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Multivariable Calculus

Functions of many variables:

1) Policies may be multidimensional (policy provision and pork buy off)

2) Countries may invest in offensive and defensive resources for fighting
wars

3) Ethnicity and resources could affect investment

Today:

0) Determinant

1) Multivariate functions

2) Partial Derivatives, Gradients, Jacobians, and Hessians

3) Total Derivative, Implicit Differentiation, Implicit Function Theorem

4) Multivariate Integration
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Determinant

Suppose we have a square (n × n) matrix A

A =

(
a11 a12
a21 a22

)
A determinant is a function that assigns a number to square matrices
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Determinant

Facts needed to define determinant :

Definition

A permutation of the set of integers {1, 2, . . . , J} is an arrangement of
these integers in some order without omissions or repetition.

For example, consider {1, 2, 3, 4}
{3, 2, 1, 4}
{4, 3, 2, 1}

If we have J integers then there are J! permutations
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Determinant

Definition

An inversion occurs when a larger integer occurs before a smaller integer
in a permutation

Even permutation: total inversions are even

Odd permutation: total inversions are odd

Count the inversions

{3, 2, 1}
{1, 2, 3}
{3, 1, 2}
{2, 1, 3}
{1, 3, 2}
{2, 3, 1}
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Determinant

Definition

For a square nxn matrix A, we will call an elementary product an n
element long product, with no two components coming from the same row
or column. We will call a signed elementary product one that multiplies
odd permutations of the column numbers by −1.

(
a11 a12
a21 a22

)
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Determinant

Definition

For a square nxn matrix A, we will call an elementary product an n
element long product, with no two components coming from the same row
or column. We will call a signed elementary product one that multiplies
odd permutations of the column numbers by −1.

a11 a12 a13
a21 a22 a23
a31 a32 a33


There are n! elementary products
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Determinant

Definition

Suppose A is an n × n matrix. Define the determinant function det(A) to
be the sum of signed elementary products from A. Call det(A) the
determinant of A

Suppose A is a 2× 2 matrix

det(A) = det

(
a11 a12
a21 a22

)
= a11a22 − a12a21

R Code!
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Determinant

Definition

Suppose A is an n × n matrix. Define the determinant function det(A) to
be the sum of signed elementary products from A. Call det(A) the
determinant of A

Suppose A is a 3× 3 matrix.

det(A) = det

a11 a12 a13
a21 a22 a23
a31 a32 a33


= a11a22a33 − a11a23a32 − a12a21a33

+a12a23a31 + a13a21a32 − a13a22a31

R Code!
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Multivariate Functions

f (x1, x2) = x1 + x2

Justin Grimmer (Stanford University) Methodology I September 7th, 2015 8 / 51



Multivariate Functions

f (x1, x2) = x21 + x22
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Multivariate Functions

f (x1, x2) = sin(x1) cos(x2)
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Multivariate Functions

f (x1, x2) = −(x − 5)2 − (y − 2)2
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Multivariate Functions

f (x1, x2, x3) = x1 + x2 + x3
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Multivariate Functions

f (x) = f (x1, x2, . . . , xN)

= x1 + x2 + . . .+ xN

=
N∑
i=1

xi
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Multivariate Functions

Definition

Suppose f : <n → <1. We will call f a multivariate function. We will
commonly write,

f (x) = f (x1, x2, x3, . . . , xn)

- <n = < ×︸︷︷︸
cartesian

<× <× . . .<

- The function we consider will take n inputs and output a single
number (that lives in <1, or the real line)
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Example 1

f (x1, x2, x3) = x1 + x2 + x3

Evaluate at x = (x1, x2, x3) = (2, 3, 2)

f (2, 3, 2) = 2 + 3 + 2

= 7
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Example 1

f (x1, x2) = x1 + x2 + x1x2

Evaluate at w = (w1,w2) = (1, 2)

f (w1,w2) = w1 + w2 + w1w2

= 1 + 2 + 1× 2

= 5
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Preferences for Multidimensional Policy
Recall that in the spatial model, we suppose policy and political actors are
located in a space.

Suppose that policy is N dimensional—or x ∈ <N .
Suppose that legislator i ’s utility is a U : <N → <1 and is given by,

U(x) = U(x1, x2, . . . , xN)

= −(x1 − µ1)2 − (x2 − µ2)2 − . . .− (xN − µN)2

= −
N∑
j=1

(xj − µj)2

Suppose µ = (µ1, µ2, . . . , µN) = (0, 0, . . . , 0). Evaluate legislator’s utility
for a policy proposal of m = (1, 1, . . . , 1).

U(m) = U(1, 1, . . . , 1)

= −(1− 0)2 − (1− 0)2 − . . .− (1− 0)2

= −
N∑
j=1

1 = −N

(0.1)Justin Grimmer (Stanford University) Methodology I September 7th, 2015 11 / 51



Preferences for Multidimensional Policy
Recall that in the spatial model, we suppose policy and political actors are
located in a space.
Suppose that policy is N dimensional—or x ∈ <N .

Suppose that legislator i ’s utility is a U : <N → <1 and is given by,

U(x) = U(x1, x2, . . . , xN)

= −(x1 − µ1)2 − (x2 − µ2)2 − . . .− (xN − µN)2

= −
N∑
j=1

(xj − µj)2

Suppose µ = (µ1, µ2, . . . , µN) = (0, 0, . . . , 0). Evaluate legislator’s utility
for a policy proposal of m = (1, 1, . . . , 1).

U(m) = U(1, 1, . . . , 1)

= −(1− 0)2 − (1− 0)2 − . . .− (1− 0)2

= −
N∑
j=1

1 = −N

(0.1)Justin Grimmer (Stanford University) Methodology I September 7th, 2015 11 / 51



Preferences for Multidimensional Policy
Recall that in the spatial model, we suppose policy and political actors are
located in a space.
Suppose that policy is N dimensional—or x ∈ <N .
Suppose that legislator i ’s utility is a U : <N → <1 and is given by,

U(x) = U(x1, x2, . . . , xN)

= −(x1 − µ1)2 − (x2 − µ2)2 − . . .− (xN − µN)2

= −
N∑
j=1

(xj − µj)2

Suppose µ = (µ1, µ2, . . . , µN) = (0, 0, . . . , 0). Evaluate legislator’s utility
for a policy proposal of m = (1, 1, . . . , 1).

U(m) = U(1, 1, . . . , 1)

= −(1− 0)2 − (1− 0)2 − . . .− (1− 0)2

= −
N∑
j=1

1 = −N

(0.1)Justin Grimmer (Stanford University) Methodology I September 7th, 2015 11 / 51



Preferences for Multidimensional Policy
Recall that in the spatial model, we suppose policy and political actors are
located in a space.
Suppose that policy is N dimensional—or x ∈ <N .
Suppose that legislator i ’s utility is a U : <N → <1 and is given by,

U(x) = U(x1, x2, . . . , xN)

= −(x1 − µ1)2 − (x2 − µ2)2 − . . .− (xN − µN)2

= −
N∑
j=1

(xj − µj)2

Suppose µ = (µ1, µ2, . . . , µN) = (0, 0, . . . , 0). Evaluate legislator’s utility
for a policy proposal of m = (1, 1, . . . , 1).

U(m) = U(1, 1, . . . , 1)

= −(1− 0)2 − (1− 0)2 − . . .− (1− 0)2

= −
N∑
j=1

1 = −N

(0.1)Justin Grimmer (Stanford University) Methodology I September 7th, 2015 11 / 51



Preferences for Multidimensional Policy
Recall that in the spatial model, we suppose policy and political actors are
located in a space.
Suppose that policy is N dimensional—or x ∈ <N .
Suppose that legislator i ’s utility is a U : <N → <1 and is given by,

U(x) = U(x1, x2, . . . , xN)

= −(x1 − µ1)2 − (x2 − µ2)2 − . . .− (xN − µN)2

= −
N∑
j=1

(xj − µj)2

Suppose µ = (µ1, µ2, . . . , µN) = (0, 0, . . . , 0). Evaluate legislator’s utility
for a policy proposal of m = (1, 1, . . . , 1).

U(m) = U(1, 1, . . . , 1)

= −(1− 0)2 − (1− 0)2 − . . .− (1− 0)2

= −
N∑
j=1

1 = −N

(0.1)Justin Grimmer (Stanford University) Methodology I September 7th, 2015 11 / 51



Preferences for Multidimensional Policy
Recall that in the spatial model, we suppose policy and political actors are
located in a space.
Suppose that policy is N dimensional—or x ∈ <N .
Suppose that legislator i ’s utility is a U : <N → <1 and is given by,

U(x) = U(x1, x2, . . . , xN)

= −(x1 − µ1)2 − (x2 − µ2)2 − . . .− (xN − µN)2

= −
N∑
j=1

(xj − µj)2

Suppose µ = (µ1, µ2, . . . , µN) = (0, 0, . . . , 0). Evaluate legislator’s utility
for a policy proposal of m = (1, 1, . . . , 1).

U(m) = U(1, 1, . . . , 1)

= −(1− 0)2 − (1− 0)2 − . . .− (1− 0)2

= −
N∑
j=1

1 = −N

(0.1)Justin Grimmer (Stanford University) Methodology I September 7th, 2015 11 / 51



Preferences for Multidimensional Policy
Recall that in the spatial model, we suppose policy and political actors are
located in a space.
Suppose that policy is N dimensional—or x ∈ <N .
Suppose that legislator i ’s utility is a U : <N → <1 and is given by,

U(x) = U(x1, x2, . . . , xN)

= −(x1 − µ1)2 − (x2 − µ2)2 − . . .− (xN − µN)2

= −
N∑
j=1

(xj − µj)2

Suppose µ = (µ1, µ2, . . . , µN) = (0, 0, . . . , 0).

Evaluate legislator’s utility
for a policy proposal of m = (1, 1, . . . , 1).

U(m) = U(1, 1, . . . , 1)

= −(1− 0)2 − (1− 0)2 − . . .− (1− 0)2

= −
N∑
j=1

1 = −N

(0.1)Justin Grimmer (Stanford University) Methodology I September 7th, 2015 11 / 51



Preferences for Multidimensional Policy
Recall that in the spatial model, we suppose policy and political actors are
located in a space.
Suppose that policy is N dimensional—or x ∈ <N .
Suppose that legislator i ’s utility is a U : <N → <1 and is given by,

U(x) = U(x1, x2, . . . , xN)

= −(x1 − µ1)2 − (x2 − µ2)2 − . . .− (xN − µN)2

= −
N∑
j=1

(xj − µj)2

Suppose µ = (µ1, µ2, . . . , µN) = (0, 0, . . . , 0). Evaluate legislator’s utility
for a policy proposal of m = (1, 1, . . . , 1).

U(m) = U(1, 1, . . . , 1)

= −(1− 0)2 − (1− 0)2 − . . .− (1− 0)2

= −
N∑
j=1

1 = −N

(0.1)Justin Grimmer (Stanford University) Methodology I September 7th, 2015 11 / 51



Preferences for Multidimensional Policy
Recall that in the spatial model, we suppose policy and political actors are
located in a space.
Suppose that policy is N dimensional—or x ∈ <N .
Suppose that legislator i ’s utility is a U : <N → <1 and is given by,

U(x) = U(x1, x2, . . . , xN)

= −(x1 − µ1)2 − (x2 − µ2)2 − . . .− (xN − µN)2

= −
N∑
j=1

(xj − µj)2

Suppose µ = (µ1, µ2, . . . , µN) = (0, 0, . . . , 0). Evaluate legislator’s utility
for a policy proposal of m = (1, 1, . . . , 1).

U(m) = U(1, 1, . . . , 1)

= −(1− 0)2 − (1− 0)2 − . . .− (1− 0)2

= −
N∑
j=1

1 = −N

(0.1)Justin Grimmer (Stanford University) Methodology I September 7th, 2015 11 / 51



Preferences for Multidimensional Policy
Recall that in the spatial model, we suppose policy and political actors are
located in a space.
Suppose that policy is N dimensional—or x ∈ <N .
Suppose that legislator i ’s utility is a U : <N → <1 and is given by,

U(x) = U(x1, x2, . . . , xN)

= −(x1 − µ1)2 − (x2 − µ2)2 − . . .− (xN − µN)2

= −
N∑
j=1

(xj − µj)2

Suppose µ = (µ1, µ2, . . . , µN) = (0, 0, . . . , 0). Evaluate legislator’s utility
for a policy proposal of m = (1, 1, . . . , 1).

U(m) = U(1, 1, . . . , 1)

= −(1− 0)2 − (1− 0)2 − . . .− (1− 0)2

= −
N∑
j=1

1 = −N

(0.1)Justin Grimmer (Stanford University) Methodology I September 7th, 2015 11 / 51



Preferences for Multidimensional Policy
Recall that in the spatial model, we suppose policy and political actors are
located in a space.
Suppose that policy is N dimensional—or x ∈ <N .
Suppose that legislator i ’s utility is a U : <N → <1 and is given by,

U(x) = U(x1, x2, . . . , xN)

= −(x1 − µ1)2 − (x2 − µ2)2 − . . .− (xN − µN)2

= −
N∑
j=1

(xj − µj)2

Suppose µ = (µ1, µ2, . . . , µN) = (0, 0, . . . , 0). Evaluate legislator’s utility
for a policy proposal of m = (1, 1, . . . , 1).

U(m) = U(1, 1, . . . , 1)

= −(1− 0)2 − (1− 0)2 − . . .− (1− 0)2

= −
N∑
j=1

1

= −N

(0.1)Justin Grimmer (Stanford University) Methodology I September 7th, 2015 11 / 51



Preferences for Multidimensional Policy
Recall that in the spatial model, we suppose policy and political actors are
located in a space.
Suppose that policy is N dimensional—or x ∈ <N .
Suppose that legislator i ’s utility is a U : <N → <1 and is given by,

U(x) = U(x1, x2, . . . , xN)

= −(x1 − µ1)2 − (x2 − µ2)2 − . . .− (xN − µN)2

= −
N∑
j=1

(xj − µj)2

Suppose µ = (µ1, µ2, . . . , µN) = (0, 0, . . . , 0). Evaluate legislator’s utility
for a policy proposal of m = (1, 1, . . . , 1).

U(m) = U(1, 1, . . . , 1)

= −(1− 0)2 − (1− 0)2 − . . .− (1− 0)2

= −
N∑
j=1

1 = −N

(0.1)Justin Grimmer (Stanford University) Methodology I September 7th, 2015 11 / 51



Regression Models and Randomized Treatments
Often we administer randomized experiments:

The most recent wave of interest began with voter mobilization, and
wonder if individual i turns out to vote, Votei

- T = 1 (treated): voter receives mobilization

- T = 0 (control): voter does not receive mobilization

Suppose we find the following regression model, where x2 is a participant’s
age:

f (T , x2) = Pr(Votei = 1|T , x2)

= β0 + β1T + β2x2

We can calculate the effect of the experiment as:

f (T = 1, x2)− f (T = 0, x2) = β0 + β11 + β2x2 − (β0 + β10 + β2x2)

= β0 − β0 + β1(1− 0) + β2(x2 − x2)

= β1
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Multivariate Derivative

Definition

Suppose f : X → <1, where X ⊂ <n. f (x) = f (x1, x2, . . . , xN). If the
limit,

∂

∂xi
f (x0) =

∂

∂xi
f (x01, x02, . . . , x0i , x0i+1, . . . , x0N)

= lim
h→0

f (x01, x02, . . . , x0i + h, . . . x0N)− f (x01, x02, . . . , x0i , . . . , x0N)

h

exists then we call this the partial derivative of f with respect to xi at the value
x0 = (x01, x02, . . . , x0N).
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Rules for Taking Partial Derivatives

Partial Derivative: ∂f (x)
∂xi

- Treat each instance of xi as a variable that we would differentiate
before

- Treat each instance of x−i = (x1, x2, x3, . . . , xi−1, xi+1, . . . , xn) as a
constant
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Example Partial Derivatives

f (x) = f (x1, x2)

= x1 + x2

Partial derivative, with respect to x1 at (x01, x02)

∂f (x1, x2)

∂x1
|(x01,x02) = 1 + 0|x01,x02

= 1
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Example Partial Derivatives

f (x) = f (x1, x2, x3)

= x21 log(x1) + x2x1x3 + x23

What is the partial derivative with respect to x1? x2? x3? Evaluated at
x0 = (x01, x02, x03).

∂f (x)

∂x1
|x0 = 2x1 log(x1) + x21

1

x1
+ x2x3|x0

= 2x01 log(x01) + x01 + x02x03
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Example Partial Derivatives

f (x) = f (x1, x2, x3)

= x21 log(x1) + x2x1x3 + x23

What is the partial derivative with respect to x1? x2?

x3?

Evaluated at
x0 = (x01, x02, x03).

∂f (x)

∂x2
|x0 = x1x3|x0

= x01x03
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Example Partial Derivatives
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= x21 log(x1) + x2x1x3 + x23

What is the partial derivative with respect to x1? x2? x3? Evaluated at
x0 = (x01, x02, x03).

∂f (x)

∂x3
|x0 = x1x2 + 2x3|x0

= x01x02 + 2x03
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Rate of Change, Linear Regression

Suppose we regress Approvali rate for Obama in month i on Employi and
Gasi . We obtain the following model:

Approvali = 0.8− 0.5Employi − 0.25Gasi

We are modeling Approvali = f (Employi ,Gasi ). What is partial derivative
with respect to employment?

∂f (Employi ,Gasi )

∂Employi
= −0.5
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Gradient

Definition

Suppose f : X → <1 with X ⊂ <n is a differentiable function. Define the
gradient vector of f at x0, ∇f (x0) as,

∇f (x0) =

(
∂f (x0)

∂x1
,
∂f (x0)

∂x2
,
∂f (x0)

∂x3
, . . . ,

∂f (x0)

∂xn

)

- The gradient points in the direction that the function is increasing in
the fastest direction

- We’ll use this to do optimization (both analytic and computational)
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Example Gradient Calculation

Suppose

f (x) = f (x1, x2, . . . , xn)

= x21 + x22 + . . .+ x2n

=
n∑

i=1

x2i

Then ∇f (x∗) is

∇f (x∗) = (2x∗1 , 2x
∗
2 , . . . , 2x

∗
n )

So if x∗ = (3, 3, . . . , 3) then

∇f (x∗) = (2 ∗ 3, 2 ∗ 3, . . . , 2 ∗ 3)

= (6, 6, . . . , 6)
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Second Partial Derivative

Definition

Suppose f : X → < where X ⊂ <n and suppose that ∂f (x1,x2,...,xn)
∂xi

exists.
Then we define,

∂2f (x)

∂xj∂xi
≡ ∂

∂xj

(
∂f (x)

∂xi

)

- Second derivative could be with respect to xi or with some other
variable xj

- Nagging question: does order matter?
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Second Partial Derivative: Order Doesn’t Matter

Theorem

Young’s Theorem Let f : X → < with X ⊂ <n be a twice differentiable
function on all of X . Then for any i , j , at all x∗ ∈ X ,

∂2

∂xi∂xj
f (x∗) =

∂2

∂xj∂xi
f (x∗)
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Second Order Partial Derivates

f (x) = x21x
2
2

Then,

∂2

∂x1∂x1
f (x) = 2x22

∂2

∂x1∂x2
f (x) = 4x1x2

∂2

∂x2∂x2
f (x) = 2x21
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Hessians

Definition

Suppose f : X → <1 , X ⊂ <n, with f a twice differentiable function. We
will define the Hessian matrix as the matrix of second derivatives at
x∗ ∈ X ,

H(f )(x∗) =


∂2f

∂x1∂x1
(x∗) ∂2f

∂x1∂x2
(x∗) . . . ∂2f

∂x1∂xn
(x∗)

∂2f
∂x2∂x1

(x∗) ∂2f
∂x2∂x2

(x∗) . . . ∂2f
∂x2∂xn

(x∗)
...

...
. . .

...
∂2f

∂xn∂x1
(x∗) ∂2f

∂xn∂x2
(x∗) . . . ∂2f

∂xn∂xn
(x∗)


- Hessians are symmetric

- They describe curvature of a function (think, how bended)

- Will be the basis for second derivative test for multivariate
optimization
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An Example

Suppose f : <3 → <, with

f (x1, x2, x3) = x21x
2
2x

2
3

∇f (x) = (2x1x
2
2x

2
3 , 2x

2
1x2x

2
3 , 2x

2
1x

2
2 , x3)

H(f )(x) =

 2x22x
2
3 4x1x2x

2
3 4x1x

2
2x3

4x1x2x
2
3 2x21x

2
3 4x21x2x3

4x1x
2
2x3 4x21x2x3 2x21x

2
2
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Functions with Multidimensional Codomains

Definition

Suppose f : <m → <n. We will call f a multivariate function. We will
commonly write,

f (x) =


f1(x)
f2(x)

...
fn(x)
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Example Functions

Suppose f : < → <2,

f (t) = (t2,
√

(t))
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Example Functions

Suppose f : <2 → <2 defined as

f (r , θ) =

(
r cos θ
r sin θ

)
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Example Functions

Suppose we have some policy x ∈ <M . Suppose we have N legislators
where legislator i has utility

Ui (x) =
M∑
j=1

−(xj − µij)2

We can describe the utility of all legislators to the proposal as

f (x) =


∑M

j=1−(xj − µ1j)2∑M
j=1−(xj − µ2j)2

...∑M
j=1−(xj − µNj)2
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Jacobian

Definition

Suppose f : X → <n, where X ⊂ <m, with f a differentiable function.
Define the Jacobian of f at x as

J(f )(x) =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xm

...
...

. . .
...

∂fn
x1

∂fn
x2

. . . ∂fn
xm
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Example of Jacobian

f (r , θ) =

(
r cos θ
r sin θ

)

J(f )(r , θ) =

(
cos θ −r sin θ
sin θ r cos θ

)
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Implicit Functions and Differentiation
We have defined functions explicitly

Y = f (x)

We might also have an implicit function:

1 = x2 + y2

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

X

Y
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Implicit Function Theorem (From Avi Acharya’s Notes)

Definition

Suppose X ⊂ <m and Y ⊂ <. Let f : X ∪ Y → < be a differentiable
function (with continuous partial derivatives). Let (x∗, y∗) ∈ X ∪ Y such
that

∂f (x∗, y∗)

∂y
6= 0

f (x∗, y∗) = 0

Then there exists B ⊂ <n such that there is a differentiable function
g : B → < such that x∗ ∈ B then g(x∗) = y∗ and f (x , g(x)) = 0. The
derivative of g for x ∈ B is given by

∂g

∂xj
= −

∂f
∂xj
∂f
∂y
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Example 1: Implicit Function Theorem

Suppose that the equation is

1 = x2 + y2

0 = x2 + y2 − 1

y =
√

1− x2 if y>0

y = −
√

1− x2 if y< 0
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Example 1: Implicit Function Theorem

∂f

∂x
= 2x

∂f

∂y
= 2y = 2

√
1− x2 if y > 0

∂f

∂y
= 2y = −2

√
1− x2 if y < 0

∂g(x)

∂x
|x0 = −∂f /∂x

∂f /∂y

= −2x0
2y

= − x0√
1− x20

if y > 0

= −2x0
2y

=
x0√

1− x20

if y < 0
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Implicit Function Theorem: Frequently Asked Questions

- Q: What’s the deal with the implicit function theorem failing?

- A: Consider our proposed solution

y =
√

1− x2

∂y

∂x
= − x√

1− x2

As x → 1 or x → −1 this derivative diverges
The intuition from the Implicit Function Theorem is that any function
g(x) = y there would need an “infinite” slope.
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Implicit Function Theorems: Frequently Asked Questions

- Q: What’s the deal with the following equation?:

∂g(x)

∂x
= −∂f /∂x

∂f /∂y

- A: Consider, first, the following example:

0 = f (x , y)

0 = x2 − y
∂y

∂x
= 2x

∂f (x , y)/∂x

∂f (x , y)/∂y
=

2x

−1
= −∂y

∂x

In this example, the negative sign is “moving things to the other side”.
In general, the negative sign will capture that we want to measure the
compensatory behavior of the function: how y moves in response to some
xi along a level curve
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Example 2: Implicit Function Theorem (From Jim Fearon)

Suppose there n individuals, each individual i earns pre-tax income yi > 0.

Total income Y =
∑n

i=1 yi
Per capita income: ȳ = Y /n
Individuals pay a proportional tax t ∈ (0, 1)
Suppose:

Ui (t, yi ) = yi (1− t2) + tȳ
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Individuals pay a proportional tax t ∈ (0, 1)

Suppose:

Ui (t, yi ) = yi (1− t2) + tȳ
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Example 2: Implicit Function Theorem (From Jim Fearon)

An individual’s optimal tax rate is:

∂Ui (t, yi )

∂t
= −2yi t + ȳ

0 = −2yi t
∗ + ȳ

ȳ

2yi
= t∗i

Checking the second derivative:

∂Ui (t, yi )

∂2t
= −2yi
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Example 2: Implicit Function Theorem (From Jim Fearon)

If we set utility equal to some constant a, it defines an implicit function

Define Marginal rate of Substitution as

MRS = −∂U(t, yi )/∂t

∂U(t, yi/∂yi
=
∂Y (t)

∂t

∂U(t, yi )/∂t = −2yi t + ȳ

∂U(t, yi/∂yi = (1− t2)

MRS =
2yi t − ȳ

1− t2
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Example 2: Implicit Function Theorem (From Jim Fearon)
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Multivariate Integration

Suppose we have a function f : X → <1,
with X ⊂ <2.

We will integrate a function over an area.
Area under function.
Suppose that area, A, is in 2-dimensions

- A = {x , y : x ∈ [0, 1], y ∈ [0, 1]}
- A = {x , y : x2 + y2 ≤ 1}
- A = {x , y : x < y , x , y ∈ (0, 2)}
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Multivariate Integration

Suppose we have a function f : X → <1,
with X ⊂ <2.
We will integrate a function over an area.
Area under function.
Suppose that area, A, is in 2-dimensions

- A = {x , y : x ∈ [0, 1], y ∈ [0, 1]}
- A = {x , y : x2 + y2 ≤ 1}
- A = {x , y : x < y , x , y ∈ (0, 2)}

How do calculate the area under the function over these regions?
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Multivariate Integration

Definition

Suppose f : X → < where X ⊂ <n. We will say that f is integrable over
A ⊂ X if we are able to calculate its area with refined partitions of A and
we will write the integral I =

∫
A f (x)dA

That’s horribly abstract. There is an extremely helpful theorem that makes
this manageable.

Theorem

Fubini’s Theorem Suppose A = [a1, b1]× [a2, b2]× . . .× [an, bn] and that
f : A→ < is integrable. Then∫

A
f (x)dA =

∫ bn

an

∫ bn−1

an−1

. . .

∫ b2

a2

∫ b1

a1

f (x)dx1dx2 . . . dxn−1dxn
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Multivariate Integration Recipe

∫
A
f (x)dA =

∫ bn

an

∫ bn−1

an−1

. . .

∫ b2

a2

∫ b1

a1

f (x)dx1dx2 . . . dxn−1dxn

1) Start with the inside integral x1 is the variable, everything else a
constant

2) Work inside to out, iterating

3) At the last step, we should arrive at a number
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Intuition: Three Dimensional Jello Molds, a discussion
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Multivariate Uniform Distribution

Suppose f : [0, 1]× [0, 1]→ < and f (x1, x2) = 1 for all

x1, x2 ∈ [0, 1]× [0, 1]. What is
∫ 1
0

∫ 1
0 f (x)dx1dx2?

∫ 1

0

∫ 1

0
f (x)dx1dx2 =

∫ 1

0

∫ 1

0
1dx1dx2

=

∫ 1

0
x1|10dx2

=

∫ 1

0
(1− 0)dx2

=

∫ 1

0
1dx2

= x2|10
= 1
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Example 2
Suppose f : [a1, b1]× [a2, b2]→ < is given by

f (x1, x2) = x1x2

Find
∫ b2
a2

∫ b1
a1

f (x1, x2)dx1dx2

∫ b2

a2

∫ b1

a1

f (x1, x2)dx1dx2 =

∫ b2

a2

∫ b1

a1

x2x1dx1dx2

=

∫ b2

a2

x21
2
x2|b1a1dx2

=
b21 − a21

2

∫ b2

a2

x2dx2

=
b21 − a21

2

(
x22
2
|b2a2

)
=

b21 − a21
2

b22 − a22
2
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f (x1, x2) = x1x2

Find
∫ b2
a2

∫ b1
a1

f (x1, x2)dx1dx2

∫ b2

a2

∫ b1

a1

f (x1, x2)dx1dx2 =

∫ b2

a2

∫ b1

a1

x2x1dx1dx2

=

∫ b2

a2

x21
2
x2|b1a1dx2

=
b21 − a21

2

∫ b2

a2

x2dx2

=
b21 − a21

2

(
x22
2
|b2a2

)
=

b21 − a21
2

b22 − a22
2
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Example 3: Exponential Distributions
Suppose f : <2

+ → < and that

f (x1, x2) = 2 exp(−x1) exp(−2x2)

Find:∫ ∞

0

∫ ∞

0

f (x1, x2)

=

2

∫ ∞

0

∫ ∞

0

exp(−x1) exp(−2x2)dx1dx2

=

2

∫ ∞

0

exp(−x1)dx1

∫ ∞

0

exp(−2x2)dx2

=

2(− exp(−x)|∞0 )(−1

2
exp(−2x2)|∞0 )

=

2

[
(− lim

x1→∞
exp(−x1) + 1)(−1

2
lim

x2→∞
exp(−2x2) +

1

2
)

]

=

2[
1

2
]

=

1
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Challenge Problems

1) Find
∫ 1
0

∫ 1
0 x1 + x2dx1dx2

2) Demonstrate that

∫ b

0

∫ a

0
x1 − 3x2dx1dx2 =

∫ a

0

∫ b

0
x1 − 3x2dx2dx1
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More Complicated Bounds of Integration

So far, we have integrated over rectangles. But often, we are interested in
more complicated regions

−1.0 0.0 1.0 2.0−
1.

0
0.

0
1.

0
2.

0

X

Y

How do we do this?
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Example 4: More Complicated Regions
Suppose f : [0, 1]× [0, 1]→ <, f (x1, x2) = x1 + x2. Find area of function
where x1 < x2.
Trick: we need to determine bound. If x1 < x2, x1 can take on any value
from 0 to x2

∫∫
x1<x2

f (x) =

∫ 1

0

∫ x2

0

x1 + x2dx1dx2

=

∫ 1

0

x2x1|x20 dx2 +

∫ 1

0

x21
2
|x20

=

∫ 1

0

x22dx2 +

∫ 1

0

x22
2

=
x32
3
|10 +

x32
6
|10

=
1

3
+

1

6

=
3

6
=

1

2
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Consider the same function and let’s switch the bounds.∫∫
x1<x2

f (x) =

∫ 1

0

∫ 1

x1

x1 + x2dx2dx1

=

∫ 1

0
x1x2|1x1 +

∫ 1

0

x22
2
|1x1dx1

=

∫ 1

0
x1 − x21 +

∫ 1

0

1

2
− x21

2
dx1

=
x21
2
|10 −

x31
3
|10 +

x1
2
|10 −

x31
6
|10

=
1

2
− 1

3
+

1

2
− 1

6

= 1− 3

6

=
1

2
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Example 5: More Complicated Regions
Suppose f [0, 1]× [0, 1]→ <, f (x1, x2) = 1. What is the area of
x1 + x2 < 1? Where is x1 + x2 < 1? Where, x1 < 1− x2

∫∫
x1+x2<1

f (x)dx =

∫ 1

0

∫ 1−x2

0
1dx1x2

=

∫ 1

0
x1|1−x2

0 dx2

=

∫ 1

0
(1− x2)dx2

= x2|10 −
x22
2
|10

= 1− (
1

2
)

=
1

2
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Where we’re going

Tomorrow: Multivariate Optimization + Review of Mathematical Concepts
Thursday: Probability Theory, Day 1
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