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Abstract

The subjective likelihood model [SLiM; McClelland, J. L., & Chappell, M. (1998). Familiarity breeds differentiation:
a subjective-likelihood approach to the effects of experience in recognition memory. Psychological Review, 105(4), 734–
760.] and the retrieving effectively from memory model [REM; Shiffrin, R. M., & Steyvers, M. (1997). A model for rec-
ognition memory: REM—Retrieving effectively from memory. Psychonomic Bulletin & Review, 4, 145–166.] are often
considered indistinguishable models. Indeed both share core assumptions including a Bayesian decision process and dif-
ferentiation during encoding. We give a brief tutorial on each model and conduct simulations showing cases where they
diverge. The first two simulations show that for foils that are similar to a studied item, REM predicts higher false alarms
rates than SLiM. Thus REM is not able to account for certain associative recognition data without using emergent fea-
tures to represent pairs. Without this assumption, rearranged pairs have too strong an effect. In contrast, this assump-
tion is not required by SLiM. The third simulation shows that SLiM predicts a reversal in the low frequency hit rate
advantage as a function of study time. This prediction is tested and confirmed in an experiment.
� 2006 Elsevier Inc. All rights reserved.
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The goal of this paper is to compare and contrast two
mathematical models of episodic memory, the Subjective
Likelihood Model (SLiM; McClelland & Chappell,
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1998) and the Retrieving Effectively from Memory mod-
el (REM; Shiffrin & Steyvers, 1997). Why compare
REM and SLiM? These models share the core assump-
tions of a Bayesian decision process and the concept of
differentiation (each will be discussed in greater detail
later). They were initially developed to account for over-
lapping sets of empirical findings and were published
around the same time. The combination of these factors
resulted in the field essentially perceiving the two models
as twins. This is evident in reading the literature as the
two are almost universally cited together and assumed
ed.
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to make identical predictions. This belief perhaps grew
out of the same impression by the authors of the models
as obvious in the following quotes: ‘‘. . . it is striking how
many similarities exist between the two models [REM
and SLiM]’’ (McClelland & Chappell, p. 753). ‘‘It is a
curious fact that this result makes the recognition mod-
els of McClelland and Chappell (1998) and Shiffrin and
Steyvers (1997) extremely similar in both structure and
parameterization, to an even greater degree than these
set of authors may have appreciated heretofore.’’ (Shif-
frin & Steyvers, 1998, p. 90). In this paper, we evaluate
the degree to which these models actually share assump-
tions and make identical qualitative predictions. To
foreshadow, there are several important differences
between the models: They provide different explanations
for the same phenomenon and they make different qual-
itative predictions for the same experimental manipula-
tions. Before comparing these models, we first take a
brief look at the history of memory modeling that led
to the development of both SLiM and REM.

All of the models we discuss, including SLiM and
REM, are primarily concerned with the task of episodic
recognition memory. Typically, this is investigated in a
list memory paradigm where a list of items is studied fol-
lowed by a short break typically including some irrele-
vant task (e.g., adding a list of digits). After the break
a recognition memory test is administered where individ-
ual items are presented and the participant is simply
asked to say whether or not each item was presented
on the list. The dependent measures are the hit rate
(HR) defined as probability that a studied item is cor-
rectly called ‘‘studied’’ and the false alarm rate (FAR)
defined as the probability that an unstudied item is
incorrectly called ‘‘studied.’’ Early theorizing about epi-
sodic memory claimed that the decision about whether
or not to call a test item ‘‘studied’’ was based on the
overall strength or familiarity of the item (Flexser &
Bower, 1974; Gillund & Shiffrin, 1984; Hintzman,
1988; Humphreys, Bain, & Pike, 1989; Humphreys,
Pike, Bain, & Tehan, 1989; Murdock, 1982). Many early
theories were in the tradition of signal detection theory
and thus conceived of the comparison between the test
probe and the contents of episodic memory as resulting
in a single value often referred to as strength or familiar-
ity. This subjective feeling was thought to arise from one
of two normally distributed variables. The mean famil-
iarity of the studied or target distribution was greater
than the mean familiarity of the unstudied or foil distri-
bution, allowing performance to rise above chance. If
that subjective familiarity or strength value exceeded
some criterion then the item was considered a member
of the study list, otherwise it was considered new. This
approach was fruitful for a number of years and is still
a popular approach to modeling episodic memory
(e.g., Banks, 2000; DeCarlo, 2002; Dunn, 2004; Rotello,
Macmillan, & Reeder, 2004; Wixted & Stretch, 2004).
There are numerous challenges to this approach includ-
ing two empirical findings—the mirror effect and the null
list strength effect that inspired the development of mod-
els such as SLiM and REM. Next we briefly consider
why the mirror effect and the null list strength effect in
recognition memory challenged a number of strength
models and how REM and SLiM overcame these
challenges.
The mirror effect and the null list strength effect

The mirror effect is simply the fact that when two (or
more) classes of stimuli differ in discriminability (e.g., as
measured by d-prime), the result is almost always a mir-
ror pattern for the HR and FAR such that the more dis-
criminable class has both a higher HR and a lower FAR
than the comparison stimulus class (Glanzer & Adams,
1985, 1990; Murdock, 2003). This general pattern was
a challenge to the models in use at the time, since items
from the higher d-prime class seem to be both less famil-
iar than those in the lower d-prime class when not on the
study list (thus producing a lower FAR) but more famil-
iar than the items of the lower d-prime class after study
(thus producing a higher HR). The explanation for the
mirror pattern in SLiM and REM depends on the specif-
ic conditions producing the effect. For example, words
of different normative frequency typically result in a mir-
ror pattern (but see Criss & Shiffrin, 2004a) as does com-
parison of a study list containing items repeated multiple
times to a study list containing once presented items
(Cary & Reder, 2003; Criss, submitted-a; Stretch & Wix-
ted, 1998). While REM and SLiM can account for both
types of mirror effects, the underlying reason differs. The
mirror pattern for normative word frequency is the
result of properties of the words themselves (e.g., in
REM, low frequency words are composed of uncommon
and thus diagnostic features and in SLiM high frequency
words are encoded with more variability at study and at
test). In contrast, the mirror pattern resulting from fre-
quency in an experimental list is captured by the models
for the same reason the models predict the null list
strength, differentiation.

The null list strength effect in recognition memory is
the finding that strengthening some items on a study list
does not harm performance for other items on that list.
This is typically demonstrated by showing approximate-
ly equivalent performance for a set of items each studied
the same number of times (e.g. one time or five times)
but in a list containing items studied the same number
of times (pure lists) or containing items studied different
numbers of times (mixed list). This null list strength
effect contrasts with the predictions of strength based
models: These models predicted that variance increases
with strength. As the strength of the stored memory
trace increases, so does the variance of the match
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between a test item and the stored traces. Thus for items
studied a single time, performance should be worse on a
mixed than pure list and the opposite was predicted for
items studied multiple times (see Hirshman, 1995; Rat-
cliff, Clark, & Shiffrin, 1990; Shiffrin, Ratcliff, & Clark,
1990 for further discussion). For both REM and SLiM,
the process of differentiation produces the strength
based mirror effect and the null list strength effect.
Differentiation

Differentiation is the idea that additional study of
an item (e.g., through repetition or study time) results
in further clarification of a single memory trace repre-
senting that study item. This is in contrast to the idea
popularized by some strength based models that addi-
tional study results in storage of additional copies of
the item. For example, suppose a word is presented
for study three times. Many strength based models
(e.g., Hintzman, 1988; Murdock, Smith, & Bai, 2001;
Nosofsky, 1984) assume that three noisy copies of
the concept are stored in episodic memory. In con-
trast, SLiM and REM assume that a single trace will
be stored and that trace will be updated with each
repetition, forming a more complete and more accu-
rate copy of the concept than if the word had been
presented just once.

At test, the REM and SLiM models (and most
extant models) assume that the test item is compared
to all items in episodic memory and the item is con-
sidered ‘‘studied’’ to the extent that it matches the
contents of memory. What impact does differentiation
have on this comparison process? Differentiation
results in two factors that combine to produce both
the strength based mirror effect and the null list
strength effect. First, the match between the test probe
and the memory trace stored during study of that item
(if in fact that item was studied) is greater following
multiple opportunities for encoding that study item.
Because a single memory trace is updated with each
study opportunity, that trace is a more complete and
more accurate representation of the studied item.
The more accurate a memory trace, the more it will
match the features of its own representation when pre-
sented at test. Second, the match between any test
probe (target or foil) and the memory traces stored
during study of other items will have more opportuni-
ties to mismatch and thus match less well following
multiple opportunities for encoding the studied items.
For the case of a target, these two factors are in com-
petition. As each item on the list receives additional
study, the match between the target and its own mem-
ory trace grows but the match between the target and
the remaining memory traces shrinks. However, the
match between the target and its own memory trace
tends to be large and thus dominates the overall
match to memory, producing an increase in the hit
rate with increases in study time. If the test probe is
a foil, only the second factor applies. The degree to
which a foil probe matches the contents of episodic
memory decreases as study time increases, producing
a lower FAR. Thus differentiation naturally produces
a strength based mirror effect. The same reasoning
applies to the null list strength effect. Strengthening
some items on the study list results in those items
being more dissimilar from other test item. This is true
for both the match between a target item and the
memory traces stored following study of other targets
and for foil items which have no corresponding mem-
ory trace. Thus while HR and FAR may change
slightly, they do so in tandem and overall discrimina-
bility does not change.

All of this is simply to make clear how differentiation
can account for the mirror effect and the null list
strength effect. REM and SLiM were developed as a
means of accounting for these (and other) data and
did so in part by incorporating the idea of differentia-
tion. Now we turn to a more detailed description of
the similarities and differences between SLiM and
REM highlighting those that lead to an empirical test
between the two models. The following is not a tutorial
on how to implement each model. We refer a reader
interested in this level of detail to the original sources
(i.e., McClelland & Chappell, 1998; Shiffrin & Steyvers,
1997).
Details of REM and SLiM

Both REM and SLiM represent an item as a vector
of feature values. The feature values are drawn from
some distribution with some parameter(s). When an
item is presented for study, an episodic memory trace
is stored in the form of a vector that is a ‘noisy’ copy
of the true complete vector representing the item. Addi-
tional study (either by means of massed or spaced pre-
sentation) results in additional storage in the same
vector leaving the memory trace less ‘noisy.’ The defini-
tion of noisy differs for the two models. First consider
REM. REM assumes that the features of an item are
drawn from a geometric distribution where some fea-
tures (i.e., those with low numerical values such as 1
or 2) are more common than others (i.e., those with high
numerical values such as 10 or 18) and common features
are less diagnostic than uncommon features. In REM,
episodic traces contain two sources of noise or error as
outlined in the top panel of Fig. 1. Prior to study, the
vector is empty (i.e., the value of zero represents the
absence of information). Study is guided by two param-
eters, one for the probability that a feature is stored (u)
and one for the probability that the correct feature value



Fig. 1. A schematic of the steps involved in generating and
storing a stimulus in episodic memory for both REM and
SLiM. See the text for additional details.
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will be stored given that a feature value is stored (c).1

The storage of features is discrete and independent.
For example, if the feature value of the actual stimulus
is 5 and the feature is stored correctly, a 5 will be stored.
If an incorrect feature is stored, it will be a value drawn
anew from the geometric distribution. Once a feature is
stored, its value is fixed and will not change during the
course of the experiment. Additional study results in
the storage of additional features. Thus, the two sources
of noise in REM’s storage process are the absence of
information about a feature and an incorrect value being
encoded. Absent features do not contribute to the deci-
sion process.

In SLiM, noise or error arises in both the perception
of the stimulus itself and in the storage process as illus-
trated in the bottom panel of Fig. 1. The features of the
actual stimulus are binary with some relatively small
proportion of features taking the value of 1 and the
remaining taking the value of 0, governed by the param-
eter f. The momentary perception of the stimulus is sub-
ject to variability such that a given feature of a given
stimulus might produce different feature values at differ-
ent moments in time. This is modeled by assuming that
each perceived stimulus is produced by an underlying
item generator. There are two types of features - those
likely to be active and take the value of 1 (p1 features)
and those likely to be inactive and take the value 0 (p0

features). In practice an item generator is simply a vector
designating the probability that each feature will take
the value of 1 during a presentation. The same process
of stimulus generation is repeated at both study and test
1 Note that we report the parameter u which is the combi-
nation of two parameters in the original REM paper (Shiffrin &
Steyvers, 1997). In the original paper, there was a probability of
storing a feature (u*) for each time step (t). These two
parameters are redundant and can be reduced to a single
parameter u as follows: u = 1 � (1 � u*)t. In the original paper,
u* = .04 and t = 10 thus u = .335167 and this is the value we
use.
so the same feature of the given stimulus may produce a
1 during encoding but a 0 at test or vice versa. Thus, one
source of noise in SLiM is the variability in encoding
between study and test. Another source of noise in SLiM
occurs during storage of the memory trace. Prior to
study, initial feature values are taken from the logistic-
normal distribution with a mean equal to the average
probability of any feature having the value of 1. This ini-
tialization process is uninformative in that the values are
randomly chosen and centered at the expected value of a
feature. However, in contrast to REM, the initialization
does allow each feature of each memory trace to partic-
ipate in the decision process. During encoding, a subset
of the features are learnable and the remainder are fro-
zen at the initial uninformative value. Given that a fea-
ture is learnable, there is a learning rate parameter
governing the degree to which the value stored in mem-
ory will approach the value of the study stimulus. Learn-
ing is graded in that a stored feature is an estimate of the
actual value of the stimulus and the estimate becomes
more accurate with additional study. Thus, another
source of noise or error in SLiM arises from the features
that are not updated and from the noisy encoding of
those features that are updated.

As just described, many details of the stimulus gener-
ation and storage processes differ for the two models
under consideration. On the other hand, the comparison
between a test probe and the contents of memory is fair-
ly similar. First note that both general theories of mem-
ory make a distinction between memory traces for
episodic memory and those for general knowledge (see
McClelland, McNaughton, & O’Reilly, 1995; Schooler,
Shiffrin, & Raaijmakers, 2001). Neither theory implies
separate or independent systems for different ‘types’ of
memory. Rather this distinction simply implies the abil-
ity to access a subset of information without a require-
ment to access all instances of that information across
the lifespan. The remaining discussion of the compari-
son process assumes that the decision process is access-
ing only recent episodic memory (i.e., the study list).2

During a recognition memory test, the complete set
of features representing the test probe is compared to
each of the noisy memory traces stored as described
above. The comparison process results in one value for
each stored memory trace indicating the likelihood that
the memory trace resulted from the current test stimulus.
The value is simply the probability of the data (e.g., the
discrepancy between features of the stimulus and fea-
tures stored in memory) given that the current stimulus
generated the memory trace, divided by the probability
2 This is an idealization of the slightly less complete selectivity
that would be provided by assuming that items are stored with a
representation of the study context and that a joint context-plus
item probe is used to probe memory.
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of the data given that the current stimulus did not gen-
erate the memory trace. The parameters that are used in
the calculation of this likelihood ratio differ slightly for
the two models but neither model assumes full knowl-
edge of all parameters. The main difference between
the comparison process of each model is the information
used to make a decision. In REM, the decision of
whether to call the test item ‘‘studied’’ is based on the
mean of the likelihood ratio for all memory traces
whereas only the maximum likelihood ratio is used in
SLiM. If the value (mean or max depending on the mod-
el) exceeds some criterion, then the item will be called
‘‘old’’ otherwise it will be called ‘‘new.’’

There are many approaches one could take to com-
pare models (e.g., see Myung, Forster, & Browne,
2000; Wagenmakers & Waldorp, 2006). The strategy
we adopt is very simple. We compare qualitative predic-
tions for a limited set of commonly employed variables
including study time, normative word frequency, list
length, and the similarity between targets and foils. We
note that the original models have been extended to
account for a host of new empirical findings (e.g., Criss
& Shiffrin, 2004b, 2004c, 2005; Malmberg & Shiffrin,
2005; Malmberg, Holden, & Shiffrin, 2004). However,
for simplicity we compare the original formulations
using the parameter values from the original papers
(i.e., McClelland & Chappell, 1998; Shiffrin & Steyvers,
1997). The parameter values are reported in Table 1 and
are taken from page 149 of Shiffrin and Steyvers and
Table 10 (for Simulation 3), or Table 7 (for all remaining
simulations) of McClelland and Chappell. As we now
describe in detail, the models make different qualitative
Table 1
A list of the parameters of REM and SLiM and the values used for

Sim

REM

Number of features per item
g Geometric distribution parameter
u Probability of storing a feature
c Probability of storing the correct value

given that a feature is stored
Criterion

SLiM

Number of features per item
Probability of a feature being updated

f Probability of being a p1 feature
p0 Probability the feature will be active for p0 features
p1 Probability the feature will be active for p1 features

Learning rate
Mean, standard deviation for the distribution
of initial feature values
Criterion

q Overall probability of an active feature (=fp1 + (1 � f)p0)

Note that q and the mean of the distribution are computed based on v
high frequency words and LF to low frequency words.
predictions even for the basic variables we employ,
and they provide different explanations for the same
empirical findings.
Simulation 1

Both SLiM and REM are similarity-based models, in
that the match between the test probe and the contents
of memory (i.e., the decision variable) grows as a func-
tion of the overlap between the study and test stimuli.
Similarity effects are pervasive in the empirical literature.
In studies where careful controls are employed to elimi-
nate encoding strategies, robust similarity effects are
found. For example, following incidental study of a list
containing categories of similar items, the false alarm
rate to unstudied items and the hit rate for studied items
both increase as the number of similar studied items
increases (Criss & Shiffrin, 2004b; Shiffrin, Huber, &
Marinelli, 1995). The natural ability of both such models
to account for these similarity effects has already been
shown. Of interest in the current simulation is whether
there is differential influence of similarity on the perfor-
mance of the models.

To address this issue, we ran a simulation where a
single item is stored in memory following the procedures
for storage described earlier. Test items are constructed
to vary in similarity to the stored item. In REM, similar
items are constructed by generating two vectors with the
standard procedure (i.e., drawing from the geometric
distribution with parameter g). One of those vectors is
deemed the target item and one the foil item. Each
the current simulations

ulations 1 and 4 Simulation 2 Simulation 3

20 10
.40 .40
.335167 .335167
.70 .70

1 1

73 37 313
.29 .29 .32
.25 .25 .04
.0005 .0005 HF = .03, LF = .001
.86 .86 .96
.82 .82 .01, .04, .07, .10, .13, .16
�1.45, 0.75 �1.45, 0.75 �2.95 , 0.405

�2.51 �2.51 �1.4
0.2154 0.2154 0.0533

alues of other parameters; they are not free to vary. HF refers to
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feature of the target item is independently copied to the
foil item with some probability determined by the simi-
larity parameter. If the parameter is equal to 1 then the
two vectors are identical and if the parameter is equal to
0 then the two vectors are randomly similar. Note that
randomly similar items do share features, the probability
of sharing a given feature value, v, is determined by the
geometric distribution,

PðvÞ ¼ gð1� gÞv�1ðv > 0Þ: ð1Þ

In our simulations, we use a value of g = .40 resulting in
an overlap between any two randomly generated vectors
of approximately 25%. Thus, the actual overlap between
the two stimuli is greater than the value of the similarity
parameter and is governed by both the similarity param-
eter and the parameter for the geometric distribution.
The procedure just described operates on the stimuli
themselves, prior to encoding.

The original procedure for generating similar vectors
in SLiM is different than that just described.3 To be sure
that any difference between the behavior of the models is
due to the theoretical mechanisms rather than the arbi-
trary procedure used to produce similar vectors, we
ran a simulation using the SLiM model but substituted
the REM procedure for generating similar items. This
3 The original procedure used to generate similar items in
SLiM follows. Recall that there are two types of features in
SLiM: those likely to be active (p1) and those likely to be
inactive (p0) when the stimulus is experienced. The study item
generator is constructed using the standard procedures. Then, a
similar test item is generated as follows: the test item generator
is constructed by independently copying each p1 feature of the
study item generator with some probability governed by the
similarity parameter. If the p1 feature is not copied, the test
stimulus generator takes the value p0. It is important to
maintain the same overall probability of any feature in any
generator being a p1 feature. Therefore, the probability that
each p0 feature of the study item generator is copied to the test
item generator is computed as follows:

ð1� Similarity ParameterÞ f
1� f

� �
; ð2Þ

where f is the expected proportion of features that are p1

features. This procedure guarantees that any and all
overlap between two item generators is dictated by the
similarity parameter. This is particularly evident in the
points for similarity parameter .10 and .20 of the SLi-
M_original predictions in Fig. 2. These two points actu-
ally dip below the value for similarity parameter of 0.
The distribution used to generate item vectors in SLiM
results in approximately 21.54% overlap between any
two randomly chosen vectors for the parameters used
here. Thus, a similarity parameter of less than .2154 cre-
ates vectors that are less similar than if the vectors had
been randomly generated.
simulation is identical to the original SLiM model in
all details with the exception of the method for generat-
ing similar vectors. We simply borrow the procedure just
described and generate two item generators, then copy
the features of the study item generator to the test item
generator with some probability determined by the sim-
ilarity parameter.

Fig. 2 shows the probability an item is categorized as
‘‘studied’’ as a function of the similarity parameter used
to generate the test item. Note that the leftmost (ran-
domly similar foils, similarity parameter = 0.0) and
rightmost (target items, similarity parameter = 1.0)
points are approximately equal for each model, indicat-
ing that the overall level of discriminability is approxi-
mately equal. What differs is the response of the
models to items that are similar but not identical to
the studied item. The line labeled SLiM_original proce-
dure in McClelland and Chappell (1998) used to gener-
ate similar items (described in Footnote 3). The line
labeled SLiM_alternate is the SLiM model combined
with the REM procedure for generating similar items.
Regardless of how similar vectors are generated in
SLiM, the REM model always produces a greater
P(old) for similar foils than does SLiM, across the entire
range of similarity. For any level of similarity, REM
results in a higher match for similar foils than SLiM
even when the discrimination between targets and ran-
domly similar foils is approximately equivalent.

Why is this the case? In REM, the features take any val-
ue greater than zero and the value indicates diagnosticity
(e.g., higher values are less common and thus more diag-
Similarity Parameter

0.0 0.2 0.4 0.6 0.8 1.0

P
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)
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Fig. 2. The predicted probability of calling an item old (P(old))
as a function of similarity between the single item stored in
memory and the test item. SLiM alternate is the SLiM model
using the REM method for generating similar vectors.
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nostic). When matching the test stimulus to the contents
of episodic memory, diagnosticity is taken into account.
Thus matching a diagnostic feature (e.g., a value of 6) pro-
vides more evidence that the test stimulus is old than
matching a less diagnostic feature (e.g., a value of 1). On
the other hand, all mismatching features, regardless of
diagnosticity, provide the same amount of evidence that
the stimulus is new as can be seen in Eq. (3).

kði;j;kÞ ¼ ð1� cÞnqði;j;kÞ
Y1
v¼1

cþ ð1� cÞgð1� gÞv�1

gð1� gÞv�1

" #nmðv;i;j;kÞ

:

ð3Þ

This is the REM equation for the likelihood ratio that
test stimulus j matches memory trace i for stimulated
subject k. The number of features with a non-zero value
that mismatch between test vector j and memory trace i

is labeled nq. The number of features that match and
have the value v is labeled nm. Note that only matching
features take into account the actual value of the feature.
If there is no information stored for a given feature, indi-
cated with a zero in the memory trace, that feature does
not play a role in the calculation. The decision about
whether an item is old or new is based on comparing
the average of the likelihood ratios to some criterion.

SLiM is similar in that one type of feature is less com-
mon (features with value one) and thus provides more
evidence in favor of an ‘‘old’’ response. However
because the features stored in memory in SLiM are some
continuous value between 0 and 1, the evidence from a
match and the evidence from a mismatch both vary as
a function of the distance to the value of the test stimu-
lus, as shown below.

kði;j;kÞ ¼
Q#-featurs

d¼1 ðMdiÞSdjð1�MdiÞð1�SdjÞQ#-featurs
d¼1 qSdjð1� qÞð1�SdjÞ

: ð4Þ

This is the SLiM equation for the likelihood ratio that
the test stimulus j matches memory trace i for stimulated
subject k. Sdj is the value of feature d in test stimulus j.
Mdi is the value of feature d stored in memory trace i

and q is the estimate of any individual feature having
the value of 1. A test stimulus is called ‘‘studied’’ if the
maximum likelihood ratio exceeds some criterion.4
4 The value used in the decision is actually the maximum log
odds. The odds is simply the likelihood computed via Eq. (4)
multiplied by the prior probability that the test item is item i.
The prior term is constant for all items in a given list length and
thus does not differentially contribute to any one experimental
condition more or less than another condition (provided that
the list length for each condition is equal). SLiM uses the log of
the odds value, rather than the odds itself. The log is a
monotonic transformation and thus provides the same infor-
mation as the untransformed odds. Neither the use of the prior
or the log transformation contribute to any difference between
REM and SLiM.
Thus, the difference in similarity functions comes from
the more limited range of possible matches in SLiM
compared to REM and the graded evidence provided
by mismatching features in SLiM but not REM.

How might this difference play out in empirical data?
Measuring similarity in the world in a way that trans-
lates directly to model parameters is perhaps not yet fea-
sible. We know similarity is flexible, context-dependent,
and subject to bias (e.g., Goldstone, 1994; Tversky,
1977) but our models have not yet incorporated such
processes. Thus, we cannot rule out either REM or
SLiM based on an empirically measured similarity val-
ue. Instead, our approach is to look at a task where
stimuli are pairs of items and similarity is simply the
number of items shared between stimuli.
Simulation 2

We now turn to the associative recognition para-
digm. In this paradigm, pairs of items are studied (e.g.,
AB, CD, and EF) and the memory test requires discrim-
inating between intact pairs (AB) and rearranged pairs
(AD) constructed by combining individual items from
two different study pairs. This paradigm allows another
comparison of the behavior of the models in the face of
considerable overlap between stimuli without relying on
the similarity parameter. In this simulation, pairs were
studied followed by testing intact (AB), rearranged
(AD), and novel pairs (XY). Novel pairs are constructed
from two items that were not presented on the study list.
Fig. 3 shows the performance of the models for these
three types of test pairs as a function of list length. Per-
formance for intact and novel pairs was approximately
equal across models but the performance on rearranged
List Length

0 20 40 60 80
0.0

0.2

0.4

SLiM
REM

Fig. 3. The predicted probability of calling a pair ‘‘old’’
(P(old)) as a function of list length. AB refers to intact test
pairs, AD refers to rearranged test pairs, and XY refers to novel
pairs. The inset plots d-prime for intact and rearranged pairs as
a function of list length.
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pairs differs. Consistent with the first simulation, REM
has a greater tendency to false alarm to foils that overlap
with targets, the rearranged pairs in this case, than does
SLiM. The inset contains d-prime for intact and rear-
ranged pairs and shows that discriminability in associa-
tive recognition is much better in SLiM than REM and
that SLiM but not REM predicts a list length effect for
associative recognition. Empirical data consistently
show list length effects in associative recognition when
list length is manipulated between-list or within-list
(Nobel & Shiffrin, 2001; Criss and Shiffrin, 2004c,
2005). As discussed in Criss and Shiffrin (2004c; 2005),
REM cannot predict a within-list list length effect for
associative recognition and a between-list list length
effect is only obtained with a change in the criterion
parameter. This and other findings lead Criss and Shif-
frin to adopt an emergent features account of associative
recognition. Following Murdock (1982; 1997), they
assumed that study of a pair results in the storage of
item and association information that contain indepen-
dently generated features. Thus, the similarity between
an association and the items from which is was generat-
ed is no greater than the similarity between two random-
ly selected items. SLiM is able to predict a list length
effect for associative recognition without assuming emer-
gent associative features. Ongoing work is assessing
whether or not the original formulation of SLiM can
account for the full set of findings presented in Criss
and Shiffrin that lead to the emergent features extension
of REM.

A related issue is the relative level of performance for
associative recognition (AB vs. AD) and pair recogni-
tion (AB vs. XY). Nobel and Shiffrin (2001) found that
following an identical study list of 20 pairs, d-prime for a
pair recognition test was 0.58 higher than d-prime for an
associative recognition test. Shiffrin and Steyvers (1998)
simulated a variety of strategies for performing associa-
tive recognition and found no satisfactory strategy that
produced performance close to the behavioral data, in
part due to the high level of FAR to rearranged pairs.
According to the inset in Fig. 3, at a list length of 20,
SLiM predicts that the difference in d-prime for pair rec-
ognition and associative recognition is 0.77 while REM
predicts a difference of 1.31 (both showing better perfor-
mance for pair than associative recognition).

Both Simulations 1 and 2 suggest that regardless of
whether similarity is manipulated by constructing simi-
lar vectors or by rearranging items in a pair, REM is
more likely than SLiM to commit false alarms to test
stimuli that overlap with studied stimuli. This translates
into REM predicting a null list length effect and general-
ly poor performance in associative recognition, neither
of which are supported by empirical studies. SLiM fares
better in that it does predict a list length effect and the
relative level of performance is closer (though not iden-
tical) to empirical data. Further simulations are required
to assess whether SLiM can account for within-category
but not between-category list length effects in associative
recognition demonstrated in Criss and Shiffrin, (2004c,
2005).
Simulation 3

In this simulation, we examine the impact of study
time on the word frequency mirror effect. The impact
of normative word frequency (WF) on episodic memory
performance is perhaps one of the most studied topics in
memory research. The standard finding is better perfor-
mance for words of low normative frequency (LF, e.g.,
barge) than words of high normative frequency (HF,
e.g., drive), manifest in both a higher HR and lower
FAR (e.g., Glanzer, Adams, Iverson, & Kim, 1993).
Both REM and SLiM attribute the effect of WF to a dif-
ference in the underlying properties of the words them-
selves. REM assumes the features of high and low
frequency words differ in diagnosticity. LF words have
a lower g parameter for the geometric distribution than
HF words. The result is that HF words have more com-
mon and thus less diagnostic features than LF words.
Further, because HF words have common features, they
also tend to be more similar to one another than LF
words. SLiM assumes that HF words are more subject
to encoding variability relative to LF words (i.e., p0 fea-
tures of HF item generators have a higher value than LF
item generators). Both assumptions have received empir-
ical support. Words with distinctive features are better
remembered than words with less distinctive features,
consistent with REM (Criss, submitted-b; Landauer &
Streeter, 1973; Malmberg, Steyvers, Stephens, & Shif-
frin, 2002; Zechmeister, 1972). Words present in few
semantic contexts in the environment are better remem-
bered than words experienced in many different contexts
consistent with SLiM (Steyvers & Malmberg, 2003).
Rather than dispute the underlying cause of the WF
effect, the current simulations are concerned with a case
where the mirror pattern is disrupted.

Recently, there have been numerous reports of dis-
ruptions of the mirror pattern (e.g., Balota, Burgess,
Cortese, & Adams, 2002; Criss, submitted-b; Criss &
Shiffrin, 2004a; Hirshman & Arndt, 1997; Hirshman,
Fisher, Henthorn, Arndt, & Passannante, 2002), ques-
tioning the assumed ubiquitous nature of the effect.
We focus on the case of drug induced amnesia in part
because REM has already been applied to the relevant
data. When participants are under the influence of the
benzodiazepine Midazolam during study of a list of
words, the resulting pattern of data is a higher HR
and a higher FAR for HF than LF words. The same
participants show the standard pattern of a higher HR
and lower FAR for LF than HF words when given sal-
ine (Hirshman et al., 2002, see also Mintzer, 2003). Ori-
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Fig. 4. The predicted probability of calling an item ‘‘old’’
(P(old)) as a function of the learning rate parameter in SLiM.
HF refers to high frequency words and LF to low frequency
words.
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ginal reports of these findings argued that the data ruled
out a single process model of memory and favored a
dual process with one component (i.e., recollection) dis-
rupted by Midazolam. Malmberg, Zeelenberg, and Shif-
frin (2004) showed that REM, a single process model,
accounted for the pattern of results. Recall that two
parameters govern storage in REM: u, the probability
of storing a feature and c, the probability that the cor-
rect value will be stored given that a feature is stored.
The u parameter is typically assumed to vary as a func-
tion of study time and the c parameter is assumed to be a
fixed parameter of the system, not subject to experimen-
tal manipulation. Malmberg et al., showed that varying
the parameter c at study allowed REM to account for
the reversal in the HR effect. Specifically, the Midazolam
condition was modeled as having a lower c during
encoding than the saline condition (the value of c at test
was the same for both conditions). Briefly, the idea is
that Midazolam-induced amnesia disrupts the normal
processing of the memory system causing noise (e.g.,
incorrect features) to be stored. In the REM account,
the amount of information stored (i.e., number of fea-
tures) is approximately the same for saline and Midazo-
lam; Midazolam simply results in more cases where the
value of the stored feature does not match the value of
the studied stimulus. This is in contrast to allowing the
parameter u to vary as a consequence of Midazolam,
resulting in the storage of less information (e.g., fewer
features).

Recall that in SLiM, every feature in a memory
trace begins as noise and those features able to be
learned move toward the actual value of the stimulus
as a function of study time. In contrast to REM, SLiM
can account for the reversal in the HR without assum-
ing that the processes underlying memory are different
for an intact and an impaired memory system. Instead,
a SLiM account can be given under the simple assump-
tion that Midazolam-induced amnesia reflects a
reduced learning rate. Fig. 4 shows the consequence
of varying the learning rate parameter on the WF effect
in SLiM. In this simulation, WF and learning rate are
varied in a single study list containing 60 items equally
divided among conditions. Test items include targets
from all learning rate by WF conditions as well as
unstudied LF and HF words. The leftmost points in
Fig. 4 are the false alarm rates (learning rate = 0)
and we see that SLiM predicts HF FAR > LF FAR,
consistent with empirical data. The remaining points
are targets with various amounts of study and we see
that SLiM predicts a pattern in which low learning
rates result in a HF HR advantage and high learning
rates result in a LF HR advantage. As described earli-
er, HF words have a higher value for p0 which results
in more spurious features with the value of 1. Because
active features are more diagnostic than inactive fea-
tures, matching a 1 provides more evidence that the
test item is old than matching an inactive feature.
Thus, the higher FAR for HF words is due to spurious
matching of active features. A moderate amount of
encoding is required to overcome the effect of this spu-
rious matching, thus the advantage of LF targets is not
immediately present.
Experiment

If the HR advantage reverses with reduced learning
rate, then it should be possible to demonstrate this pat-
tern of data in participants with unimpaired memory.
Recall that study time manipulations are modeled by
the learning rate parameter. Thus SLiM predicts that
very short study times should result in a HF HR advan-
tage that reverses with additional study time. In other
words, Midazolam induced amnesia is simply a point
on a continuum between low and high learning rates.
Other studies found disruptions of the WF mirror pat-
tern with Korsakoff and geriatric participants, both per-
haps consistent with a deficit in learning rate
explanation (Huppert & Piercy, 1976 & Balota et al.,
2002, respectively). If the learning rate explanation is
viable, we should be able to mimic the effect by reducing
learning rate in an otherwise unimpaired memory sys-
tem. In contrast, REM required introducing different
processing assumptions (storing noise rather than noth-
ing) to account for performance of participants who
have taken Midazolam. In fact, Malmberg et al. (2004)
explicitly ruled out the possibility that Midazolam
induced amnesia could be accounted for by varying
the u parameter, the parameter used to model study



Table 2
The probability of calling an item old as a function of condition
for the experiment and for the Midazolam condition of
Hirshman et al. (2002)

Study time (ms) High frequency Low frequency

0 .317 (.032) .227 (.024)
150 .460 (.035) .436 (.033)
300 .469 (.040) .489 (.033)
600 .490 (.037) .536 (.036)

Hirshman et al. (2002)
0 0.38 0.25

1500 0.39 0.32
1200 0.43 0.39
2500 0.46 0.41

When available, standard errors of the mean are reported in
parentheses.
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time.5 The goal of the following study is to test the pre-
dictions of SLiM. Three different study times were used
in a mixed-list design followed by single item yes–no rec-
ognition memory test.

Methods

Participants

Thirty-five people from the Carnegie Mellon Univer-
sity community received $7 for participation.

Materials

The LF word pool consisted of 242 words with a fre-
quency between 1 and 10 per million (M = 3.36,
SD = 2.51). The HF word pool consisted of 242 words
with a frequency of at least 50 per million (M =
110.22, SD = 86.52; Coltheart, 1981; Kucera & Francis,
1967).

Procedure

The study list was constructed anew for each partic-
ipant and contained 60 HF and 60 LF words randomly
selected from their respective word pool. An equal num-
ber of LF and HF words were assigned to each of three
different study time conditions: 150, 300, or 600 ms. All
120 study items were randomly intermixed and present-
ed individually on a computer monitor for the designat-
ed study time. A blank screen was presented for 250 ms
between consecutive study trials. Between the study and
test lists, participants played a game containing no
words for 35–50 min. Following the break, participants
made a yes-no single item recognition memory decision
for 240 test items including all of the targets and an
equal number of HF and LF unstudied foils.

Results and discussion

Hits, false alarms, and standard errors are reported
in Table 2. FARs follow the standard pattern with high-
er FARs for HF than LF words but the HRs show a
reversal as a function of study time. The LF FAR is low-
er than the HF FAR t (34) = �3.613, p = .001. A
planned comparison on the interaction between WF
and study time for target items supported what is evi-
dent in Table 2: a reversal in the HR as a function of
study time F (1, 34) = 4.16, MSE = .010, p = .049. Con-
5 Note that in the simulations reported by Malmberg et al.
(2004) there is no crossover in the HR when the u parameter
(i.e., study time) is varied. We conducted additional simulations
not reported here and show that in fact REM can produce a
reversal in the HR as a function of study time. One difference
between the Malmberg et al simulations and our own is the
range of u under consideration. The Malmberg et al simulations
begin with u = .20 and our simulations show a HF HR
advantage for values of u 6 .05.
sistent with a priori predictions of SLiM, we see that the
LF HR advantage does not emerge until a sufficient
amount of study time has accumulated. No doubt, the
empirical effect is small. The bottom half of Table 2
shows the data from the Midazolam condition of Hirsh-
man et al. (2002).6 The best performance in the Hirsh-
man et al study is approximately equivalent to the
worst performance in our experiment and is the only
condition where we find a larger HR for HF words.
Thus, it is likely that larger effects can be found by push-
ing performance even lower than we were able to do
here. Further reduction of study time is possible but
becomes somewhat tenuous because of the need to
ensure that participants have sufficient time to read the
words. Alternative potential strategies to reduce the
learning rate and thus performance (e.g., masked presen-
tation, low contrast presentation, dual task encoding,
etc) await further investigation.
Simulation 4

In our final simulation, we consider the decision rule
used to judge whether a test stimulus is old or new. In
REM, the decision is based on the average of the likeli-
hood ratios while in SLiM the decision is based on the
single maximum likelihood ratio (scaled by the list
length, see Footnote 3). This difference has been pointed
out before (Shiffrin & Steyvers, 1998) with the conclu-
sion that the mean is the optimal decision rule because
6 For convenience, the distractor time between study and test
we used is somewhat less than the break of 70 min required to
minimize the sedating effect of Midazolam in the Hirshman
et al. (2002) study. Otherwise, the details of our experiment
(e.g., list length) are similar to Hirshman et al. with the obvious
exception that no drugs were administered.
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Fig. 6. A ROC plot for the max and mean rules in SLiM. The
plot was generated by taking the cumulative sum across
successive bins of the odds distributions.
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it uses all available information. Indeed, for simulations
with REM, Shiffrin and Steyvers showed that the mean
rule produces superior performance in terms of d-prime
than the max rule but otherwise similar patterns of data.
To examine this issue in SLiM, we simply ran a simula-
tion with 40 study items followed by testing of targets
and randomly similar foils. We recorded the odds values
generated for each test item and divide them into four
categories, the maximum odds value (n = 1) and all the
remaining odds (n = 39) for cases where a target is tested
and cases where a foil is tested. Histograms of the distri-
butions are plotted in Fig. 5. As expected, the distribu-
tion with the highest mean is the distribution for the
maximum value when a target item is tested, followed
by the max when a foil item is tested, followed by the
distributions for all values other than the max. The dis-
tributions of all of the odds values other than the max
are approximately identical regardless of whether a tar-
get or a foil is tested. Indeed for SLiM, the max and the
mean appear to provide the same information and the
same level of performance, as indicated from the ROC
analysis shown in Fig. 6.

In fact, we obtained similar plots for REM and sus-
pect that the small benefit in d-prime for the mean rule
reported by Shiffrin and Steyvers (1998) was the result
of using slightly different location for the criteria for
the max and mean rules. When the target and foil distri-
butions have unequal variance, as is the case for both
REM and SLiM, a change in criterion can result in a
change in d-prime (Green & Swets, 1966; Macmillan &
Creelman, 1991). Note however, that when performance
is very low, there is a small benefit for the mean rule over
the max rule. Thus based on our simulations with both
REM and SLiM, we conclude that there is little practical
difference between using the max or mean rule except
under conditions with very low performance. The mean
log (odds)
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Fig. 5. The distribution of log(odds) for the maximum value
and the remaining values when a target item is tested and when
a foil item is tested.
rule does have the user-friendly quality of centering the
distributions so that the target and foil distributions
intersect at an odds value of 1 thus producing an opti-
mal criterion of 1 for all experimental manipulations
(though note that participants do not necessarily use
the optimal criterion). Otherwise, the use of the mean
or max rule is not a critical difference between the
models.
Differentiation models are not fully informed likelihood

models

The following concerns a property the two models
share that is often misunderstood. Both models compute
a likelihood ratio as part of the decision process and are
often referred to as likelihood models. Unfortunately,
this same term is also used to refer to another class of
models in the tradition of signal detection theory (Green
& Swets, 1966; Macmillan & Creelman, 1991). In these
latter models, which we will call fully informed likeli-
hood models, it is assumed that the memory system
knows the full statistical properties of the distribution
of familiarity values associated with both the old and
the new stimuli used within each test condition of the
experiment. The likelihood of obtaining the familiarity
value associated with a given test item under each of
the two distributions is then used as the basis for catego-
rizing the item as old or new and for assigning a confi-
dence rating.

While it is true that REM and SLiM make use of
what both models call likelihood ratios, these ratios
are (as the name of SLiM indicates) subjective likeli-
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hoods based on the quality of match between the test
item and memory. These subjective likelihoods corre-
spond to the familiarity values used in the fully informed
likelihood ratio models, but crucially, unlike fully
informed likelihood models, no knowledge of the distri-
bution of such values specific to the experimental condi-
tion is assumed. REM and SLiM both make use of some
parameter values assumed to reflect knowledge of item
properties in calculating the likelihood ratio [see Eqs.
(3) and (4)]. However, fixed values for these parameters
(c and g in REM and q in SLiM) are used across all con-
ditions of an experiment. Further, McClelland and
Chappell make clear that all values used in the likeli-
hood ratios are assumed to be estimates of the true val-
ues based on long-run averages of item properties.
Similarly, the convention in REM is that the parameter
values are accurate long run averages across the system’s
life. There is some empirical support for the approach
taken in REM and SLiM. Balakrishnan and Ratcliff
(1996) demonstrated that fully informed likelihood ratio
models necessarily predict that cumulative confidence
curves will cross (at least for the case where the subjec-
tive response to targets and foils are normally distribut-
ed variables). They conducted a range of empirical
studies, and never found a case where cumulative confi-
dence curves cross, consistent with the idea that full con-
dition-specific distributional knowledge is not used to
compute likelihood ratios. Both REM and SLiM are
supported by this finding because they do not make
use of different parameter values for different experimen-
tal conditions when computing the likelihood ratio. This
was demonstrated for SLiM in the original McClelland
and Chappell paper and was confirmed for REM in sim-
ulations not reported here. Because of these differences
between REM and SLiM on the one hand and fully
informed likelihood models on the other, we encourage
authors to abandon the use of the label ‘likelihood mod-
els’ when discussing any of the models so as to avoid
confusion. Some further modifiers are required so that
the models can be properly distinguished.
General discussion

To summarize the analyses presented above, despite
popular belief that the REM and SLiM models make
parallel predictions, the models sometimes behave quite
differently. In simulations we showed that (1) REM is
more likely to false alarm to items that share any degree
of similarity with a studied item (2) SLiM a priori pre-
dicts a reversal in the HR pattern for HF and LF words
as a function of study time and this prediction was con-
firmed empirically. In contrast, the study time parameter
was explicitly ruled out by Malmberg et al. (2004) as a
basis for this reversal in REM. Interestingly, the one
previously acknowledged difference between the models
appears not to have serious consequences: (3) Using
either the max or the mean of the likelihood ratios as
a basis for decision provides virtually identical
information.

The differences between the models are important to
keep in mind for at least two reasons. Perhaps most
importantly, they indicate that the shared core assump-
tions of the two models are not enough to ensure that
they make identical predictions. This means that, as with
other models, each one’s successes and failures appar-
ently depend on additional assumptions—ones that are
unlikely to have been central to the design goals of either
model’s inventors. Thus, efforts to confirm or disconfirm
the core assumptions must be conducted with care with-
in either model, taking into account the ancillary
assumptions.

A second important point is that the models often
account for the same data in different ways, thus leading
to alternative ways of thinking about what has been
learned from a particular set of experiments. Consider
two cases in point: First, the finding that REM and
SLiM differ in their response to similarity between stud-
ied items. This difference may be especially important
for our understanding of the representation of pairs in
memory. Certain results from studies on associative rec-
ognition cannot be modeled in REM without assuming
that pairs of items give rise to additional emergent fea-
tures not present in the members of the pair (e.g., see
Criss, 2005; Criss & Shiffrin, 2004c, 2005). The same
may not be true if these results are modeled with SLiM.
Indeed, we are currently exploring the possibility that
associative recognition can be explained by SLiM with-
out recourse to the notion that pairs contain additional
emergent features. Second, consider the effects of Midaz-
olam on memory. In modeling work based on REM, the
absence of a mirror effect under the drug could not easily
be explained as a simple reduction of learning; instead it
was concluded that the drug resulted in a reduction in
the accuracy of encoding item properties. But SLiM
accounts for the effects of Midazolam in terms of a sim-
ple reduction of learning rate. These quite different
explanations of amnesia merit further testing.

In summary, it appears that the apparently innocu-
ous differences between REM and SLiM can have quite
dramatically different implications for the conclusions
one may draw from the results of experiments. However,
it must be noted that the above simulations used param-
eter values reported in the original papers. Since the
behavior of both models have a complex high dimen-
sional non-linear dependence on parameter values, the
results presented here represent a very local observation
of what each model may be capable of predicting and
may not be generally true for all parameter settings.
Based on our own experience with the models spanning
several years and a variety of parameters and experimen-
tal designs, we are fairly confident that the findings
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reported here are not arbitrary or confined to the partic-
ular parameter values. However, this can only be
addressed with more formal methods for addressing
model mimicry (e.g., Wagenmakers, Ratcliff, Gomez,
& Iverson, 2004). Further research is clearly called for
so that we may better understand the generality of the
differences between the models . In the meantime, we
urge others to keep in mind that the models are indeed
quite different, and that the behavior of one should
not be assumed to be fully representative of the behavior
of the other.
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