Political Science 452: Text as Data Justin Grimmer Assistant Professor Department of Political Science Stanford University May 11th, 2011 # Where We've Been, Where We're Going - Class 1: Finding Text Data - Class 2: Representing Texts Quantitatively - Class 3: Dictionary Methods for Classification - Class 4: Comparing Language Across Groups - Class 5: Texts in Space - Class 6: Clustering - Class 7: Topic models - Class 8: Supervised methods for classification - Class 9: Ensemble methods for classification - Class 10: Scaling Speech # Entropy Explanation (Hanna Wallach Slides) - Probability and Information are intimately related - Less probable events \rightarrow more information - More certain something will occur, less information you gain knowing it occurred - Focus on the occurrence of binary event A Basic unit of information built around event A for which we are maximally uncertain: $$P[A] = P[\neg A] = 1/2$$ # Entropy Explanation (Hanna Wallach Slides) #### Desired properties - Information, Probability: Inversely related - Certain event will occur and it does: no information gained - Certain event will not occur and it does: infinite information gained - Maximally uncertain: we should gain one unit of information by learning that A or $\neg A$ occurred # Entropy Explanation (Hanna Wallach Slides) Information in event A is then, $$I(A) = \log_2 \frac{1}{P[A]}$$ And for a series of disjoint events, the entropy is $$H(A_1,...,A_n) = \sum_{i=1}^{N} P[A_i] \log_2 \frac{1}{P[A_i]}$$ Recall: use entropy to describe how well words separate classes (Week 4): Conditional entropy(w): Information that remains after condition on w $\mathsf{Mutual\ information}(w) \ = \ \mathsf{Entropy} - \mathsf{Conditional\ Entropy}(w)$ Measures the reduction in information \rightsquigarrow greater reduction, less information, w is a better predictor. # Clustering Last week: measures of similarity between documents. - Place documents in space - Measure similarity, dissimilarity of documents This week: identify groups of similar documents Fully Automated Clustering Algorithms: - Task: partition documents - Mutual exclusive - Exhaustive - Set of Groupings - Task name: Clustering - Estimate: categories - Estimate: each document's category - Label Clusters in Clustering (Week 4 Methods!) - How to use clustering methods: (THINK!) - Tune clustering methods to problem (Discuss more next week, virtue of statistical models) Computer Assisted Clustering Algorithms (Grimmer and King 2011) Document 1 Document 2 ... Document N Document 1 Document 2 ... Document N Bins Known, Bin Assignment Estimated Document 1 Document 2 ... Document N Document 1 Document 2 ... Document N Bins and Bin Assignments Estimated Doc1 Doc2 Doc3 Doc4 Doc5 Doc6 Doc7 Doc8 Doc9 Doc10 Doc1 Doc2 Doc3 Doc4 Doc5 Doc6 Doc7 Doc8 Doc9 Doc10 |Doc1, Doc3, Doc6, Doc7| |Doc2, Doc4, Doc8| |Doc5, Doc9, Doc10| |Doc2, Doc4, Doc8| |Doc5, Doc9, Doc10| |Doc5, Doc9, Doc10| Clustering as Compression: Clustering as Compression: Identify groups of documents, clusters: Clustering as Compression: Identify groups of documents, clusters: 1) Have high within group similarity Clustering as Compression: Identify groups of documents, clusters: - 1) Have high within group similarity - 2) Have low across group similarity Clustering as Compression: Identify groups of documents, clusters: - 1) Have high within group similarity - 2) Have low across group similarity Compression: Retain only cluster label for documents in same group #### Clustering as Discovery - When we analyze texts (data) we have some idea how to organize them - When we analyze texts (data) we have some idea how to organize them - Liberals/Democrats - When we analyze texts (data) we have some idea how to organize them - Liberals/Democrats - Democracy/Autocracy - When we analyze texts (data) we have some idea how to organize them - Liberals/Democrats - Democracy/Autocracy - Assistant/Associate - When we analyze texts (data) we have some idea how to organize them - Liberals/Democrats - Democracy/Autocracy - Assistant/Associate - How do we formulate new ways to organize texts? - When we analyze texts (data) we have some idea how to organize them - Liberals/Democrats - Democracy/Autocracy - Assistant/Associate - How do we formulate new ways to organize texts? - Clustering methods suggest new (model and data driven) ways to organize texts - When we analyze texts (data) we have some idea how to organize them - Liberals/Democrats - Democracy/Autocracy - Assistant/Associate - How do we formulate new ways to organize texts? - Clustering methods suggest new (model and data driven) ways to organize texts - Using new method, new lens to look at politics #### Clustering: Terms and Notation Set of documents i = 1, 2, ..., N. Partition documents into j = 1, ..., K clusters Call c_i document i's cluster assignment - $c_i = 2 \rightsquigarrow \text{Document } i \text{ assigned to second cluster}$ - $c_{10} = 4 \rightsquigarrow \text{Document } 10 \text{ assigned to fourth cluster}$ Define clustering as a partition of observations. Mathematically: $$\mathbf{c}=(c_1,c_2,\ldots,c_N)$$ c constitutes the clustering. Two trivial clusterings $$c = (1, 2, ..., N)$$ $$\mathbf{c} = (1, 1, \dots, 1)$$ - Assume similarity/dissimilarity between objects (Some methods assume implicitly) - Define objective function - Domain (things you put in the function): space of clusterings - Range (thing that comes out of function): measure of clustering's performance - Use approximate inference/optimization algorithm to identify optimal solution - Assume similarity/dissimilarity between objects (Some methods assume implicitly) ← Discussed extensively last week - Define objective function - Domain (things you put in the function): space of clusterings - Range (thing that comes out of function): measure of clustering's performance - Use approximate inference/optimization algorithm to identify optimal solution - Assume similarity/dissimilarity between objects (Some methods assume implicitly) - Define objective function ← We will discuss extensively today - Domain (things you put in the function): space of clusterings - Range (thing that comes out of function): measure of clustering's performance - Use approximate inference/optimization algorithm to identify optimal solution - Assume similarity/dissimilarity between objects (Some methods assume implicitly) - Define objective function - Domain (things you put in the function): space of clusterings - Range (thing that comes out of function): measure of clustering's performance - Use approximate inference/optimization algorithm to identify optimal solution ← Huge search space, very difficult (and interesting!) problem, only hinted at here #### An Example FAC Method K-means: most commonly used clustering algorithm. Story: Data are grouped in K clusters and each cluster has a center or mean. - \rightarrow Two types of parameters to estimate - 1) For each cluster j, (j = 1, ..., K) r_{ij} =Indicator, Document i assigned to cluster j $$\mathbf{r}_{j}=(r_{1j},r_{2j},\ldots,r_{Nj})$$ $$\mathbf{r} = (\mathbf{r}_{1}^{'}, \mathbf{r}_{2}^{'}, \ldots, \mathbf{r}_{K}^{'}) \; (\textit{N} \times \textit{K} \; \mathsf{matrix})$$ Note: Same information in r and c 2) For each cluster j $$\mu_j$$ a cluster center for cluster j . $$\boldsymbol{\mu}_{j} = (\mu_{1j}, \mu_{2j}, \dots, \mu_{Mj})$$ Notation. Representation of document *i*: $$\mathbf{y}_i = (y_{i1}, y_{i2}, \dots, y_{iM})$$ #### Specifying the Method - 1) Assume Euclidean distance between objects. - 2) Objective function $$f(\mathbf{r}, \boldsymbol{\mu}, \mathbf{y}) = \sum_{i=1}^{N} \sum_{j=1}^{K} r_{ij} \left(\sum_{m=1}^{M} (y_{im} - \mu_{km})^2 \right)$$ Goal: Choose \mathbf{r}^* and $\boldsymbol{\mu}^*$ to minimize $f(\cdot,\cdot,\mathbf{y})$ Two observations: - If K = N $f(r^*, \boldsymbol{\mu}^*, \mathbf{y}) = 0$ (Minimum) - Each observation in own cluster - $\boldsymbol{\mu}_i = \mathbf{y}_i$ - If K = 1, $f(r^*, \mu^*, \mathbf{y}) = N \times \sigma^2$ - Each observation in one cluster - Center: average of documents ### Specifying the Method - 1) Assume Euclidean distance between objects - 2) Objective function - 3) Algorithm for optimization Iterative algorithm, Each Iteration t - Conditional on μ^{t-1} (from previous iteration), choose \mathbf{r}^t - Conditional on \mathbf{r}^t , choose μ^t Repeat until convergence, measured as change in f. Change = $$f(\mu^t, \mathbf{r}^t, \mathbf{y}) - f(\mu^{t-1}, \mathbf{r}^{t-1}, \mathbf{y})$$ ### Specifying the Method $$f(\mathbf{r}, \boldsymbol{\mu}, \mathbf{y}) = \sum_{i=1}^{N} \sum_{j=1}^{K} r_{ij} \left(\sum_{m=1}^{M} (y_{im} - \mu_{km})^2 \right)$$ Algorithm for estimation: Begin: initialize $oldsymbol{\mu}_1^{t-1}, oldsymbol{\mu}_2^{t-1}, \dots, oldsymbol{\mu}_K^{t-1}$ Choose \mathbf{r}^t $$r_{ij}^t = \begin{cases} 1 \text{ if } j = \arg\min_k \sum_{m=1}^M (y_{im} - \mu_{km})^2 \\ 0 \text{ otherwise }, \end{cases}$$ In words: Assign each document \mathbf{y}_i to the closest center μ_k $$f(\mathbf{r}, \boldsymbol{\mu}, \mathbf{y}) = \sum_{i=1}^{N} \sum_{j=1}^{K} r_{ij} \left(\sum_{m=1}^{M} (y_{im} - \mu_{km})^2 \right)$$ Conditional on \mathbf{r}^t , choose $\boldsymbol{\mu}^t$ Let's focus on $\boldsymbol{\mu}_k$ $$f(\mathbf{r}, \boldsymbol{\mu}_k, \mathbf{y})_k = \sum_{i=1}^N r_{ik} \left(\sum_{m=1}^M (y_{im} - \mu_{km})^2 \right)$$ Focus on just μ_{km} $$f(\mathbf{r}, \mu_{km}, \mathbf{y})_{km} = \sum_{i=1}^{N} r_{ik} (y_{im} - \mu_{km})^2$$ Quadratic: take derivative, set equal to zero (second derivative test works) $$\frac{\partial f(\mathbf{r}, \mu_{km}, \mathbf{y})_{km}}{\partial \mu_{km}} = -2 \sum_{i=1}^{N} r_{ik} (y_{im} - \mu_{km})$$ $$2 \sum_{i=1}^{N} r_{ik} (y_{im} - \mu_{km}^{t}) = 0$$ $$\sum_{i=1}^{N} r_{ik} y_{im} - \mu_{km}^{t} \sum_{i=1}^{N} r_{ik} = 0$$ $$\frac{\sum_{i=1}^{N} r_{ik} y_{im}}{\sum_{i=1}^{N} r_{ik}} = \mu_{km}^{t}$$ $$\boldsymbol{\mu}_k^t = \frac{\sum_{i=1}^N r_{ik} \mathbf{y}_i}{\sum_{i=1}^N r_{ik}}$$ #### In words: - μ_k^t is the average of documents assigned to the k^{th} cluster #### Algorithm, In Words - Conditional on center estimates, assign documents to closest cluster centers - Conditional on document assignments, cluster centers are averages of documents assigned to the cluster #### Expectation-Maximization (EM) [connection guarantees convergence] - Estimation of $r \rightsquigarrow$ Expectation step (data augmentation) - Estimation of $\mu_k \rightsquigarrow \mathsf{Maximization}$ Step 1014914515 5 900 #### Interpreting Cluster Components - Apply clustering methods, we have groups of documents - How to interpret groups? - Two (broad) methods: - Manual identification (Quinn et al 2010) - Sample set of documents from same cluster - Read documents - Assign cluster label - Automatic identification (Week 4 methods) - Know label classes - Use methods to identify separating words - Use these to help infer differences across clusters #### - Best Validation: - Clustering methods suggest organization structure - Conditional on output, write coding rules - Humans code some documents - Use Week 8, 9 methods to classify - Correlation: strong evidence that grouping captures meaning you think - Previous Analysis Assumed We Know Number of Clusters - Previous Analysis Assumed We Know Number of Clusters - How Do We Choose Cluster Number? - Previous Analysis Assumed We Know Number of Clusters - How Do We Choose Cluster Number? - Cannot Compare f across clusters - Previous Analysis Assumed We Know Number of Clusters - How Do We Choose Cluster Number? - Cannot Compare f across clusters - Sum squared errors decreases as K increases - Previous Analysis Assumed We Know Number of Clusters - How Do We Choose Cluster Number? - Cannot Compare f across clusters - Sum squared errors decreases as K increases - Trivial answer: each document in own cluster (useless) - Previous Analysis Assumed We Know Number of Clusters - How Do We Choose Cluster Number? - Cannot Compare f across clusters - Sum squared errors decreases as K increases - Trivial answer: each document in own cluster (useless) - Modelling problem: Fit often increases with features - Previous Analysis Assumed We Know Number of Clusters - How Do We Choose Cluster Number? - Cannot Compare f across clusters - Sum squared errors decreases as K increases - Trivial answer: each document in own cluster (useless) - Modelling problem: Fit often increases with features - How do we choose number of clusters? - Previous Analysis Assumed We Know Number of Clusters - How Do We Choose Cluster Number? - Cannot Compare f across clusters - Sum squared errors decreases as K increases - Trivial answer: each document in own cluster (useless) - Modelling problem: Fit often increases with features - How do we choose number of clusters? # Think! - Previous Analysis Assumed We Know Number of Clusters - How Do We Choose Cluster Number? - Cannot Compare f across clusters - Sum squared errors decreases as K increases - Trivial answer: each document in own cluster (useless) - Modelling problem: Fit often increases with features - How do we choose number of clusters? # Think! - No one statistic captures how you want to use your data #### How Do We Choose K? - Previous Analysis Assumed We Know Number of Clusters - How Do We Choose Cluster Number? - Cannot Compare f across clusters - Sum squared errors decreases as K increases - Trivial answer: each document in own cluster (useless) - Modelling problem: Fit often increases with features - How do we choose number of clusters? ## Think! - No one statistic captures how you want to use your data - But, can help guide your selection #### How Do We Choose K? - Previous Analysis Assumed We Know Number of Clusters - How Do We Choose Cluster Number? - Cannot Compare f across clusters - Sum squared errors decreases as K increases - Trivial answer: each document in own cluster (useless) - Modelling problem: Fit often increases with features - How do we choose number of clusters? ## Think! - No one statistic captures how you want to use your data - But, can help guide your selection - Combination statistic + manual search #### How Do We Choose K? - Previous Analysis Assumed We Know Number of Clusters - How Do We Choose Cluster Number? - Cannot Compare f across clusters - Sum squared errors decreases as K increases - Trivial answer: each document in own cluster (useless) - Modelling problem: Fit often increases with features - How do we choose number of clusters? ## Think! - No one statistic captures how you want to use your data - But, can help guide your selection - Combination statistic + manual search - Humans should be the final judge More general problem: model selection through humans What Are Humans Good For? More general problem: model selection through humans What Are Humans Good For? - They can't: keep many documents & clusters in their head More general problem: model selection through humans What Are Humans Good For? - They can't: keep many documents & clusters in their head - They can: compare two documents at a time More general problem: model selection through humans What Are Humans Good For? - They can't: keep many documents & clusters in their head - They can: compare two documents at a time More general problem: model selection through humans What Are Humans Good For? - They can't: keep many documents & clusters in their head - They can: compare two documents at a time - → Cluster quality evaluation: using human judgement on pairs More general problem: model selection through humans What Are Humans Good For? - They can't: keep many documents & clusters in their head - They can: compare two documents at a time - → Cluster quality evaluation: using human judgement on pairs Design to assess cluster quality - Estimate clusterings More general problem: model selection through humans What Are Humans Good For? - They can't: keep many documents & clusters in their head - They can: compare two documents at a time - → Cluster quality evaluation: using human judgement on pairs - Estimate clusterings - Sample pairs of documents (hint: you only need to compare discrepant pairs) More general problem: model selection through humans What Are Humans Good For? - They can't: keep many documents & clusters in their head - They can: compare two documents at a time - → Cluster quality evaluation: using human judgement on pairs - Estimate clusterings - Sample pairs of documents (hint: you only need to compare discrepant pairs) - Scale: (1) unrelated, (2) loosely related, (3) closely related (richer instructions, based on thing you want to cluster on) More general problem: model selection through humans What Are Humans Good For? - They can't: keep many documents & clusters in their head - They can: compare two documents at a time - → Cluster quality evaluation: using human judgement on pairs - Estimate clusterings - Sample pairs of documents (hint: you only need to compare discrepant pairs) - Scale: (1) unrelated, (2) loosely related, (3) closely related (richer instructions, based on thing you want to cluster on) - Cluster Quality = mean(within cluster) mean(between clusters) More general problem: model selection through humans What Are Humans Good For? - They can't: keep many documents & clusters in their head - They can: compare two documents at a time - → Cluster quality evaluation: using human judgement on pairs - Estimate clusterings - Sample pairs of documents (hint: you only need to compare discrepant pairs) - Scale: (1) unrelated, (2) loosely related, (3) closely related (richer instructions, based on thing you want to cluster on) - Cluster Quality = mean(within cluster) mean(between clusters) - Select clustering with highest cluster quality More general problem: model selection through humans What Are Humans Good For? - They can't: keep many documents & clusters in their head - They can: compare two documents at a time - → Cluster quality evaluation: using human judgement on pairs - Estimate clusterings - Sample pairs of documents (hint: you only need to compare discrepant pairs) - Scale: (1) unrelated, (2) loosely related, (3) closely related (richer instructions, based on thing you want to cluster on) - Cluster Quality = mean(within cluster) mean(between clusters) - Select clustering with highest cluster quality - Can be used to compare any clusterings, regardless of source #### Mixture Models - Statistical models: make extensions/generalizations easier - Mixture models: workhorse model for statistical clustering of data Single distribution DGP: $$\mathbf{y}_i \sim \text{Distribution(parameters)}$$ Mixture model DGP: $$egin{array}{ll} \mathbf{r}_i | \pi & \sim & \mathsf{Multinomial}(1,\pi) \ \mathbf{y}_i | r_{ik} = 1 & \sim & \mathsf{Distribution}(\mathsf{param}_k) \end{array}$$ #### DGP in Words - Draw a cluster label - Go to distribution, draw contents #### A Mixture of Multinomial Distributions #### Recall Multinomial Distribution: $$\mathbf{y}_i | oldsymbol{ heta} \sim ext{Multinomial}(oldsymbol{n_i}, oldsymbol{ heta}_i , oldsymbol{ heta}_{ ext{Rate Words are Used}})$$ #### A Mixture of Multinomial Distributions $$\mathbf{r}_i | oldsymbol{\pi} \sim \mathsf{Multinomial}(1, oldsymbol{\pi}) \ \mathbf{y}_i | r_{ij} = k, oldsymbol{ heta}_k \sim \mathsf{Multinomial}(n_i, oldsymbol{ heta}_k)$$ where θ_{km} describes the rate word m is used in topic k. Note: $\sum_{m=1}^{M} \theta_{km} = 1$. - Distance metric: Implicit, normalized Euclidean distance - Objective function - Optimization: EM Algorithm $$p(\mathbf{r}, \boldsymbol{\theta}, \boldsymbol{\pi} | \mathbf{y}) \propto \prod_{i=1}^{N} \prod_{j=1}^{K} \left[\pi_{j} \prod_{m=1}^{M} \theta_{km}^{y_{im}} \right]^{r_{ij}}$$ - Distance metric: Implicit, normalized Euclidean distance - Objective function - Optimization: EM Algorithm - Distance metric: Implicit, normalized Euclidean distance - Objective function - Optimization: EM Algorithm - Distance metric: Implicit, normalized Euclidean distance - Objective function - Optimization: EM Algorithm $$r_{ik}^{t} = \frac{\pi_{k}^{t-1} \prod_{m=1}^{M} \theta_{km}^{y_{im}, t-1}}{\sum_{j=1}^{K} \pi_{j}^{t-1} \prod_{m=1}^{M} \theta_{jm}^{y_{im}, t-1}}$$ - Distance metric: Implicit, normalized Euclidean distance - Objective function - Optimization: EM Algorithm $$r_{ik}^{t} = \frac{\pi_{k}^{t-1} \prod_{m=1}^{M} \theta_{km}^{y_{im}, t-1}}{\sum_{j=1}^{K} \pi_{j}^{t-1} \prod_{m=1}^{M} \theta_{jm}^{y_{im}, t-1}}$$ $$\pi_{k} = \sum_{i=1}^{N} r_{ik}$$ - Distance metric: Implicit, normalized Euclidean distance - Objective function - Optimization: EM Algorithm $$r_{ik}^{t} = \frac{\pi_{k}^{t-1} \prod_{m=1}^{M} \theta_{km}^{y_{im},t-1}}{\sum_{j=1}^{K} \pi_{j}^{t-1} \prod_{m=1}^{M} \theta_{jm}^{y_{im},t-1}}$$ $$\pi_{k} = \sum_{i=1}^{N} r_{ik}$$ $$\theta_{k} \propto \sum_{i=1}^{N} r_{ik} \mathbf{y}_{i}$$ # (Non-parametric) Clustering of Press Releases (Grimmer 2011) Apply version of mixture of multinomials to 64,033 Senate press releases Model fit with approximately 45 topics | Identifying Stems | % Press Rele | |---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <u> </u> | | | fund,project,000,million,water | 8.6 | | honor,servic,school,serv,american | 8.2 | | iraq,troop,war,iraqi,american | 6.6 | | health,program,educ,children,school | 6.3 | | secur, homeland, port, border, depart | 5.3 | | court,vote,justic,american,judg | 4.8 | | disast,assist,hurrican,fema,flood | 4.5 | | tax,american,budget,social,secur | 4.4 | | million,defens,fund,air,militari | 4.2 | | health,care,drug,medicar,senior | 3.8 | | | iraq,troop,war,iraqi,american
health,program,educ,children,school
secur,homeland,port,border,depart
court,vote,justic,american,judg
disast,assist,hurrican,fema,flood
tax,american,budget,social,secur
million,defens,fund,air,militari | There are a lot of different clustering models (and many variations within each): k-means There are a lot of different clustering models (and many variations within each): k-means , Mixture of multinomials There are a lot of different clustering models (and many variations within each): k-means, Mixture of multinomials, k-medoids There are a lot of different clustering models (and many variations within each): k-means, Mixture of multinomials, k-medoids, affinity propagation There are a lot of different clustering models (and many variations within each): k-means , Mixture of multinomials , k-medoids , affinity propagation , agglomerative Hierarchical There are a lot of different clustering models (and many variations within each): k-means, Mixture of multinomials, k-medoids, affinity propagation, agglomerative Hierarchical fuzzy k-means, trimmed k-means, k-Harmonic means, fuzzy k-medoids, fuzzy k modes, maximum entropy clustering, model based hierarchical (agglomerative), proximus, ROCK, divisive hierarchical, DISMEA, Fuzzy, QTClust, self-organizing map, self-organizing tree, unnormalized spectral, MS spectral, NJW Spectral, SM Spectral, Dirichlet Process Multinomial, Dirichlet Process Normal, Dirichlet Process von-mises Fisher, Mixture of von mises-Fisher (EM), Mixture of von Mises Fisher (VA), Mixture of normals, co-clustering mutual information, co-clustering SVD, LLAhclust, CLUES, bclust, c-shell, qtClustering, LDA, Express Agenda Model, Hierarchical Dirichlet process prior, multinomial, uniform process mulitinomial, Chinese Restaurant Distance Dirichlet process multinomial, Pitmann-Yor Process multinomial, LSA, ... - Large quantitative literature on cluster analysis - Large quantitative literature on cluster analysis - The Goal an optimal application-independent cluster analysis method — - Large quantitative literature on cluster analysis - The Goal an optimal application-independent cluster analysis method is mathematically impossible: - Large quantitative literature on cluster analysis - The Goal an optimal application-independent cluster analysis method — is mathematically impossible: - No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications - Large quantitative literature on cluster analysis - The Goal an optimal application-independent cluster analysis method — is mathematically impossible: - No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications - Existing methods: - Large quantitative literature on cluster analysis - The Goal an optimal application-independent cluster analysis method — is mathematically impossible: - No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications - Existing methods: - Many choices: model-based, subspace, spectral, grid-based, graph-based, fuzzy k-modes, affinity propagation, self-organizing maps,... - Large quantitative literature on cluster analysis - The Goal an optimal application-independent cluster analysis method — is mathematically impossible: - No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications - Existing methods: - Many choices: model-based, subspace, spectral, grid-based, graph-based, fuzzy k-modes, affinity propagation, self-organizing maps,... - Well-defined statistical, data analytic, or machine learning foundations - Large quantitative literature on cluster analysis - The Goal an optimal application-independent cluster analysis method is mathematically impossible: - No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications - Existing methods: - Many choices: model-based, subspace, spectral, grid-based, graph-based, fuzzy k-modes, affinity propagation, self-organizing maps,... - Well-defined statistical, data analytic, or machine learning foundations - How to add substantive knowledge: With few exceptions, unclear - Large quantitative literature on cluster analysis - The Goal an optimal application-independent cluster analysis method — is mathematically impossible: - No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications - Existing methods: - Many choices: model-based, subspace, spectral, grid-based, graph-based, fuzzy k-modes, affinity propagation, self-organizing maps,... - Well-defined statistical, data analytic, or machine learning foundations - How to add substantive knowledge: With few exceptions, unclear - The literature: little guidance on when methods apply - Large quantitative literature on cluster analysis - The Goal an optimal application-independent cluster analysis method — is mathematically impossible: - No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications - Existing methods: - Many choices: model-based, subspace, spectral, grid-based, graph-based, fuzzy k-modes, affinity propagation, self-organizing maps,... - Well-defined statistical, data analytic, or machine learning foundations - How to add substantive knowledge: With few exceptions, unclear - The literature: little guidance on when methods apply - Deriving such guidance: difficult or impossible - Large quantitative literature on cluster analysis - The Goal an optimal application-independent cluster analysis method — is mathematically impossible: - No free lunch theorem: every possible clustering method performs equally well on average over all possible substantive applications - Existing methods: - Many choices: model-based, subspace, spectral, grid-based, graph-based, fuzzy k-modes, affinity propagation, self-organizing maps,... - Well-defined statistical, data analytic, or machine learning foundations - How to add substantive knowledge: With few exceptions, unclear - The literature: little guidance on when methods apply - Deriving such guidance: difficult or impossible Deep problem in cluster analysis literature: full automation requires more information # Fully Automated \rightarrow Computer Assisted (Grimmer and King 2011) - Fully Automated Clustering may succeed, fails in general. Too hard to know when to apply models - An alternative: Computer Assisted Clustering - Easy (if you don't think about it): list all clustering, choose best - Impossible in Practice - Solution: Organized list - Insight: Many clusterings are perceptually identical - Consider two clusterings of 10,000 documents, we move one document from 5 to 6. - How to organize clusterings so humans can undestand? - Our answer: a geography of clusterings 1) Code text as numbers (in one or more of several ways) - 1) Code text as numbers (in one or more of several ways) - 2) Apply many different clustering methods to the data each representing different (unstated) substantive assumptions - 1) Code text as numbers (in one or more of several ways) - 2) Apply many different clustering methods to the data each representing different (unstated) substantive assumptions - Introduce sampling methods to extend search beyond existing methods - 1) Code text as numbers (in one or more of several ways) - 2) Apply many different clustering methods to the data each representing different (unstated) substantive assumptions - Introduce sampling methods to extend search beyond existing methods - 3) Develop a metric between clusterings - 1) Code text as numbers (in one or more of several ways) - 2) Apply many different clustering methods to the data each representing different (unstated) substantive assumptions - Introduce sampling methods to extend search beyond existing methods - 3) Develop a metric between clusterings - 4) Create a metric space of clusterings, and a 2-D projection - 1) Code text as numbers (in one or more of several ways) - 2) Apply many different clustering methods to the data each representing different (unstated) substantive assumptions - Introduce sampling methods to extend search beyond existing methods - 3) Develop a metric between clusterings - 4) Create a metric space of clusterings, and a 2-D projection - 5) Introduce the local cluster ensemble to summarize any point, including points with no existing clustering - 1) Code text as numbers (in one or more of several ways) - 2) Apply many different clustering methods to the data each representing different (unstated) substantive assumptions - Introduce sampling methods to extend search beyond existing methods - 3) Develop a metric between clusterings - 4) Create a metric space of clusterings, and a 2-D projection - 5) Introduce the local cluster ensemble to summarize any point, including points with no existing clustering - New Clustering: weighted average of clusterings from methods - 1) Code text as numbers (in one or more of several ways) - 2) Apply many different clustering methods to the data each representing different (unstated) substantive assumptions - Introduce sampling methods to extend search beyond existing methods - 3) Develop a metric between clusterings - 4) Create a metric space of clusterings, and a 2-D projection - 5) Introduce the local cluster ensemble to summarize any point, including points with no existing clustering - New Clustering: weighted average of clusterings from methods - 6) Use animated visualization: use the local cluster ensemble to explore the space of clusterings (smoothly morphing from one into others) - 1) Code text as numbers (in one or more of several ways) - 2) Apply many different clustering methods to the data each representing different (unstated) substantive assumptions - Introduce sampling methods to extend search beyond existing methods - 3) Develop a metric between clusterings - 4) Create a metric space of clusterings, and a 2-D projection - 5) Introduce the local cluster ensemble to summarize any point, including points with no existing clustering - New Clustering: weighted average of clusterings from methods - 6) Use animated visualization: use the local cluster ensemble to explore the space of clusterings (smoothly morphing from one into others) - 7) --> Millions of clusterings easily comprehended - 1) Code text as numbers (in one or more of several ways) - 2) Apply many different clustering methods to the data each representing different (unstated) substantive assumptions - Introduce sampling methods to extend search beyond existing methods - 3) Develop a metric between clusterings - 4) Create a metric space of clusterings, and a 2-D projection - 5) Introduce the local cluster ensemble to summarize any point, including points with no existing clustering - New Clustering: weighted average of clusterings from methods - 6) Use animated visualization: use the local cluster ensemble to explore the space of clusterings (smoothly morphing from one into others) - 7) --- Millions of clusterings easily comprehended - 8) (Or, our new strategy: represent entire Bell space directly; no need to examine document contents) Grimmer, King, and Stewart, In Progress A brief live demonstration of α software (time permitting) Paper (Grimmer and King 2011): introduce new evaluation methods (like Cluster Quality) - Paper (Grimmer and King 2011): introduce new evaluation methods (like Cluster Quality) - David Mayhew's (1974) famous typology - Paper (Grimmer and King 2011): introduce new evaluation methods (like Cluster Quality) - David Mayhew's (1974) famous typology - Advertising - Paper (Grimmer and King 2011): introduce new evaluation methods (like Cluster Quality) - David Mayhew's (1974) famous typology - Advertising - Credit Claiming - Paper (Grimmer and King 2011): introduce new evaluation methods (like Cluster Quality) - David Mayhew's (1974) famous typology - Advertising - Credit Claiming - Position Taking - Paper (Grimmer and King 2011): introduce new evaluation methods (like Cluster Quality) - David Mayhew's (1974) famous typology - Advertising - Credit Claiming - Position Taking - Data: 200 press releases from Frank Lautenberg's office (D-NJ) - Paper (Grimmer and King 2011): introduce new evaluation methods (like Cluster Quality) - David Mayhew's (1974) famous typology - Advertising - Credit Claiming - Position Taking - Data: 200 press releases from Frank Lautenberg's office (D-NJ) - Apply our method (relying on many clustering algorithms) Each point is a clustering Affinity Propagation-Cosine (Dueck and Frey 2007) Each point is a clustering Affinity Propagation-Cosine (Dueck and Frey 2007) #### Close to: Mixture of von Mises-Fisher distributions (Banerjee et. al. 2005) ⇒ Similar clustering of documents Space between methods: Space between methods: Space between methods: local cluster ensemble Found a region with clusterings that all reveal the same important insight #### Mixture: #### Mixture: 0.39 Hclust-Canberra-McQuitty - 0.13 Hclust-Correlation-Ward - 0.09 Hclust-Pearson-Ward #### Mixture: - 0.39 Hclust-Canberra-McQuitty - 0.30 Spectral clustering Random Walk (Metrics 1-6) - 0.13 Hclust-Correlation-Ward - 0.09 Hclust-Pearson-Ward - 0.04 Spectral clustering Symmetric (Metrics 1-6) #### Mixture: - 0.39 Hclust-Canberra-McQuitty - 0.30 Spectral clustering Random Walk (Metrics 1-6) - 0.13 Hclust-Correlation-Ward - 0.09 Hclust-Pearson-Ward - 0.05 Kmediods-Cosine - 0.04 Spectral clustering Symmetric (Metrics 1-6) Clusters in this Clustering #### Credit Claiming, Pork: "Sens. Frank R. Lautenberg (D-NJ) and Robert Menendez (D-NJ) announced that the U.S. Department of Commerce has awarded a \$100,000 grant to the South Jersey Economic Development District" Clusters in this Clustering #### Credit Claiming, Legislation: "As the Senate begins its recess, Senator Frank Lautenberg today pointed to a string of victories in Congress on his legislative agenda during this work period" #### Advertising: "Senate Adopts Lautenberg/Menendez Resolution Honoring Spelling Bee Champion from New Jersey" # Example Discovery: Partisan Taunting #### Partisan Taunting: "Republicans Selling Out Nation on Chemical Plant Security" Important Concept Overlooked in Mayhew's (1974) typology Sen. Lautenberg on Senate Floor 4/29/04 "Senator Lautenberg Blasts Republicans as 'Chicken Hawks' " [Government Oversight] Important Concept Overlooked in Mayhew's (1974) typology Sen. Lautenberg on Senate Floor 4/29/04 - "Senator Lautenberg Blasts Republicans as 'Chicken Hawks' " [Government Oversight] - "The scopes trial took place in 1925. Sadly, President Bush's veto today shows that we haven't progressed much since then" [Healthcare] Important Concept Overlooked in Mayhew's (1974) typology Sen. Lautenberg on Senate Floor 4/29/04 - "Senator Lautenberg Blasts Republicans as 'Chicken Hawks' " [Government Oversight] - "The scopes trial took place in 1925. Sadly, President Bush's veto today shows that we haven't progressed much since then" [Healthcare] - "Every day the House Republicans dragged this out was a day that made our communities less safe." [Homeland Security] Important Concept Overlooked in Mayhew's (1974) typology Definition: Explicit, public, and negative attacks on another political party or its members Sen. Lautenberg on Senate Floor 4/29/04 - "Senator Lautenberg Blasts Republicans as 'Chicken Hawks' " [Government Oversight] - "The scopes trial took place in 1925. Sadly, President Bush's veto today shows that we haven't progressed much since then" [Healthcare] - "Every day the House Republicans dragged this out was a day that made our communities less safe." [Homeland Security] Important Concept Overlooked in Mayhew's (1974) typology Definition: Explicit, public, and negative attacks on another political party or its members Consequences for representation: Deliberative, Polarization, Policy Sen. Lautenberg on Senate Floor 4/29/04 - "Senator Lautenberg Blasts Republicans as 'Chicken Hawks' " [Government Oversight] - "The scopes trial took place in 1925. Sadly, President Bush's veto today shows that we haven't progressed much since then" [Healthcare] - "Every day the House Republicans dragged this out was a day that made our communities less safe." [Homeland Security] - Discovered using 200 press releases; 1 senator. - Discovered using 200 press releases; 1 senator. - Demonstrate prevalence using senators' press releases. - Discovered using 200 press releases; 1 senator. - Demonstrate prevalence using senators' press releases. - Apply supervised learning method: measure proportion of press releases a senator taunts other party - Discovered using 200 press releases; 1 senator. - Demonstrate prevalence using senators' press releases. - Apply supervised learning method: measure proportion of press releases a senator taunts other party - Discovered using 200 press releases; 1 senator. - Demonstrate prevalence using senators' press releases. - Apply supervised learning method: measure proportion of press releases a senator taunts other party ## Clustering, FAC and CAC #### This week - Introduction to clustering - Fully automated clustering algorithms - Introduction to computer assisted clustering #### Next week: - Topic models - Discover underlying issues in texts