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Where We’ve Been, Where We’re Going

- Class 1: Finding Text Data

- Class 2: Representing Texts Quantitatively

- Class 3: Dictionary Methods for Classification

- Class 4: Comparing Language Across Groups

- Class 5: Texts in Space

- Class 6: Clustering

- Class 7: Topic models

- Class 8: Supervised methods for classification

- Class 9: Ensemble methods for classification

- Class 10: Scaling Speech
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Texts and Geometry

Term Document Matrix

Docs Word1 Word2 . . . Word M

Doc1 1 0 . . . 0
Doc2 0 3 . . . 1
...

...
...

. . .
...

DocN 0 0 . . . 4

Inference about documents:

- Word by word comparison

- Dictionary methods
- Class labelling methods

- Compare entire documents

- Place documents in space
- Measure similarity of documents
- Interpret word weighting geometrically
- Facilitate visualization of documents, based on similarity
- Kernel Trick: richer comparisons of documents (Spirling Paper)
- Basis for clustering, supervised learning
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Texts in Space

Doc1 = (1, 1, 3, . . . , 5)

Doc2 = (2, 0, 0, . . . , 1)

Doc1,Doc2 ∈ <M

Provides many operations that will be useful
Inner Product between documents:

Doc1 ·Doc2 = (1, 1, 3, . . . , 5)
′
(2, 0, 0, . . . , 1)

= 1× 2 + 1× 0 + 3× 0 + . . .+ 5× 1

= 7
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Length of document:

||Doc1|| ≡
√

Doc1 ·Doc1

=
√

(1, 1, 3, . . . , 5)′(1, 1, 3, . . . , 5)

=
√

12 + 12 + 32 + 52

= 6

Cosine of the angle between documents:

cos θ ≡
(

Doc1

||Doc1||

)
·
(

Doc2

||Doc2||

)
=

7

6× 2.24
= 0.52
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Measuring Similarity

Documents in space → measure similarity/dissimilarity

What properties should similarity measure have?

- Maximum: document with itself

- Minimum: documents have no words in common (orthogonal )

- Increasing when more of same words used

- ? s(a, b) = s(b, a).
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Measuring Similarity

0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d 
2

Measure 1: Inner product

(2, 1)
′ · (1, 4) = 6

Justin Grimmer (Stanford University) Text as Data May 4th, 2011 7 / 34



Measuring Similarity

0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d 
2

Measure 1: Inner product

(2, 1)
′ · (1, 4) = 6

Justin Grimmer (Stanford University) Text as Data May 4th, 2011 7 / 34



0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d 
2

Problem(?): length dependent

(4, 2)
′
(1, 4) = 12

a · b = ||a|| × ||b|| × cos θ
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0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d 
2

θ

Problem(?): length dependent

(4, 2)
′
(1, 4) = 12

a · b = ||a|| × ||b|| × cos θ
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Cosine Similarity

cos θ: removes document length from similarity measure

cos θ =

(
a

||a||

)
·
(

b

||b||

)
(4, 2)

||(4, 2)||
= (0.89, 0.45)

(2, 1)

||(2, 1)||
= (0.89, 0.45)

(1, 4)

||(1, 4)||
= (0.24, 0.97)

(0.89, 0.45)
′
(0.24, 0.97) = 0.65
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Cosine Similarity

0 1 2 3 4

0
1

2
3

4

Word 1

W
or

d 
2
θ

cos θ: removes document length from similarity measure

Project onto Hypersphere
cos θ → Inverse distance on Hypersphere
von Mises Fisher distribution : distribution on sphere surface
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Measures of Dissimilarity

Measure distance or dissimilarity between documents
Euclidean distance:

||a− b|| =
√

(a1 − b1)2 + (a2 + b2)2 + . . .+ (aM − bM)2

||(1, 4)− (2, 1)|| =
√

(1− 2)2 + (4− 1)2

=
√

10
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Measures of Dissimilarity

Many, Many Measures.

Cover Minkowski family here
Manhattan metric

dMan.(a,b) =
M∑
i=1

|ai − bi |

dMan.((1, 4), (2, 1)) = |1|+ |3| = 4

Minkowski (p) metric

dp(a,b) =

(
M∑
i=1

(ai − bi )
p

)1/p

dp((1, 4), (2, 1)) = ((1− 2)p + (4− 1)p)1/p
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What Does p Do?

Increasing p  greater importance of coordinates with largest differences
If we let p →∞ Obtain maximum-metric

d∞(a,b) =
M

max
i=1
|ai − bi |

Mapping Cosine similarity to dissimilarity

dcos(a,b) = 1− cos θa,b

Quick proof that this makes sense

- Restricted to nonnegative entries on documents

- Implies cos θ ≥ 0

- cos θ ≤ 1 (Cauchy-Schwartz )

- cos θ = 1 ⇐⇒ a = b
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Weighting Words

Are all words created equal?

- Treat all words equally

- Lots of noise

- Reweight words

- Accentuate words that are likely to be informative
- Make specific assumptions about characteristics of informative words

How to generate weights?

- Assumptions about separating words

- Use training set to identify separating words (Monroe, Ideology
measurement)
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Weighting Words: TF-IDF Weighting

What properties do words need to separate concepts?

- Used frequently

- But not too frequently

Ex. If all statements about OBL contain Bin Laden than this contributes
nothing to similarity/dissimilarity measures
Inverse document frequency:

nj = No. documents in which word j occurs

idfj = log
N

nj
idf = (idf1, idf2, . . . , idfM)
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Weighting Words: TF-IDF Weighting

Why log ?

- Maximum at nj = 1

- Decreases at rate 1
nj
⇒ diminishing “penalty” for more common use

- Other functional forms are fine, embed assumptions about
penalization of common use
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Weighting Words: TF-IDF

aidf ≡ a︸︷︷︸
tf

×idf = (a1 × idf1, a2 × idf2, . . . , aM × idfM)

bidf ≡ b× idf = (b1 × idf1, b2 × idf2, . . . , bM × idfM)

How Does This Matter For Measuring Similarity/Dissimilarity?
Inner Product

aidf · bidf = (a× idf)
′
(b× idf)

= (idf21 × a1 × b1) + (idf22 × a2 × b2) + . . .+ (idf2M × aM × bM)
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Weighting Words: Inner Product

Define:

Σ =


idf21 0 0 . . . 0

0 idf22 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . idf2M


We can then define the new inner product as

a
′
Σb = aidf · bidf

Justin Grimmer (Stanford University) Text as Data May 4th, 2011 17 / 34



Weighting Words: Inner Product

Define:

Σ =


idf21 0 0 . . . 0

0 idf22 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . idf2M



We can then define the new inner product as

a
′
Σb = aidf · bidf

Justin Grimmer (Stanford University) Text as Data May 4th, 2011 17 / 34



Weighting Words: Inner Product

Define:

Σ =


idf21 0 0 . . . 0

0 idf22 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . idf2M


We can then define the new inner product as

a
′
Σb = aidf · bidf

Justin Grimmer (Stanford University) Text as Data May 4th, 2011 17 / 34



Weighting Words: Inner Product

Define:

Σ =


idf21 0 0 . . . 0

0 idf22 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . idf2M


We can then define the new inner product as

a
′
Σb = aidf · bidf

Justin Grimmer (Stanford University) Text as Data May 4th, 2011 17 / 34



Weighting Words: Inner Product

Define:

Σ =


idf21 0 0 . . . 0

0 idf22 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . idf2M


We can then define the new inner product as

a
′
Σb = aidf · bidf

Justin Grimmer (Stanford University) Text as Data May 4th, 2011 17 / 34



Weighting Words: Inner Product

Why is this important?

Suggests general use of Σ
If, for all x, y ∈ <M

+

x
′
Σy ≥ 0

Then Σ defines a valid geometry
 You can use Σ to modify similarity measures
Inferences will depend upon choice of Σ
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Some Intuition: The Unit Circle
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Remember: Define inner product, define all other operations
Σ will be useful next week when clustering
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Multidimensional Scaling and Projection

Set of N documents, with M features.
Use distance metric d(·, ·) to measure dissimilarities.
Define D as N × N distance matrix

D =


0 d(1, 2) d(1, 3) . . . d(1,N)

d(2, 1) 0 d(2, 3) . . . d(2,N)
d(3, 1) d(3, 2) 0 . . . d(3,N)

...
...

...
. . .

...
d(N, 1) d(N, 2) d(N, 3) . . . 0


Lower Triangle contains unique information N(N − 1)/2

Justin Grimmer (Stanford University) Text as Data May 4th, 2011 20 / 34



Multidimensional Scaling and Projection

Set of N documents, with M features.

Use distance metric d(·, ·) to measure dissimilarities.
Define D as N × N distance matrix

D =


0 d(1, 2) d(1, 3) . . . d(1,N)

d(2, 1) 0 d(2, 3) . . . d(2,N)
d(3, 1) d(3, 2) 0 . . . d(3,N)

...
...

...
. . .

...
d(N, 1) d(N, 2) d(N, 3) . . . 0


Lower Triangle contains unique information N(N − 1)/2

Justin Grimmer (Stanford University) Text as Data May 4th, 2011 20 / 34



Multidimensional Scaling and Projection

Set of N documents, with M features.
Use distance metric d(·, ·) to measure dissimilarities.

Define D as N × N distance matrix

D =


0 d(1, 2) d(1, 3) . . . d(1,N)

d(2, 1) 0 d(2, 3) . . . d(2,N)
d(3, 1) d(3, 2) 0 . . . d(3,N)

...
...

...
. . .

...
d(N, 1) d(N, 2) d(N, 3) . . . 0


Lower Triangle contains unique information N(N − 1)/2

Justin Grimmer (Stanford University) Text as Data May 4th, 2011 20 / 34



Multidimensional Scaling and Projection

Set of N documents, with M features.
Use distance metric d(·, ·) to measure dissimilarities.
Define D as N × N distance matrix

D =


0 d(1, 2) d(1, 3) . . . d(1,N)

d(2, 1) 0 d(2, 3) . . . d(2,N)
d(3, 1) d(3, 2) 0 . . . d(3,N)

...
...

...
. . .

...
d(N, 1) d(N, 2) d(N, 3) . . . 0


Lower Triangle contains unique information N(N − 1)/2

Justin Grimmer (Stanford University) Text as Data May 4th, 2011 20 / 34



Multidimensional Scaling and Projection

Set of N documents, with M features.
Use distance metric d(·, ·) to measure dissimilarities.
Define D as N × N distance matrix

D =


0 d(1, 2) d(1, 3) . . . d(1,N)

d(2, 1) 0 d(2, 3) . . . d(2,N)
d(3, 1) d(3, 2) 0 . . . d(3,N)

...
...

...
. . .

...
d(N, 1) d(N, 2) d(N, 3) . . . 0



Lower Triangle contains unique information N(N − 1)/2

Justin Grimmer (Stanford University) Text as Data May 4th, 2011 20 / 34



Multidimensional Scaling and Projection

Set of N documents, with M features.
Use distance metric d(·, ·) to measure dissimilarities.
Define D as N × N distance matrix

D =


0 d(1, 2) d(1, 3) . . . d(1,N)

d(2, 1) 0 d(2, 3) . . . d(2,N)
d(3, 1) d(3, 2) 0 . . . d(3,N)

...
...

...
. . .

...
d(N, 1) d(N, 2) d(N, 3) . . . 0


Lower Triangle contains unique information N(N − 1)/2

Justin Grimmer (Stanford University) Text as Data May 4th, 2011 20 / 34



Multidimensional Scaling and Projection

Learning low-dimensional structure of D.

(Or: Machine Learning, 101)

- Assume: Documents reside in <M

- Hard to visualize

- Project into <J , J << M

- Key point: we will lose information

- Distances between points in <J will not equal distances in <M

- Why Project:

- Identify systematic characteristics of data
- Visualize proximity

Key question in Manifold learning (low-dimensional representation of high
dimensional data):

What are the set of points in <J that “best” approximate points in
<M?
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Classic Multidimensional Scaling Algorithms

Begin: set of observations Doc1,Doc2, . . . ,DocN ∈ <M

Goal: identify x1, x2, . . . , xN ∈ <J that are “closest”.
Classic MDS objective function

Stress(x) =
N∑
j=2

∑
i<j

(d(Docj ,Doci )− d(xj , xi ))2

Identify x∗ that minimizes the Stress
cmdscale command in R
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Classic MDS

x∗ is not unique.
If x∗ minimize stress then all x∗∗ that are rotations, translations, or shifts
of x∗ also minimize stress.
Why?

- Information only about relative positions

- Many equivalent ways to place documents at same relative positions
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Visualizing Documents from Frank Lautenberg

Cosine dissimilarity, Classic MDS
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”The intolerance and discrimination we have seen from the Bush
administration against gay and lesbian Americans is astounding, and
anything but compassionate,”
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Visualizing Documents from Frank Lautenberg
Cosine dissimilarity, Classic MDS
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”Such a narrow-minded statement from the U.S. Secretary of Education is
unacceptable...For Secretary Paige to say that the upbringing of one class
of children offers superior morality compared to other children is offensive
and hurtful to people of all other persuasions in America.”
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Classic Multidimensional Scaling Algorithms
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What can we infer?

- Conditional on model, variance explained by factors

What can’t we infer?

- True Dimensionality
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Classic Multidimensional Scaling Algorithms
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Classic Multidimensional Scaling Algorithms

●

●

●

●

● ●

●
●

●
●

●
●

●

●
● ●

● ●

● ● ● ●
● ● ● ● ●

● ●
●

0 5 10 15 20 25 30

0.
02

0.
04

0.
06

0.
08

0.
10

J

A
dd

iti
on

al
 V

ar
ia

nc
e 

E
xp

la
in

ed

What can we infer?

- Conditional on model, variance explained by factors

What can’t we infer?

- True Dimensionality

Justin Grimmer (Stanford University) Text as Data May 4th, 2011 25 / 34



Sammon Multidimensional Scaling Algorithms

Many ways to infer low-dimensional structure from dissimilarities.

Consider one other method: Sammon Scaling
Classic MDS minimizes global stress

Stress(x) =
N∑
j=2

∑
i<j

(d(Docj ,Doci )− d(xj , xi ))2

Often, we want a good approximation of neighborhoods (close to points),
but don’t care about far away distances
Sammon Scaling
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Sammon MDS

StressSammon(x) =
N∑
j=2

∑
i<j

(d(Docj ,Doci )− d(xj , xi ))2

d(Docj ,Doci )

Algorithm “cares” more about small distances  prioritizes
approximations for small distances
library(MASS)

sammon

Pro tip: For all document j 6= k d(j , k) > 0.
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Comparing Sammon and Classic MDS

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.5 0.0 0.5

−
0.

5
0.

0
0.

5

Dim1

D
im

2

●
●

Justin Grimmer (Stanford University) Text as Data May 4th, 2011 28 / 34



Comparing Sammon and Classic MDS

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2

−
0.

5
0.

0
0.

5

Classic

S
am

m
on

●

●

Justin Grimmer (Stanford University) Text as Data May 4th, 2011 28 / 34



Spirling and Indian Treaties

Spirling (2011): model Treaties between US and Native Americans

Why?

- American political development

- IR Theories of Treaties and Treaty Violations

- Comparative studies of indigenous/colonialist interaction

- Political Science question: how did Native Americans lose land so
quickly?

Paper does a lot. We’re going to focus on

- Text representation and similarity calculation

- Projecting to low dimensional space
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Spirling and Indian Treaties

How do we preserve word order and semantic language?
After stemming, stopping, bag of wording:

- Peace Between Us

- No Peace Between Us

are identical.
Spirling uses complicated representation of texts to preserve word order 
quite useful
Peace Between Us

Analyzes K-substrings
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Kernel Trick

- Kernel Methods: Represent texts, measure similarity simultaneously

- Kernel Trick (Linear Algebra, 101) :

a = (a1, a2, . . . , aK ) b = (b1, b2, . . . , bK )

a · b = a1 × b1 + a2 × b2 + . . .+ aK × bK

- If an = 0 or bn = 0, then an × bn = 0.

- Kernel Trick: Compare only substrings in both documents (without
explicitly quantifying entire documents)

- Problem solved:

- Arthur gives all his money to Justin
- Justin gives all his money to Arthur
- Discard word order: same sentence Kernel : different sentences.
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Kernel Trick

Apply kernel methods to simultaneously represent texts, measure similarity

- Creates dissimilarity matrix

- We can use projection methods to scale documents

- Spirling (2011): essentially uses classic MDS on dissimilarity measure
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Harshness of Indian Treaties → Credible US Threats
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Where We’ve Been Where We’re Going

Today:

- Distance

- Projection

Next weeks:

- Clustering

- Topic Models

- Supervised learning

All require understanding material this week
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