent as the project develops.  Similarly, the language 
input and output of the model will be in the form of character strings, allowing us to avoid having to 
implement systems for spoken and hand-written language processing so as to allow focus on exploring 
the agent’s ability to relate linguistic and symbolic mathematical expressions to properties and relations 
among quantifiable properties of objects and sets of objects presented in its 2-dimensional world.  The 
approach is similar to the one taken in [57,87] in teaching a simulated agent to learn to play Atari games 
and  to deploy attention to objects at different locations in space.   

A part of the work of the project will be to specify the architecture of the neural network, allowing 
exploration of just want really needs to be built in.  Depth is now understood to be important, and some 
modularization at lower levels of input-output processing for linguistic vs. visuospatial inputs seems 
warranted by basic facts about the organization of the brain.  Beyond this, our own approach would be 
to build in as little as possible.  However, in keeping with the complementary learning systems theory of 
the organization of learning systems in the brain, we do expect the agent to require a hippocampus-like 
fast learning system to complement the slow-learning deep neural networks that will constitute its 
analog of neocortex [91,92]. 

Key Aspects of the Challenge and how we Plan to Address Them 

Prototypical neural network models may capture some aspects of human abilities, but they are still 
quite limited in some ways.  Consider, for example, the highly successful deep convolutional neural 
network models of visual object recognition.  They perform very well at classifying objects found in still 
images (though still not quite at human levels) and capture patterns of neural activity observed in 
primate and human participants when processing the same displays that the models process [55,93,94].   
They do so simply by learning a set of connection weights from a training set that projects from 
relatively unprocessed inputs onto a set of classification units.  These models lack several essential 
characteristics for success at mathematical cognition.  Importantly, though, a considerable body of work 
dating from the late 1980’s has also recently begun to see success in overcoming many of the more 
important limitations of these particular types of neural networks.  We consider four of the limitations 
of deep CNN models that seem particularly relevant for mathematical cognition and discuss recent 
developments that encourage the view that these limitations are now being overcome, supporting the 
idea that it may be possible to make progress addressing the stated challenge. 



Mathematical Cognition  17 

Combining supervised learning with unsupervised and exploration-based learning.  While CNNs have 
been trained primarily using a supervised learning approach, it seems likely that some of the basic 
intuitions underlying mathematical cognition arise from experience interacting with objects in the 
world, independent of the guidance of teachers. Some of these experiences may be very general, but 
still lead to the development of early schemas that are then applicable to mathematical cognition [90].  
Unsupervised neural network training regimes may contribute importantly to the development of these 
intuitions [76].  In unsupervised learning, a network is trained simply to form an internal representation 
of presented inputs that is sufficient to reproduce the input itself.  Hinton pioneered unsupervised 
learning in the 1980’s and has since developed the approach extensively [95], and as noted above, 
neural network models trained with unsupervised learning acquire representations capturing key 
characteristics of the approximate number system.  An extension of these ideas may help our agent 
learn invariant representations of shape.   Consider the situation in which the agent is fixated at one 
location in its world, with an object present in another location (Figure 4a).  Hinton [96] has proposed a 
transforming auto-encoder system for learning an invariant representation of the objects shape in this 
situation (Figure 5b).  Suppose the agent can construct (before acting on it) a pattern of activation 
corresponding to a plan to move its point of fixation to the object.  This pattern, together with its 

 

Figure 5. (A) A visual display that might be presented to the agent, showing a possible position of 
the agent (eye and V-shaped 2-fingered hand highlighted) positioned over the display. Also shown 
is a possible verbal instruction to the Agent.  Verbal input could also request a verbal response, 
such as ‘What is the shape of the red object?’ The agent could use the transforming auto-encoder 
network (B) [96] to learn to anticipate what an object in the display would look like once fixated.  
The agent’s visual input would be a multi-resolution image like that used in [87] (C), and would 
change as the agent moved its point of fixation.  Later in its development, the agent could be 
asked to carry out constructions, using tools such as the ruler that it will learn to manipulate with 
its hand.  The tool could be a Euclidean straightedge without markings, or it could allow for 
measurement by having markings at equal intervals, as in the example shown. 
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current retinal image, would allow the agent to anticipate what the object will look like after the eye 
movement.  Early in learning, this anticipated pattern might be based on random initial connection 
weights, but the mismatch between the anticipated pattern and the one actually observed after the eye 
movement could drive learning.  In this way, the network would gradually learn to represent in 
anticipation what objects in the periphery will look like once brought to the point of fixation, allowing 
such representations to serve as canonical (and location-invariant) object representations.  The idea 
could be extended to other transformations of the object, such as those produced if the agent dragged, 
rotated, or flipped it with its hand.   

Discovering strategies based on deep reinforcement learning.  Classification [55] and translation systems 
[56] depend ultimately on training examples consisting of a corpus of input and output pairs, and some 
of mathematics learning might be characterized as learning from such examples.  However, human 
learners innovate, finding new procedures never modeled by their teachers [30]. The methods of 
reinforcement learning [97] provide a means for capturing these abilities, since reinforcement learning 
progresses in part through exploration of the space of possible actions. For example, the TDgammon 
program used reinforcement learning to find novel approaches to win at Backgammon [54], and the 
neural network that has learned to play Atari games [57] uses reinforcement learning together with a 
multi-layer neural network to discover clever strategies that allow it to perform at or above human 
performance levels on many games.  Reinforcement learning can also proceed using internally-
generated reward signals, for example based on the novelty of an experience that can facilitate later 
learning when an external source of reinforcement (created by a task set by an external teacher) arises 
[98].  Indeed the unsupervised learning described in the preceding paragraph might be driven by 
novelty-seeking, and would be implemented as such in our learning agent.  It is likely that it will continue 
to be productive to  integrate exploration-based unsupervised learning, reinforcement learning and 
supervised learning, similar to the approach that has produced expert level performance in the 
demanding game of Go [99]. 

Processing structured inputs and producing structured sequential behavior.  The objects of mathematical 
thought are often highly structured, whether they be diagrams like the ones in Figures 1 and 4 or 
symbolic expressions, and critiques of neural network-based approaches have often focused on their 
apparent insensitivity to such structure.  However, neural networks sensitive to sequential structure in 
linguistic inputs have been around since the late 1980s [100]. These networks appeared to be limited in 
their ability to learn over sufficiently long stretches of context to deal effectively with long-distance 
dependencies, and so were not in favor in machine learning for many years.  However, an effective 
solution to the long-distance dependency problem was introduced in 1997 [101] and recently this 
solution has been exploited in machine translation systems that are now the state of the art [56].  Such 
systems process input sentences with natural language structure and produce appropriately structured 
outputs in the target language, without an explicitly structured internal representation. Also quite  
recently [102], a system based on these ideas have been used to create a neural Turing machine – a 
system that exploits system-internal short term memory banks organized in a linear array, similar to the 
storage cells in the tape of the original Turing Machine.   
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The NTM is an exciting development that should be built on training in our agent, with a key difference:  
Instead of a system-internal memory, we propose that the agent should work with linearly-organized 
items placed in its two-dimensional workspace.  This would include arrays of objects or numbers 
presented in its two-dimensional world.  For example the agent could learn to count a row of objects or 
add a column of numbers. In this setting, the agent’s point of fixation in its world would correspond to 
the position of the Turing Machine’s read-write head in its tape, or the pointer in the NTM to the 
current item it is processing in its internal memory array.  This will allow the agent’s teachers to present 
it with problems to solve, demonstrate problem solutions to the agent, and observe the agent’s actions 
as it engages in problem solving behavior [29], all using the world rather than the NTM’s internal 
memory, an approach to teaching and learning mathematics now actively being explored [28]. We have 
begun to use this approach in initial investigations of teaching a simple instantiation of our agent to 
count (see Box 2).  The teacher can place several tokens in the agent’s world and demonstrate how to 
count them; it can then encourage the agent to do the same and observe its actions as it proceeds, 
allowing monitoring and feedback not only on the outcome of the agent’s counting process but on each 
of the steps along the way.  This setting also provides a framework for teaching the agent to engage in a 
structured sequence of activities (for example, a small number addition procedure taught in some pre-
schools assembles previously-acquired counting-related procedures, see Box 2).   

Integrating language and visuospatial cognition.  Our goals for the agent include the ability to solve 
problems presented in verbal form (or with verbal instructions accompanying a diagram), to follow 
instructions and understand explanations, and even to produce explanations and justifications for its 
problem solving steps.  In our view, knowledge in connections underlies the ability to understand or 
produce overt propositional language, and to carry out structured activities such as mathematical 
problem solving in response to instructions.  Propositional statements that a person might utter are thus 
not thought of as encoded directly as such, but as arising from a dynamic, activation-based process that 
results in the construction of these utterances guided by knowledge in connections.  Under this 
conceptualization, there is not a simple or transparent relationship between our cognitive abilities and 
our verbalizable or otherwise consciously accessible knowledge [103,104], and we  hold the view that 
learning plays an important role in establishing those links that do exist [70].  That said, we do 
acknowledge that there must be some interaction between propositionally based and visuospatial and 
enactive aspects of mathematical abilities.   Achieving the goal of capturing this interaction will require 
the integration of language and visuospatial cognition – and many still see this as an insurmountable 
hurdle for an approach that avoids building in explicit symbolic processing capabilities [105].  Work in 
the PDP framework, however, has argued that avoiding building in such capabilities is an advantage for 
language processing and other systematic cognitive tasks [106,107], and several recent deep-neural 
network approaches in machine learning are achieving state of the art results in language interpretation 
tasks and mapping from images to language using learned distributed representations rather than 
structured symbolic representations [56,108].  The challenge we face to allow a sufficient degree of 
interactive engagement between linguistic and visuospatial reasoning processes such that verbal 
statements can guide, explain, and justify action will not be easy to address, but we see it as essential to 
the ultimate success of our endeavor, as we view capturing human-level abilities to benefit from verbal 
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input as well as to explain and justify their own actions as important parts of a complete model of 
mathematical cognition and of expert human cognitive abilities in any other cognitive domain. 

In summary, the discussion above points to some of the challenges we face in our effort to create a 
simulated agent that could acquire mathematical ability in a human like way, sufficient to take the New 
York state Regents’ exam in Geometry.  While we have pointed to recent progress that provides a 
starting place for this effort, we do not intend to suggest that meeting the challenge will be easy.  
Building on new developments in neural networks for machine learning and artificial intelligence, we are 
hopeful that over the next 10 years it will be possible to make real progress toward this goal (See Box 3, 
Outstanding Questions). 

Implications for teaching and learning 

The PDP approach to mathematical cognition has many implications for learners, teachers, and the 
activities of learning and teaching – implications that relate to the procedures and narratives that are 
employed in the teaching and learning of mathematics.  We focus on three essential points. 

From the point of view of the learner, an essential observation is that understanding emerges gradually 
from experience. We believe it is important for all learners to understand that the initial feeling of 
incomprehension they may experience when encountering a new domain of mathematics is natural any 
typical, should not be seen as a sign of an inherent lack of ability.  Learners need to understand that 
comprehension will arise as they gain experience and facility.  A corollary of this is a rebalancing or our 
conception of the basis for outstanding accomplishment in mathematics: Perhaps the genius of great 
mathematicians comes as much from their propensity to engage in mathematics-relevant experiences 
and activities as much from any inherent abilities.  Of course this propensity itself is affected by social 
and cultural context, and excitement and encouragement as well as the opportunity to build on the 
knowledge of others are all likely to be essential factors.  Ensuring all developing children benefit from 
frequent exposure to experiences encouraging the development of mathematical intuitions will be a key 
factor in fostering mathematical ability. 

From the point of view of the teacher, an essential observation is that what is hard for the student may 
not be so easy for the teacher to discern.   The habits of mind we acquire from experience, once they 
become automatic, result in an intuition of self-evidence that the untutored mind does not share.  Signs 
of this are found in many places in mathematics education.  The Platonic precept that mathematical 
ideas are universal encourages the illusion that the explanation the teacher understands is transparent 
to the student, and the illusion that operations and procedures that seem obvious to the teacher will be 
easy for the student to understand.   Indeed research shows that teachers are often wrong in their 
beliefs about what will be hard or easy for students [109].   Effective teaching may depend on finding 
ways of letting students go through the gradual process of acquiring experiences that constitute the 
substrate of intuitive understanding, rather than expecting them to follow the thought processes and 
reasoning patterns of an expert. 

Finally, we consider the experiences and activities of learning and teaching.  An approach to 
mathematics that emphasizes the role of culture and experience requires and understanding of the 
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learning environment and the interaction of learners with their environments.  We need to know, not 
only for our modeling project, but also for an understanding of how real children and scholars learn, 
what the cultural practices are that structure the interactions between learners and teachers; how these 
vary within and across cultures; and how the teacher responds to the learner’s progress and 
explorations.  Others have stressed the importance of understanding how what children learn depends 
on their experiences in learning contexts [110], but the issue is often reduced to simple environmental 
occurrence frequencies over items or problem types [111,112].  While understanding experience 
frequency is certainly an important first step, to go forward we will need a more thorough 
characterization of all aspects of the situations in which learners gain experiences by interacting with 
their physical, social, cultural, and educational environment. 

The perspectives we have articulated in this section are not unique to us – scholars of teaching and 
learning mathematics have long made similar points [83,109].  The important point is that the PDP 
framework provides a theoretical framework within which these observations can be understood as 
inherent in the nature of the human mind, and a growing set of tools for explicitly capturing them in 
computational models that learn.   As the framework develops over the next 10 years, we hope it will 
contribute to the development of a firm scientific framework in which these ideas can be further 
explored. 
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Box 1. Capturing U-shaped developmental trends in arithmetic learning 

An example of a typicality-dependent U-shaped developmental trend is seen in children’s answers to a 
subset of so-called ‘equivalence’ problems, in which the child must say what number goes in the blank in 
an expression such as ‘5 + 4 + 3 = 5 + __’.  In two studies ([113], Figure i, right) less than 10% of 9 year 
olds correctly answered any of twelve such problems, and a frequent error was to add all the numbers.  
Further research revealed that the examples children practiced rarely had operands to the right of the 
equal sign, with ‘5 + 4 + 3 + 5 = __’ being a very frequent problem type.  A simple neural network (Figure 
i, left) with recurrent connections [114] captured this and other features of the data (Figure i, right).  
Importantly, as training progressed, the network learned its way out of the hole it had dug itself into, 
even though only a small fraction of the training examples had operands on the right of the equal sign.  
This learning pattern results from the fact that the learning in these systems is error-driven.  At first, 
error can be reduced quickly by adopting a simple strategy that works for most but not all problems; 
eliminating the error that remains then involves becoming sensitive to the exact placement of the equal 
sign and plus signs, over-riding the simple strategy when they are arranged atypically.  The result after 
sufficient learning is a system that behaves in accordance with the principle that the sum of the 
numbers on both sides of the equal sign should be equal. 

 

Box 1 Figure i.  Left, the recurrent neural network used in [114]t o simulate learning and responding to 
equivalence problems. Right, the network’s performance over the course of its learning on problems of 
the form a = b + _ at different points in training.  Data from two experiments in [113] are shown for 
comparison.  The network’s performance (averaged over simulation runs, in red) has been shifted and 
scaled to best match the pattern of behavioral data. 
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Box 2: Teaching a simulated agent to count and to add 

To give a flavor for our overall approach, we describe here how a simulated agent might learn to count a 
linear array of objects (the ‘How Many’ task).  This agent lives in a one-dimensional environment, into 
which its teacher can place objects for the agent to count.  The agent has a head, eye, and hand which 
for simplicity move in lock-step so that it can simultaneously look at and touch objects.  The task of the 
agent is to touch each object exactly once, saying aloud the next number in the count list.  A critical 
feature of the approach (different from other models) is that the agent’s input changes as it proceeds to 
count.  At first all of the objects in the display are to the right of its fixation, and when the count is 
complete there are no more objects to the right (Figure i).  Thus the agent can learn a simple stopping 
rule.  This approach promotes generalization to novel arrangements of inputs (there are over 68,000 
different inputs containing 7 items).  

The model can be extended to the ‘give-N’ task by allowing the agent to drag tokens from a stash to 
positions in the display, under the guidance of the teacher.   This time some form of memory is required, 
making the task harder.  Crucially, with mastery of the ‘how-many’ and ‘give-N’ tasks, the teacher can 
guide the agent to learn to add, following a procedure explicitly taught in some preschools [30].  The 
task of adding 2+3 is broken down into a give-2, a give-3, and a how many.  Thus the hierarchical 
structure of the task is conveyed to the agent by its cultural/educational environment. 

The model provides a concrete context in which to explore a wide range of issues, among them the 
details of the neural network architecture, the particular choice of learning algorithm, and many aspects 
of the teacher’s policy, including the distribution of items to use to train the agent, how much the 
teacher should demonstrate (which can be simulated for the how-many task by guiding the agent’s hand 
and reciting the count words), how much verbal direction, and whether to provide intermediate 
feedback as the agent proceeds.  

 

 

Box 2 Figure i.  The counting agent’s world (top), with its starting and ending position (middle left and 
middle right) and (bottom left and right) its visual input at the beginning and the end of counting the 
objects. 
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Box 3: Outstanding Questions 

What new developments in neural network architectures and learning algorithms will be necessary to 
address the challenge of creating a simulated agent that can pass the New York State Regent’s exam in 
geometry? 

What kinds of initial architectural constraints must be built in to the neural networks that will succeed in 
developing mathematical cognitive abilities, and how will the environment shape the emergent 
functional characteristics of the architecture? 

What features of the natural environment support mathematics learning, and how do these features 
differ in different cultures? 

What tasks and teaching policies are adopted by caregivers, peers and teachers in shaping the tasks and 
practices that shape learning? 

What tools does the culture provide to support acquisition of mathematical ability?  Stacking toys and 
shape sorters, tablets and markers, pencils and paper, rulers and compasses, slide-rules, calculators, and 
computers all can play a role in fostering the development of mathematical thinking. 

What new insights into best practices for teaching and learning will a neural-network based approach 
afford? 

 


