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Where We’ve Been, Where We’re Going

- Class 1: Finding Text Data

- Class 2: Representing Texts Quantitatively

- Class 3: Dictionary Methods for Classification

- Class 4: Comparing Language Across Groups

- Class 5: Texts in Space

- Class 6: Clustering

- Class 7: Topic models

- Class 8: Supervised methods for classification

- Class 9: Ensemble methods for classification

- Class 10: Scaling Speech
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Cross validation, Ensembles, and Super learning

Classification:

- Models for categorizing texts

- Know (develop) categories before hand

- Hand coding: assign documents to categories

- Infer: new document assignment to categories (distribution of
documents to categories)

- This week: how to select method?

- Combining many methods

Scaling: (when we get there!)
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Methods for Classification

Three supervised methods (there are many!)

1) Naive Bayes:

- Training set: Construct model of what documents “look like”
- Test set: Assign documents to categories, based on similarity to

categories

2) ReadMe:

- Focus on estimating proportions only
- Training set: construct model of stem profiles in categories
- Test set: linear algebra solution to problem (modulo dimensionality)

3) Support Vector Machines

- Training set: identify separating plane between two classes
- Test set: classify based on location to separating plane
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Support Vector Machines

Document i is an M × 1 vector of counts

yi = (y1i , y2i , . . . , yMi )

Suppose we have two classes, c1, c2.

ti = 1 if i is in class 1

ti = −1 if i is in class 2

Suppose they are separable:

- Draw a line between groups

- Goal: identify the line in the middle

- Maximum margin
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Support Vector Machines: Maximum Margin Classifier
(Bishop 2006)
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Support Vector Machines: Algebra (Bishop 2006)

Goal create a score to classify:

s(yi ) = β
′
yi + b

- β Determines orientation of surface (slope)

- b determines location (moves surface up or down)

- If s(yi ) > 0→ class 1

- If s(yi ) < 0→ class 2

- |s(yi )|||β|| = Document distance from decision surface (margin)
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Support Vector Machines: Algebra (Bishop 2006)

Objective function: maximum margin

mini [ |(s(yi )| ]: Point closest to decision surface
We want to identify β and b to maximize the margin:

arg maxβ,b

{
1

||β||
mini [ |(s(yi )| ]

}
arg maxβ,b

{
1

||β||
mini [ |β

′
yi + b| ]

}
Constrained optimization problem
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What About Overlap? (Bishop 2006)

- Rare that classes are separable.

- Define:

ξi = 0 if correctly classified

ξi = |s(yi )| if incorrectly classified

Tradeoff:

- Maximize margin between correctly classified groups

- Minimize error from misclassified documents

arg maxβ,b

{
C

N∑
i=1

ξi +
1

||β||
mini [ |β

′
yi + b| ]

}

C captures tradeoff
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How to Handle Multiple Comparisons?

- Rare that we only want to classify two categories

- How to handle classification into K groups?
1) Set up K classification problems:

- Compare each class to all other classes
- Problem: can lead to inconsistent results
- Solution(?): select category with largest “score”
- Problem: scales are not comparable

2) Common solution: set up K (K − 1)/2 classifications
- Perform vote to select class (still suboptimal)

3) Simultaneous estimation possible, much slower
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2) Common solution: set up K (K − 1)/2 classifications
- Perform vote to select class (still suboptimal)

3) Simultaneous estimation possible, much slower
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R Code to Run SVMs

library(e1071)

fit<- svm(T . , as.data.frame(tdm) , method =’C’,

kernel=’linear’)

where: method = ’C’ → Classification
kernel=’linear’ → allows for distortion of feature space. Options:

- Linear

- Polynomial

- Radial

- sigmoid

preds<- predict(fit, data =

as.data.frame(tdm[-c(1:no.train),]))
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Example of SVMs in Political Science Research

Hillard, Purpura, Wilkerson: SVMs to code topic/sub topics for policy
agendas project

SVMs are under utilized in political science
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Assessing Models (Elements of Statistical Learning)

- Model Selection: tuning parameters to select final model

- Model assessment : after selecting model, estimating error in
classification (last week’s discussion)
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How Do We Build A Model?
There are many ways to fit models
And many choices made when performing model fit
How do we choose?

Bad way to choose: within sample model fit (HTF Figure 7.1)
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How Do We Build A Model?

Model overfit:

- Some model complexity captures systematic features of the data

- Characteristics found in both training and test set

- Reduces error in both training and test set

- Additional model complexity: idiosyncratic features of the training set

- Reduces error in training set, increases error in test set
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How Do We Select A Model?

Analytic statistics for selection, include penalty for complexity

- AIC : Akaka Information Criterion

- BIC: Bayesian Information Criterion

- DIC: Deviance Information Criterion

Can work well, but...

- Rely on specific loss function

- Rely on asymptotic argument

- Rely on estimate of number of parameters

- Extremely model dependent

Need: general tool for evaluating models, replicates decision problem
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Cross-Validation: Some Intuition

Recall Optimal division of data:

- Train: build model

- Validation: assess model

- Test: classify remaining documents

K-fold Cross-validation idea: create many training and test sets.

- Perform on labeled data

Suppose each document i belongs to class ci .

Let c = (c1, c2, . . . , cN)

- Idea: use observations both in training and test sets

- Each step: use held out data to evaluate performance

- Avoid overfitting
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Cross-Validation: A How To Guide

Process:

- Randomly partition data into K groups.

(Group 1, Group 2, Group3, . . ., Group K )

- Rotate through groups as follows

Step Training Validation (“Test”)
1 Group2, Group3, Group 4, . . ., Group K Group 1
2 Group 1, Group3, Group 4, . . ., Group K Group 2
3 Group 1, Group 2, Group 4, . . ., Group K Group 3
...

...
...

K Group 1, Group 2, Group 3, . . ., Group K - 1 Group K
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Cross-Validation: A How To Guide
Step Training Validation (“Test”)
1 Group2, Group3, Group 4, . . ., Group K Group 1
2 Group 1, Group3, Group 4, . . ., Group K Group 2
3 Group 1, Group 2, Group 4, . . ., Group K Group 3
...

...
...

K Group 1, Group 2, Group 3, . . ., Group K - 1 Group K

Strategy:

- Divide data into K groups

- Train data on K − 1 groups. Create function f : Y → C

- Predict values for K th

- Summarize performance with loss function: L(Ci , f
−k(yi ))

- Mean square error, Absolute error, Prediction error, ...

CV(ind. classification) = 1
N

∑N
i=1 L(Ci , f

−k(yi ))

CV(proportions) =
1
K

∑K
j=1 Mean Square Error Proportions from Group j

- Final choice: model with highest CV score
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How Do We Select K? (HTF, Section 7.10)
Common values of K

- K = 5: Five fold cross validation

- K = 10: Ten fold cross validation

- K = N: Leave one out cross validation

Considerations:

- How sensitive are inferences to number of coded documents? (HTF,
pg 243-244)

- 200 labeled documents
- K = N → 199 documents to train,
- K = 10→ 180 documents to train
- K = 5→ 160 documents to train

- 50 labeled documents
- K = N → 49 documents to train,
- K = 10→ 45 documents to train
- K = 5→ 40 documents to train

- How long will it take to run models?
- K−fold cross validation requires K× One model run

- What is the correct loss function?
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If you cross validate, you really need to cross validate

From Section 7.10.2 of HTF

- Use CV to estimate prediction error

- All supervised steps performed in cross-validation

- Underestimate prediction error

- Could lead to selecting lower performing model
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Cross Validation In R

library(bootstrap) Contains a cross validation (bootstrap and
Jackknife function as well)
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Ensemble Learning

Many methods for classification

- SVM (linear, Gaussian, ...)

- Naive Bayes

- Max-Entropy

- Lasso/Ridge

- Random Forests

- ...

Cross-validation: selection of one model

- Oracle property: selects best model for underlying data [this is
amazing]

- But what do we do with the other models we fit?

- Ensemble methods: combine learners to improve model fit

- Simplest form: methods vote on category, majority wins
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Ensemble Learning: Intuition

Heuristic: if classifiers are accurate and diverse→ ensemble methods
improve
Intuition:

- Classify documents into two categories (Category 1, Category 2).

- True labels: evenly distributed across two categories

- Three classifiers with 75% accuracy, but independent

- Implement majority voting rule

Pr(Correct Guess|Votes) = Pr(3 correct) + Pr(2 correct)

= 0.753 + 3× (0.752 × 0.25)

= 0.844
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Ensemble Learning: Intuition
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Ensemble Learning: Intuition
Diverse and Accurate matter.
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Ensemble Learning: Intuition
Diverse and Accurate matter.
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Other Reasons to Ensemble (Dietterich 2000)

Statistical

- With little data, many algorithms offer similar performance

- Ensemble ensures we avoid wrong model in test set

Computational

- Methods stuck in local modes

- Result: no one run provides best model

- Averages of runs may perform better

Complex “true” functional forms

- One method may be unable to approximate true DGP

- Mixtures of methods may approximate better
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Common Ensemble Methods

Committee Methods

- Voting (classification)

- Averaging (predictions)

Bagging: bootstrap aggregation

- Need method to produce variability between models in data set

- Bootstrap M data sets (draw N observations, with replacement )

- Apply classifier to each data set

- Aggregation across classified data sets

- Dietterich 2000: works well for unstable classifiers (lots of diversity
across samples)
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Common Ensemble Methods

Boosting: sequential training of weak classifiers

- Method for combining several weak classifiers

- Basic idea:

- Model 1: classify initially based on all data (equal weight)
- Model 2: classify all data, more weight to incorrectly classified data
- Model 3: classify all data, more weight to incorrectly classified data
. . .

- Model M: classify all data, more weight to incorrectly classified data

- Aggregate using weighted committee
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Ensembles in R

ADABoost :
Bagging: :
Post code to Piazzza (from Solomon)
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Super learning

van der Laan, et. al (2007): Develop a cross-validation heavy method for
aggregating classifiers
Best name in statistics?
Notation we’ll need:

yi = M x 1 vector of data

Ci = Category for observation i (need pre-labeled data)

M = Number of methods included in ensemble

Zi = (Zi1,Zi2,Zi3, . . . ,ZiM)

= Predictions for i across M methods

K = Number of Folds in Cross Validation
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Super Learning Algorithm
Training:

1) Split data into K blocks (K-fold cross validation)
2) Fit M models on training data K times (K-fold cross validation)

- Block 1: train on Blocks 2 to K
- Block 2: train on Blocks 1, 3 to K , . . .
- Block K: train on Blocks 1 to K − 1

3) For each of K blocks, generate M predictions for each observation
- Block 1: make predictions for observations in Block 1 using models
- Carry out for all blocks, produce vector of predictions

- Zi = (Zi1,Zi2,Zi3, . . . ,ZiM)

- New data: (Ci ,Zi )
- Ci : dependent variable
- Zi : M × 1 vector of predictions (covariates)?

4) Regress Ci ∼ Zi

- Use any previous methods
- Linear Regression, Lasso, Ridge, ...
- Produce function that maps from Zi to classes Ci

- Example: 1
1+exp(−β

′
Zi )
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- Use any previous methods
- Linear Regression, Lasso, Ridge, ...
- Produce function that maps from Zi to classes Ci

- Example: 1
1+exp(−β
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Super Learning Algorithm

5) Fit all M models to entire data set, produce

Z̃i = (Z̃i1, Z̃i2, . . . , Z̃iM)

6) Use function from Step 4 to produce classifications for all
observations in training set

7) Evaluate super learner performance:

- Built in method for assessing super learner’s performance

Test Set

- Use model from Step 5 to generate predictions for all data

- Use function from Step 4 to generate predictions for all observations
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Why Super Learn?

van der Laan et al (2007) prove:

- Asymptotically: super learners will perform as well the best
candidates for data

- Oracle: performs like the best possible method among candidate
methods

- Asymptotically outperforms constituent methods
- Performs as well as optimal combinations of those methods

Practical questions:

- Final regression:

- Logistic
- Linear
- Could super learn again!

- How Many Folds?

- van der Laan et al’s proofs rely on growing folds with N (but slowly)
- Use 10-fold cross validation for simulations
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Super learner in R

Superlearner() is a package available in R (off of GitHub, not CRAN)
https://github.com/ecpolley/SuperLearner

Automatic selection of methods, prediction, and many other features
Code yourself:

- Perform cross validation

- Apply methods/get predictions

- Final regression

- Complicated but not technically hard (rely on canned programs
throughout)
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Scaling Political Text

Scaling:

- Spatial model of politics (median voters, proposal games, pivotal
politics, veto players, bargaining)

- Retrieve space to test spatial theories of politics

- Stanford: spatial modeling center

- Space from votes: Poole and Rosenthal; Clinton, Jackman, Rivers;...

- Space from contributions: Wand; Bonica; ...

- Space from votes and survey responses : Bafumi and Herron;
Lauderdale; Rodden and Warshaw; Tausanovitch and Warshaw...

Goal:

- Low level summary of actors’ political beliefs

- Problem: often difficult to collect data
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Wouldn’t it be great: if we could use text to retrieve low level spatial
locations?

- Existing Models ?

- How do we evaluate? (What is the goal when using text?) (What is
ideology?)

- Prediction? Description? Summary? ...

Beauchamp (2011): summary of methods, simulations, and attempts to
approximate roll call scalings
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Scaling and US Congress: Roll Call Votes

Poole and Rosenthal Scores:

- (Essentially): Factor analysis of roll call votes

- Simple (crazy!) procedure reveals highly informative ordering of
legislators

- Highly predictive of Congressional voting/expected behavior, ...

For a variety of reasons, low-dimensional summaries of roll call voting
behavior is useful
Allows approximation of ideology with low-dimensional (unidimensional)
summaries
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Scaling and US Congress: Roll Call Votes
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Scaling and US Congress: Roll Call Votes
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Scaling and US Congress: Roll Call Votes

But this is not true in other settings

- Without votes, hard to scale other actors

- Wand; Bonica great results with campaign contributions

- But what if there are no campaign contributions?

- In highly disciplined parliaments, hard to scale in meaningful
(something like ideological) way

- Spirling and Maclean: Poole’s OC algorithm yields scaling that deviates
from qualitative expectations

- Quinn and Spirling: standard methods of scaling group together rebels
and conservatives

But everybody talks!
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WordScores (Laver, Benoit, and Garry 2003)

Running example :

- Develop scaling of US Senate in 2005, based on press releases

- Monroe, Colaresi, and Quinn (2010) [conference presentation],
Beauchamp (2011), Cormack (2011)

- First try: wordscores

Wordscores proceeds as follows:

- Identify set of reference texts

- Determine how well words separate reference texts (week 4 problem)

- Using this score, we assess new documents

- Generates scaling for all documents
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WordScores (Laver, Benoit, and Garry 2003)

Suppose we have reference texts:

- Liberal: Ted Kennedy, L

- Document: yL
- Total words: WL =

∑M
m=1 ymL

- Conservative: Tom Coburn, C , yC
- Document: yC
- Total words: WC =

∑M
m=1 ymC
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WordScores (Laver, Benoit, and Garry 2003)
Our first task: score each word

- How well does each word separate speakers?

- Lowe (2008) and Beauchamp (2011): approximately ask p(L|yij = z)

- Laver, Benoit, and Garry (2003) compute:

PzL ≡
yzL
WL

yzL
WL

+ yzC
WC

The score for word z is then,

Sz = PzR − PzL

For all other documents, compute their scores:

Scorei =
M∑

m=1

ymi

Wi
Sz

Generalize to groups, multiple dimensions [not necessary for intuition,
though]
Justin Grimmer (Stanford University) Text as Data June 8th, 2011 44 / 57



Where have we seen this before?

Reference texts  training set
Virgin texts  test set
Goal: construct dictionary to score test set according to scale in training
set
This a dictionary method, with features selected from training set
Or: this is isomorphic to method used in Week 3 and Federalist papers
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Wordscores in R

You know how to run this model! (Check Your Dictionary Homework!!)

- Generate dictionary weights using simple algorithm described above

- Score documents according to weights

Transformations (standardize results)
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Applying to Senate Press Releases
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Lowe (2008) & Beauchamp 2011
Beauchamp (2011): shows wordscores and Naive Bayes (where training set
are reference documents) produce similar scalings:
Why?
Generalize:

- Take any week 4 method (includes all supervised learning algorithms
that produce “coefficients”)

- Create scores using these coefficients

Lowe (2008): Discusses potentially problematic wordscore properties

1) Each word is weighted equally (fixable with different scoring
procedure)

2) Unique words are conflated with centrist (fixable with MCQ fightin’
words style algorithm)

3) General problem: hard to interpret and no statistical model makes
inference more difficutl

To be fair: fast, nonparametric, and novel [trailblazing] method for scoring
documents (starts conversation)
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WordFish

Monroe and Maeda (2005) and Slopkin and Proksch (2008):
Develop Item-Response style model for analyzing political texts.
Basic idea:

- Parties have underlying latent position

- This is associated with word usage

- Some words discriminate better than others

- Fit large model to estimate

For more on IRT:
Clinton, Jackman, Rivers (2003) : IRT for roll call votes
Rivers (2002): Identification for factor analysis models

Justin Grimmer (Stanford University) Text as Data June 8th, 2011 49 / 57



WordFish

Suppose we have individual i . (We’ll ignore temporal component for now).

yij ∼ Poisson(λij)

λij = exp(αi + ψj + βj × θi )

Where,

λij = Rate individual i uses word j

αi = Individual i loquaciousness

ψj = Word j ’s frequency

βj = Word j ’s discrimination

θi = Legislator i ’s latent positions

Benoit and Lowe (2010, 2011): Poisson functional form probably wrong
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Running WordFish in R

Slapkin and Proksch have code available at :
http://www.wordfish.org

Apply simply to term document matrix.
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WordFish on Senate Press Releases
Fit model (using defaults).
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WordFish on Senate Press Releases
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Scaling Wrap-up

Goal:

- What exactly do we want when we scale?

- Submit: just as ambiguous as clustering problem (perhaps more?)

- Without goal  hard to validate, hard to make real progress

Problem:

- US Congress has been easy

- Text is harder

- Goal cannot be replication of voting scales

- Need more supervision (survey-like questions to classify texts)

- Makes clear immediately what we want: low-level summary of
supervised components?
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Where We’ve Been

- Class 1: Finding Text Data

- Class 2: Representing Texts Quantitatively

- Class 3: Dictionary Methods for Classification

- Class 4: Comparing Language Across Groups

- Class 5: Texts in Space

- Class 6: Clustering

- Class 7: Topic models

- Class 8: Supervised methods for classification

- Class 9: Ensemble methods for classification

- Class 10: Scaling Speech
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Class Theme: Think!

Statistical/Algorithmic tools for text create new possibilities
Do not eliminate the need to THINK
When applying methods:

- Think: is this a useful model

- Can I accomplish my goal using a different tool?

- How do I validate my results

From here:

1) Natural Language Processing Courses

- Part of speech tagging
- Sentence parsing
- ...

2) Machine Learning

- Bayesian statistics
- High dimensional data
- ...
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Thanks!
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Thanks!

Jackie!
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Thanks!
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