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Where We’ve Been, Where We’re Going

- Class 1: Finding Text Data

- Class 2: Representing Texts Quantitatively

- Class 3: Dictionary Methods for Classification

- Class 4: Comparing Language Across Groups

- Class 5: Texts in Space

- Class 6: Clustering

- Class 7: Topic models

- Class 8: Supervised methods for classification

- Class 9: Ensemble methods for classification

- Class 10: Scaling Speech
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Entropy Explanation (Hanna Wallach Slides)

- Probability and Information are intimately related

- Less probable events → more information

- More certain something will occur, less information you gain knowing
it occurred

- Focus on the occurrence of binary event A

Basic unit of information built around event A for which we are maximally
uncertain:

P[A] = P[¬A] = 1/2
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Entropy Explanation (Hanna Wallach Slides)

Desired properties

- Information, Probability: Inversely related

- Certain event will occur and it does: no information gained

- Certain event will not occur and it does: infinite information gained

- Maximally uncertain: we should gain one unit of information by
learning that A or ¬A occurred
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Entropy Explanation (Hanna Wallach Slides)
Information in event A is then,

I (A) = log2
1

P[A]

And for a series of disjoint events, the entropy is

H(A1, . . . ,An) =
N∑
i=1

P[Ai ] log2
1

P[Ai ]

Recall: use entropy to describe how well words separate classes (Week 4):
Conditional entropy(w): Information that remains after condition on w

Mutual information(w) = Entropy− Conditional Entropy(w)

Measures the reduction in information greater reduction, less
information, w is a better predictor.
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Clustering
Last week: measures of similarity between documents.

- Place documents in space

- Measure similarity, dissimilarity of documents

This week: identify groups of similar documents
Fully Automated Clustering Algorithms:

- Task: partition documents
- Mutual exclusive
- Exhaustive
- Set of Groupings

- Task name: Clustering
- Estimate: categories
- Estimate: each document’s category

- Label Clusters in Clustering (Week 4 Methods!)

- How to use clustering methods: (THINK!)
- Tune clustering methods to problem (Discuss more next week, virtue of

statistical models)

Computer Assisted Clustering Algorithms (Grimmer and King 2011)
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Perspective 1: Supervised Methods

Document 1 Document 2 ... Document N

...

Bins Known, Bin Assignment Estimated
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Perspective 1: Clustering

Document 1 Document 2 ... Document N

...

Bins and Bin Assignments Estimated
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Perspective 2: Clustering

Doc1 Doc2 Doc3 Doc4 Doc5 Doc6 Doc7 Doc8 Doc9 Doc10

|Doc1, Doc3, Doc6, Doc7|

|Doc2, Doc4, Doc8|

|Doc5, Doc9, Doc10|
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Perspective 3
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Perspective 4

Clustering as Compression:

Identify groups of documents, clusters

:

1) Have high within group similarity

2) Have low across group similarity

Compression: Retain only cluster label for documents in same group

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 11 / 42



Perspective 4

Clustering as Compression:
Identify groups of documents, clusters:

1) Have high within group similarity

2) Have low across group similarity

Compression: Retain only cluster label for documents in same group

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 11 / 42



Perspective 4

Clustering as Compression:
Identify groups of documents, clusters:

1) Have high within group similarity

2) Have low across group similarity

Compression: Retain only cluster label for documents in same group

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 11 / 42



Perspective 4

Clustering as Compression:
Identify groups of documents, clusters:

1) Have high within group similarity

2) Have low across group similarity

Compression: Retain only cluster label for documents in same group

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 11 / 42



Perspective 4

Clustering as Compression:
Identify groups of documents, clusters:

1) Have high within group similarity

2) Have low across group similarity

Compression: Retain only cluster label for documents in same group

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 11 / 42



Perspective 5

Clustering as Discovery

- When we analyze texts (data) we have some idea how to organize
them

- Liberals/Democrats
- Democracy/Autocracy
- Assistant/Associate

- How do we formulate new ways to organize texts?

- Clustering methods suggest new (model and data driven) ways to
organize texts

- Using new method, new lens to look at politics
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Clustering: Terms and Notation

Set of documents i = 1, 2, . . . ,N.
Partition documents into j = 1, . . . ,K clusters
Call ci document i ’s cluster assignment

- ci = 2 Document i assigned to second cluster

- c10 = 4 Document 10 assigned to fourth cluster

Define clustering as a partition of observations. Mathematically:

c = (c1, c2, . . . , cN)

c constitutes the clustering.
Two trivial clusterings

c = (1, 2, . . . ,N)

c = (1, 1, . . . , 1)
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Estimating Clustering: Data and Assumptions

Steps common across Fully Automated Clustering methods

- Assume similarity/dissimilarity between objects (Some methods
assume implicitly)

- Define objective function

- Domain (things you put in the function): space of clusterings
- Range (thing that comes out of function): measure of clustering’s

performance

- Use approximate inference/optimization algorithm to identify optimal
solution
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Estimating Clustering: Data and Assumptions

Steps common across Fully Automated Clustering methods

- Assume similarity/dissimilarity between objects (Some methods
assume implicitly)

- Define objective function

- Domain (things you put in the function): space of clusterings
- Range (thing that comes out of function): measure of clustering’s

performance

- Use approximate inference/optimization algorithm to identify optimal
solution ← Huge search space, very difficult (and interesting!)
problem, only hinted at here
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An Example FAC Method
K-means: most commonly used clustering algorithm.
Story: Data are grouped in K clusters and each cluster has a center or
mean.
→ Two types of parameters to estimate

1) For each cluster j , (j = 1, . . . ,K )

rij =Indicator, Document i assigned to cluster j

rj = (r1j , r2j , . . . , rNj)

r = (r
′
1, r

′
2, . . . , r

′
K ) (N × K matrix)

Note: Same information in r and c

2) For each cluster j

µj a cluster center for cluster j .

µj = (µ1j , µ2j , . . . , µMj)

Notation. Representation of document i :

yi = (yi1, yi2, . . . , yiM)
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Specifying the Method

1) Assume Euclidean distance between objects.

2) Objective function

f (r,µ, y) =
N∑
i=1

K∑
j=1

rij

(
M∑

m=1

(yim − µkm)2

)

Goal:
Choose r∗ and µ∗ to minimize f (·, ·, y)
Two observations:

- If K = N f (r∗,µ∗, y) = 0 (Minimum)

- Each observation in own cluster
- µi = yi

- If K = 1, f (r∗,µ∗, y) = N × σ2
- Each observation in one cluster
- Center: average of documents
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Specifying the Method

1) Assume Euclidean distance between objects

2) Objective function

3) Algorithm for optimization

Iterative algorithm, Each Iteration t

- Conditional on µt−1 (from previous iteration), choose rt

- Conditional on rt , choose µt

Repeat until convergence, measured as change in f .

Change = f (µt , rt , y)− f (µt−1, rt−1, y)
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Specifying the Method

f (r,µ, y) =
N∑
i=1

K∑
j=1

rij

(
M∑

m=1

(yim − µkm)2

)

Algorithm for estimation:
Begin: initialize µt−1

1 ,µt−1
2 , . . . ,µt−1

K
Choose rt

r tij =

{
1 if j = arg mink

∑M
m=1(yim − µkm)2

0 otherwise ,
.

In words: Assign each document yi to the closest center µk
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f (r,µ, y) =
N∑
i=1

K∑
j=1

rij

(
M∑

m=1

(yim − µkm)2

)

Conditional on rt , choose µt

Let’s focus on µk

f (r,µk , y)k =
N∑
i=1

rik

(
M∑

m=1

(yim − µkm)2

)
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Focus on just µkm

f (r, µkm, y)km =
N∑
i=1

rik(yim − µkm)2

Quadratic: take derivative, set equal to zero (second derivative test works)

∂f (r, µkm, y)km
∂µkm

= −2
N∑
i=1

rik(yim − µkm)

2
N∑
i=1

rik(yim − µtkm) = 0

N∑
i=1

rikyim − µtkm
N∑
i=1

rik = 0

∑N
i=1 rikyim∑N
i=1 rik

= µtkm
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µt
k =

∑N
i=1 rikyi∑N
i=1 rik

In words:

- µt
k is the average of documents assigned to the kth cluster

Algorithm, In Words

- Conditional on center estimates, assign documents to closest cluster
centers

- Conditional on document assignments, cluster centers are averages of
documents assigned to the cluster

Expectation-Maximization (EM) [connection guarantees convergence]

- Estimation of r  Expectation step (data augmentation)

- Estimation of µk  Maximization Step
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Visual Example
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Interpreting Cluster Components

- Apply clustering methods, we have groups of documents

- How to interpret groups?

- Two (broad) methods:
- Manual identification (Quinn et al 2010)

- Sample set of documents from same cluster
- Read documents
- Assign cluster label

- Automatic identification (Week 4 methods)

- Know label classes
- Use methods to identify separating words
- Use these to help infer differences across clusters

- Best Validation:

- Clustering methods suggest organization structure
- Conditional on output, write coding rules
- Humans code some documents
- Use Week 8, 9 methods to classify
- Correlation: strong evidence that grouping captures meaning you think
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How Do We Choose K?

- Previous Analysis Assumed We Know Number of Clusters

- How Do We Choose Cluster Number?

- Cannot Compare f across clusters

- Sum squared errors decreases as K increases
- Trivial answer: each document in own cluster (useless)
- Modelling problem: Fit often increases with features

- How do we choose number of clusters?

Think!
- No one statistic captures how you want to use your data

- But, can help guide your selection

- Combination statistic + manual search

- Humans should be the final judge
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Cluster Quality (Grimmer and King 2011)
More general problem: model selection through humans
What Are Humans Good For?

- They can’t: keep many documents & clusters in their head

- They can: compare two documents at a time

 Cluster quality evaluation: using human judgement on pairs

Design to assess cluster quality

- Estimate clusterings

- Sample pairs of documents (hint: you only need to compare
discrepant pairs)

- Scale: (1) unrelated, (2) loosely related, (3) closely related (richer
instructions, based on thing you want to cluster on)

- Cluster Quality = mean(within cluster) - mean(between clusters)

- Select clustering with highest cluster quality

- Can be used to compare any clusterings, regardless of source

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 25 / 42



Cluster Quality (Grimmer and King 2011)
More general problem: model selection through humans
What Are Humans Good For?

- They can’t: keep many documents & clusters in their head

- They can: compare two documents at a time

 Cluster quality evaluation: using human judgement on pairs

Design to assess cluster quality

- Estimate clusterings

- Sample pairs of documents (hint: you only need to compare
discrepant pairs)

- Scale: (1) unrelated, (2) loosely related, (3) closely related (richer
instructions, based on thing you want to cluster on)

- Cluster Quality = mean(within cluster) - mean(between clusters)

- Select clustering with highest cluster quality

- Can be used to compare any clusterings, regardless of source

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 25 / 42



Cluster Quality (Grimmer and King 2011)
More general problem: model selection through humans
What Are Humans Good For?

- They can’t: keep many documents & clusters in their head

- They can: compare two documents at a time

 Cluster quality evaluation: using human judgement on pairs

Design to assess cluster quality

- Estimate clusterings

- Sample pairs of documents (hint: you only need to compare
discrepant pairs)

- Scale: (1) unrelated, (2) loosely related, (3) closely related (richer
instructions, based on thing you want to cluster on)

- Cluster Quality = mean(within cluster) - mean(between clusters)

- Select clustering with highest cluster quality

- Can be used to compare any clusterings, regardless of source

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 25 / 42



Cluster Quality (Grimmer and King 2011)
More general problem: model selection through humans
What Are Humans Good For?

- They can’t: keep many documents & clusters in their head

- They can: compare two documents at a time

 Cluster quality evaluation: using human judgement on pairs

Design to assess cluster quality

- Estimate clusterings

- Sample pairs of documents (hint: you only need to compare
discrepant pairs)

- Scale: (1) unrelated, (2) loosely related, (3) closely related (richer
instructions, based on thing you want to cluster on)

- Cluster Quality = mean(within cluster) - mean(between clusters)

- Select clustering with highest cluster quality

- Can be used to compare any clusterings, regardless of source

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 25 / 42



Cluster Quality (Grimmer and King 2011)
More general problem: model selection through humans
What Are Humans Good For?

- They can’t: keep many documents & clusters in their head

- They can: compare two documents at a time

 Cluster quality evaluation: using human judgement on pairs

Design to assess cluster quality

- Estimate clusterings

- Sample pairs of documents (hint: you only need to compare
discrepant pairs)

- Scale: (1) unrelated, (2) loosely related, (3) closely related (richer
instructions, based on thing you want to cluster on)

- Cluster Quality = mean(within cluster) - mean(between clusters)

- Select clustering with highest cluster quality

- Can be used to compare any clusterings, regardless of source

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 25 / 42



Cluster Quality (Grimmer and King 2011)
More general problem: model selection through humans
What Are Humans Good For?

- They can’t: keep many documents & clusters in their head

- They can: compare two documents at a time

 Cluster quality evaluation: using human judgement on pairs

Design to assess cluster quality

- Estimate clusterings

- Sample pairs of documents (hint: you only need to compare
discrepant pairs)

- Scale: (1) unrelated, (2) loosely related, (3) closely related (richer
instructions, based on thing you want to cluster on)

- Cluster Quality = mean(within cluster) - mean(between clusters)

- Select clustering with highest cluster quality

- Can be used to compare any clusterings, regardless of source

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 25 / 42



Cluster Quality (Grimmer and King 2011)
More general problem: model selection through humans
What Are Humans Good For?

- They can’t: keep many documents & clusters in their head

- They can: compare two documents at a time

 Cluster quality evaluation: using human judgement on pairs

Design to assess cluster quality

- Estimate clusterings

- Sample pairs of documents (hint: you only need to compare
discrepant pairs)

- Scale: (1) unrelated, (2) loosely related, (3) closely related (richer
instructions, based on thing you want to cluster on)

- Cluster Quality = mean(within cluster) - mean(between clusters)

- Select clustering with highest cluster quality

- Can be used to compare any clusterings, regardless of source

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 25 / 42



Cluster Quality (Grimmer and King 2011)
More general problem: model selection through humans
What Are Humans Good For?

- They can’t: keep many documents & clusters in their head

- They can: compare two documents at a time

 Cluster quality evaluation: using human judgement on pairs

Design to assess cluster quality

- Estimate clusterings

- Sample pairs of documents (hint: you only need to compare
discrepant pairs)

- Scale: (1) unrelated, (2) loosely related, (3) closely related (richer
instructions, based on thing you want to cluster on)

- Cluster Quality = mean(within cluster) - mean(between clusters)

- Select clustering with highest cluster quality

- Can be used to compare any clusterings, regardless of source

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 25 / 42



Cluster Quality (Grimmer and King 2011)
More general problem: model selection through humans
What Are Humans Good For?

- They can’t: keep many documents & clusters in their head

- They can: compare two documents at a time

 Cluster quality evaluation: using human judgement on pairs

Design to assess cluster quality

- Estimate clusterings

- Sample pairs of documents (hint: you only need to compare
discrepant pairs)

- Scale: (1) unrelated, (2) loosely related, (3) closely related (richer
instructions, based on thing you want to cluster on)

- Cluster Quality = mean(within cluster) - mean(between clusters)

- Select clustering with highest cluster quality

- Can be used to compare any clusterings, regardless of source

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 25 / 42



Cluster Quality (Grimmer and King 2011)
More general problem: model selection through humans
What Are Humans Good For?

- They can’t: keep many documents & clusters in their head

- They can: compare two documents at a time

 Cluster quality evaluation: using human judgement on pairs

Design to assess cluster quality

- Estimate clusterings

- Sample pairs of documents (hint: you only need to compare
discrepant pairs)

- Scale: (1) unrelated, (2) loosely related, (3) closely related (richer
instructions, based on thing you want to cluster on)

- Cluster Quality = mean(within cluster) - mean(between clusters)

- Select clustering with highest cluster quality

- Can be used to compare any clusterings, regardless of source

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 25 / 42



Cluster Quality (Grimmer and King 2011)
More general problem: model selection through humans
What Are Humans Good For?

- They can’t: keep many documents & clusters in their head

- They can: compare two documents at a time

 Cluster quality evaluation: using human judgement on pairs

Design to assess cluster quality

- Estimate clusterings

- Sample pairs of documents (hint: you only need to compare
discrepant pairs)

- Scale: (1) unrelated, (2) loosely related, (3) closely related (richer
instructions, based on thing you want to cluster on)

- Cluster Quality = mean(within cluster) - mean(between clusters)

- Select clustering with highest cluster quality

- Can be used to compare any clusterings, regardless of source

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 25 / 42



Mixture Models

- Statistical models: make extensions/generalizations easier

- Mixture models: workhorse model for statistical clustering of data

Single distribution DGP:

yi ∼ Distribution(parameters)

Mixture model DGP:

ri |π ∼ Multinomial(1,π)

yi |rik = 1 ∼ Distribution(paramk)

DGP in Words

- Draw a cluster label

- Go to distribution, draw contents
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A Mixture of Multinomial Distributions

Recall Multinomial Distribution:

yi |θ ∼ Multinomial(

Number of Words︷︸︸︷
ni , θ︸︷︷︸

Rate Words are Used

)

p(yi |θ) ∝
M∏

m=1

θyimm
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A Mixture of Multinomial Distributions

ri |π ∼ Multinomial(1,π)

yi |rij = k,θk ∼ Multinomial(ni ,θk)

where θkm describes the rate word m is used in topic k .
Note:

∑M
m=1 θkm = 1.
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A Mixture of Multinomial Distributions: Specifying Model

- Distance metric: Implicit, normalized Euclidean distance

- Objective function

- Optimization: EM Algorithm

p(r,θ,π|y) ∝
N∏
i=1

K∏
j=1

[
πj

M∏
m=1

θyimkm

]rij
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A Mixture of Multinomial Distributions: Specifying Model

- Distance metric: Implicit, normalized Euclidean distance

- Objective function

- Optimization: EM Algorithm

Proceeds in three steps: Initialize πt−1, θt−1

r tik =
πt−1
k

∏M
m=1 θ

yim,t−1
km∑K

j=1 π
t−1
j

∏M
m=1 θ

yim,t−1
jm

πk =
N∑
i=1

rik

θk ∝
N∑
i=1

rikyi
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(Non-parametric) Clustering of Press Releases (Grimmer
2011)

Apply version of mixture of multinomials to 64,033 Senate press releases
Model fit with approximately 45 topics

Label Identifying Stems % Press Releases

Appropriations/Grants fund,project,000,million,water 8.6
Honorary honor,servic,school,serv,american 8.2
Iraq War iraq,troop,war,iraqi,american 6.6
Health Grants health,program,educ,children,school 6.3
Homeland Security secur,homeland,port,border,depart 5.3
Judicial Nominations court,vote,justic,american,judg 4.8
Hurricanes/Disasters disast,assist,hurrican,fema,flood 4.5
Taxes tax,american,budget,social,secur 4.4
Defense Projects million,defens,fund,air,militari 4.2
Health Policy health,care,drug,medicar,senior 3.8
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An Overview of Clustering Models

There are a lot of different clustering models (and many variations within
each):
k-means

, Mixture of multinomials , k-medoids , affinity propagation ,
agglomerative Hierarchical fuzzy k-means, trimmed k-means, k-Harmonic
means, fuzzy k-medoids, fuzzy k modes, maximum entropy clustering,
model based hierarchical (agglomerative), proximus, ROCK, divisive
hierarchical, DISMEA, Fuzzy, QTClust, self-organizing map, self-organizing
tree, unnormalized spectral, MS spectral, NJW Spectral, SM Spectral,
Dirichlet Process Multinomial, Dirichlet Process Normal, Dirichlet Process
von-mises Fisher, Mixture of von mises-Fisher (EM), Mixture of von Mises
Fisher (VA), Mixture of normals, co-clustering mutual information,
co-clustering SVD, LLAhclust, CLUES, bclust, c-shell, qtClustering, LDA,
Express Agenda Model, Hierarchical Dirichlet process prior, multinomial,
uniform process mulitinomial, Chinese Restaurant Distance Dirichlet
process multinomial, Pitmann-Yor Process multinomial, LSA, ...
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The Problem with Fully Automated Clustering (Grimmer
and King 2011)

- Large quantitative literature on cluster analysis

- The Goal — an optimal application-independent cluster analysis
method — is mathematically impossible:

- No free lunch theorem: every possible clustering method performs
equally well on average over all possible substantive applications

- Existing methods:

- Many choices: model-based, subspace, spectral, grid-based, graph-
based, fuzzy k-modes, affinity propagation, self-organizing maps,. . .

- Well-defined statistical, data analytic, or machine learning foundations
- How to add substantive knowledge: With few exceptions, unclear
- The literature: little guidance on when methods apply
- Deriving such guidance: difficult or impossible

Deep problem in cluster analysis literature: full automation requires
more information
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Fully Automated → Computer Assisted (Grimmer and
King 2011)

- Fully Automated Clustering may succeed, fails in general. Too hard to
know when to apply models

- An alternative: Computer Assisted Clustering

- Easy (if you don’t think about it): list all clustering, choose best
- Impossible in Practice
- Solution: Organized list
- Insight: Many clusterings are perceptually identical
- Consider two clusterings of 10,000 documents, we move one document

from 5 to 6.

- How to organize clusterings so humans can undestand?

- Our answer: a geography of clusterings
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A New Strategy (Grimmer and King 2011)

1) Code text as numbers (in one or more of several ways)

2) Apply many different clustering methods to the data — each
representing different (unstated) substantive assumptions

- Introduce sampling methods to extend search beyond existing methods

3) Develop a metric between clusterings

4) Create a metric space of clusterings, and a 2-D projection

5) Introduce the local cluster ensemble to summarize any point,
including points with no existing clustering

- New Clustering: weighted average of clusterings from methods

6) Use animated visualization: use the local cluster ensemble to explore
the space of clusterings (smoothly morphing from one into others)

7)  Millions of clusterings easily comprehended

8) (Or, our new strategy: represent entire Bell space directly; no need to
examine document contents )
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Grimmer, King, and Stewart, In Progress

A brief live demonstration of α software (time permitting)
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Example Discovery: What Do Members of Congress Do?

- Paper (Grimmer and King 2011): introduce new evaluation methods
(like Cluster Quality)

- David Mayhew’s (1974) famous typology

- Advertising
- Credit Claiming
- Position Taking

- Data: 200 press releases from Frank Lautenberg’s office (D-NJ)

- Apply our method (relying on many clustering algorithms)
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Example Discovery

: Partisan Taunting
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Partisan Taunting:
“Republicans Selling Out Nation
on Chemical Plant Security”
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In Sample Illustration of Partisan Taunting
Important Concept Overlooked in Mayhew’s (1974) typology

Definition: Explicit, public, and negative attacks on another political party
or its members
Consequences for representation: Deliberative, Polarization, Policy

Sen. Lautenberg
on Senate Floor
4/29/04

- “Senator Lautenberg Blasts
Republicans as ‘Chicken Hawks’ ”
[Government Oversight]

- “The scopes trial took place in
1925. Sadly, President Bush’s veto
today shows that we haven’t
progressed much since then”
[Healthcare]

- “Every day the House Republicans
dragged this out was a day that
made our communities less
safe.”[Homeland Security]
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Out of Sample Confirmation of Partisan Taunting
- Discovered using 200 press releases; 1 senator.

- Demonstrate prevalence using senators’ press releases.
- Apply supervised learning method: measure proportion of press

releases a senator taunts other party

Prop. of Press Releases Taunting
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- Apply supervised learning method: measure proportion of press

releases a senator taunts other party
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On Avg., Senators Taunt
 in 27 % of Press Releases
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Clustering, FAC and CAC

This week

- Introduction to clustering

- Fully automated clustering algorithms

- Introduction to computer assisted clustering

Next week:

- Topic models

- Discover underlying issues in texts

Justin Grimmer (Stanford University) Text as Data May 11th, 2011 42 / 42


