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Where We’ve Been, Where We’re Going

- Class 1: Finding Text Data

- Class 2: Representing Texts Quantitatively

- Class 3: Dictionary Methods for Classification

- Class 4: Comparing Language Across Groups

- Class 5: Texts in Space

- Class 6: Clustering

- Class 7: Topic models

- Class 8: Supervised methods for classification

- Class 9: Ensemble methods for classification

- Class 10: Scaling Speech
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Supervised Learning

Week 6 and Week 7:

- Models for discovery

- Infer categories
- Infer document assignment to categories
- Pre-estimation: relatively little work
- Post-estimation: extensive validation testing

Week 8 and Week 9:

- Models for categorizing texts

- Know (develop) categories before hand
- Hand coding: assign documents to categories
- Infer: new document assignment to categories (distribution of

documents to categories)
- Pre-estimation: extensive work constructing categories, building

classifiers
- Post-estimation: relatively little work
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Supervised Learning
This week:

- How to generate valid hand coding categories

- Assessing coder performance
- Assessing disagreement among coders
- Evidence coders perform well

- Supervised Learning Methods: Naive Bayes and ReadMe

- Assessing Model Performance

Next week:

- Supervised Learning Method: Support Vector Machines

- Ensemble methods: combining the results of many supervised
algorithms

- Cross validation:

- Replicate classification exercise, with data
- Avoid over training data: Balance bias and variance in model selection
- Super learning: optimal ensemble methods

Methods generalize beyond text
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Components to Supervised Learning Method

1) Set of categories

- Credit Claiming, Position Taking, Advertising
- Positive Tone, Negative Tone
- Pro-war, Ambiguous, Anti-war

2) Set of hand-coded documents

- Coding done by human coders
- Training Set: documents we’ll use to learn how to code
- Validation Set: documents we’ll use to learn how well we code

3) Set of unlabeled documents

4) Method to extrapolate from hand coding to unlabeled documents
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How Do We Generate Coding Rules and Categories?

Challenge: coding rules/training coders to maximize coder performance
Challenge: developing a clear set of categories

1) Limits of Humans:

- Small working memories
- Easily distracted
- Insufficient motivation

2) Limits of Language:

- Fundamental ambiguity in language [careful analysis of texts]
- Contextual nature of language

For supervised methods to work: maximize coder agreement

1) Write careful (and brief) coding rules

- Flow charts help simplify problems

2) Train coders to remove ambiguity, misinterpretation
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How Do We Generate Coding Rules?

Iterative process for generating coding rules:

1) Write a set of coding rules

2) Have coders code documents (about 200)

3) Assess coder agreement

4) Identify sources of disagreement, repeat
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How Do We Identify Coding Disagreement?

Many measures of inter-coder agreement
Essentially attempt to summarize a confusion matrix

Cat 1 Cat 2 Cat 3 Cat 4 Sum, Coder 1

Cat 1 30 0 1 0 31

Cat 2 1 1 0 0 2

Cat 3 0 0 1 0 1

Cat 4 3 1 0 7 11

Sum, Coder 2 34 2 2 7 Total: 45

- Diagonal: coders agree on document

- Off-diagonal : coders disagree (confused) on document

Generalize across (k) coders:

- k(k−1)
2 pairwise comparisons

- k comparisons: Coder A against All other coders
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How Do We Identify Coding Disagreements?

During coding development phase/coder assessment phase, full confusion
matrices help to identify

- Ambiguity

- Coder slacking

Example: 3 Coders, 8 categories.

Justin Grimmer (Stanford University) Text as Data May 25th, 2011 9 / 43



How Do We Identify Coding Disagreements?

During coding development phase/coder assessment phase, full confusion
matrices help to identify

- Ambiguity

- Coder slacking

Example: 3 Coders, 8 categories.

Justin Grimmer (Stanford University) Text as Data May 25th, 2011 9 / 43



How Do We Identify Coding Disagreements?

During coding development phase/coder assessment phase, full confusion
matrices help to identify

- Ambiguity

- Coder slacking

Example: 3 Coders, 8 categories.

Justin Grimmer (Stanford University) Text as Data May 25th, 2011 9 / 43



How Do We Identify Coding Disagreements?

During coding development phase/coder assessment phase, full confusion
matrices help to identify

- Ambiguity

- Coder slacking

Example: 3 Coders, 8 categories.

Justin Grimmer (Stanford University) Text as Data May 25th, 2011 9 / 43



Example Coding Document

8 part coding scheme

- Across Party Taunting: explicit public and negative attacks on the
other party or its members

- Within Party Taunting: explicit public and negative attacks on the
same party or its members [for 1960’s politics]

- Other taunting: explicit public and negative attacks not directed at a
party

- Bipartisan support: praise for the other party

- Honorary Statements: qualitatively different kind of speech

- Policy speech: a speech without taunting or credit claiming

- Procedural

- No Content: (occasionally occurs in CR)
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Example Coding Document
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How Do We Summarize Confusion Matrix?

Lots of statistics to summarize confusion matrix:

- Most common: intercoder agreement

Inter Coder(A,B) =
No. (Coder A & Coder B agree)

No. Documents

Justin Grimmer (Stanford University) Text as Data May 25th, 2011 12 / 43



Liberal measure of agreement:

- Some agreement by chance

- Consider coding scheme with two categories
{ Class 1, Class 2}.

- Coder A and Coder B flip a (biased coin).
( Pr(Class 1) = 0.75, Pr(Class 2) = 0.25 )

- Inter Coder reliability: 0.625

What to do?
Suggestion: Subtract off amount expected by chance:

Inter Coder(A,B)norm =
No. (Coder A & Coder B agree)−No. Expected by Chance

No. Documents−No. Expected by Chance

Question: what is amount expected by chance?

- 1
#Categories ?

- Avg Proportion in categories across coders? (Krippendorf’s Alpha)

Best Practice: present confusion matrices.
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Krippendorf’s Alpha, With Deference to Communication
Students a Critique
Define coder reliability as:

α = 1− No. Pairwise Disagreements Observed

No Pairwise Disagreements Expected By Chance

No. Pairwise Disagreements Observed = observe from data

No Expected pairwise disagreements: coding by chance, with rate
labels used available from data

Problem with family of statistics:

- Pretend I know something I’m trying to estimate

- How is that we know coders estimate levels well?

- Have to present correlation statistic: vary assumptions about
“expectations” (from uniform, to data driven)

Calculate in R with concord package and function kripp.alpha
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How Many To Code By Hand/How Many to Code By
Machine

Next week: we’ll discuss how to answer this question systematically for
your data set.
Rules of thumb:

- Hopkins and King (2010): 500 documents likely sufficient

- Hopkins and King (2010): 100 documents may be enough

- BUT: depends on quantity of interest

- May REQUIRE many more documents
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Percent data coded, Error (From Dan Jurafsky)
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Three categories of documents

Hand labeled

- Training set (what we’ll use to estimate model)

- Validation set (what we’ll use to assess model)

Unlabeled

- Test set (what we’ll use the model to categorize)

Label more documents than necessary to train model
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Methods to Perform Supervised Classification

- Naive Bayes

- Support Vector Machines (Introduce Week 9, with Cross validation
and Ensembles)

- ReadMe (optimized for a different objective)
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Naive Bayes and General Problem Setup

Suppose we have document i , (i = 1, . . . ,N) with M features

yi = (y1i , y2i , . . . , yMi )
Set of J categories. Category j (j = 1, . . . , J)
{C1,C2, . . . ,CJ}
Goal: classify every document into one category.
Learn a function that maps from space of (possible) documents to
categories
To do this: use hand coded observations to estimate (train) regression
model
Apply model to test data, classify those observations
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Naive Bayes and General Problem Setup (Jurafsky Inspired
Slide)

Goal: For each document yi , we want to infer most likely category

CMax = arg maxjp(Cj |yi )

We’re going to use Bayes’ rule to estimate p(Cj |yi ).

p(Cj |yi ) =
p(Cj , yi )

p(yi )

=
p(Cj)p(yi |Cj)

p(yi )
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Naive Bayes and General Problem Setup (Jurafsky Inspired
Slide)

CMax = arg maxj p(Cj |yi )

CMax = arg maxj
p(Cj)p(yi |Cj)

p(yi )

CMax = arg maxj p(Cj)p(yi |Cj)

Two probabilities to estimate:

p(Cj) = No. Documents in j
No. Documents (training set)

p(yi |Cj) complicated without assumptions
- Imagine each yim just binary indicator. Then 2M possible yi documents
- Simplify: assume each feature is independent

p(yi |Cj) =
M∏

m=1

p(yim|Cj)
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Naive Bayes and General Problem Setup (Jurafsky Inspired
Slide)

Two components to estimation:

- p(Cj) = No. Documents in j
No. Documents (training set)

- p(yi |Cj) =
∏M

m=1 p(yim|Cj)

Maximum likelihood estimation (training set):

p(yim = x |Cj) =
No( Docsim = x and C = Cj )

No(C= Cj)

Problem: What if No( Docsim = x and C = Cj ) = 0 ?∏M
m=1 p(yim|Cj) = 0
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Naive Bayes and General Problem Setup (Jurafsky Inspired
Slide)

Solution: smoothing (Bayesian estimation)

p(yim = x |Cj) =
No( Docsim = x and C = Cj ) + 1

No(C= Cj) + k

Algorithm steps:

1) Learn p̂(C ) and p̂(yi |Cj) on training data

2) Use this to identify most likely Cj for each document i in test set

Ci = arg max j p̂(Cj)p̂(yi |Cj)

Simple intuition about Naive Bayes:

- Learn what documents in class j look like

- Find class j that document i is most similar to
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Simple intuition about Naive Bayes:

- Learn what documents in class j look like

- Find class j that document i is most similar to
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Some R Code

library(e1071)

dep<- c(labels, rep(NA, no.testSet))

dep<- as.factor(dep)

out<- naiveBayes(dep∼., as.data.frame(tdm))

predicts<- predict(out, as.data.frame(tdm[-training.set,]))
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Assessing Models (Elements of Statistical Learning)

- Model Selection: tuning parameters to select final model (next week’s
discussion)

- Model assessment : after selecting model, estimating error in
classification
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Comparing Training and Validation Set

Text classification and model assessment

- Replicate classification exercise with validation set

- General principle of classification/prediction

- Compare supervised learning labels to hand labels

Confusion matrix
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Comparing Training and Validation Set

Representation of Test Statistics from Week 3 (along with some new ones)
Actual Label

Classification (algorithm) Liberal Conservative

Liberal True Liberal False Liberal

Conservative False Conservative True Conservative

Accuracy =
TrueLib + TrueCons

TrueLib + TrueCons + FalseLib + FalseCons

PrecisionLiberal =
True Liberal

True Liberal + False Liberal

RecallLiberal =
True Liberal

True Liberal + False Conservative

FLiberal =
2PrecisionLiberalRecallLiberal

PrecisionLiberal + RecallLiberal
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Precision Recall Tradeoff
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ROC Curve

Inspires: ROC as a measure of model performance

RecallLiberal =
True Liberal

True Liberal + False Conservative

RecallConservative =
True Conservative

True Conservative + False Liberal

Tension:

- Everything liberal: RecallLiberal =1 ; RecallConservative = 0

- Everything conservative: RecallLiberal =0 ; RecallConservative = 1

Characterize Tradeoff:
Plot True Positive Rate RecallLiberal
False Positive Rate (1 - RecallConservative)
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Precision/Recall Tradeoff
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Simple Classification Example

Analyzing house press releases
Hand Code: 1,000 press releases

- Advertising

- Credit Claiming

- Position Taking

Divide 1,000 press releases into two sets

- 500: Training set

- 500: Test set

Initial exploration: provides baseline measurement at classifier
performances
Improve: through improving model fit
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Example from Ongoing Work
Actual Label

Classification (Naive Bayes) Position Taking Advertising Credit Claim.
Position Taking 10 0 0
Advertising 2 40 2
Credit Claiming 80 60 306

Accuracy =
10 + 40 + 306

500
= 0.71

PrecisionPT =
10

10
= 1

RecallPT =
10

10 + 2 + 80
= 0.11

PrecisionAD =
40

40 + 2 + 2
= 0.91

RecallAD =
40

40 + 60
= 0.4

PrecisionCredit =
306

306 + 80 + 60
= 0.67

RecallCredit =
306

306 + 2
= 0.99
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Fit Statistics in R

RWeka library provides Amazing functionality.
We’ll have more to say on how to install, use this next week!

Justin Grimmer (Stanford University) Text as Data May 25th, 2011 33 / 43



ReadMe: Optimization for a Different Goal (Hopkins and
King 2010)

Naive Bayes (and next week, SVM): focused on individual document
classification.

But what if we’re focused on proportions only?
Hopkins and King (2010): method for characterizing distribution of classes
Can be much more accurate than individual classifiers, requires fewer
assumptions (do not need random sample of documents ) .

- King and Lu (2008): derive method for characterizing causes of
deaths for verbal autopsies

- Hopkins and King (2010): extend the method to text documents

Basic intuition:

- Examine joint distribution of characteristics (without making Naive
Bayes like assumption)

- Focus on distributions (only) makes this analysis possible
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ReadMe: Optimization for a Different Goal (Hopkins and
King 2010)

Measure only presence/absence of each term [(Mx1) vector ]

yi = (1, 0, 0, 1, . . . , 0)

What are the possible realizations of yi?

- 2M possible vectors

Define:

P(y) = probability of observing y

P(y|Cj) = Probability of observing y conditional on category Cj

P(y|C ) = Matrix collecting vectors

P(C ) = P(C1,C2, . . . ,CJ) target quantity of interest
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ReadMe: Optimization for a Different Goal (Hopkins and
King 2010)

P(y)︸︷︷︸
2Mx1

= P(y|C )︸ ︷︷ ︸
2MxJ

P(C )︸ ︷︷ ︸
Jx1

Matrix algebra problem to solve, for P(C )
Like Naive Bayes, requires two pieces to estimate
Complication 2M >> no. documents
Kernel Smoothing Methods (without a formal model)

- P(y) = estimate directly from test set

- P(y|C ) = estimate from training set

- Key assumption: P(y|C ) in training set is equivalent to P(y|C ) in test
set

- If true, can perform biased sampling of documents, worry less about
drift...
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Algorithm Summarized

- Estimate p̂(y) from test set

- Estimate p̂(y|C ) from training set

- Use p̂(y) and p̂(y|C ) to solve for p(C )
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Assessing Model Performance

Not classifying individual documents → different standards
Mean Square Error(ESL, Wikipedia) :

E[(θ̂ − θ)2] = var(θ̂) + Bias(θ̂, θ)2

Suppose we have true proportions P(C )true. Then, we’ll estimate Root
Mean Square Error

RMSE =

√∑J
j=1(P(Cj)true − P(Cj))

J

Mean Abs. Prediction Error = |
∑J

j=1(P(Cj)
true − P(Cj))

J
|

Visualize: plot true and estimated proportions
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Using the House Press Release Data

Method RMSE APSE

ReadMe 0.036 0.056
NaiveBayes 0.096 0.14
SVM 0.052 0.084
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Code to Run in R

I will post code–program requires some small modifications
Control file:

filename truth trainingset

20July2009LEWIS53.txt 4 1
26July2006LEWIS249.txt 2 0

tdm<- undergrad(control=control, fullfreq=F)

process<- preprocess(tdm)

output<- undergrad(process)

output$est.CSMF ## proportion in each category

output$true.CSMF ## if labeled for validation set (but not

used in training set)
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Twitter and ReadMe
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Twitter and ReadMe
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Where we’re going

Next week: cross validation to perform model selection/validation
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