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Where We've Been, Where We're Going

- Class 1: Finding Text Data

- Class 2: Representing Texts Quantitatively

- Class 3: Dictionary Methods for Classification
- Class 4. Comparing Language Across Groups
- Class 5: Texts in Space

- Class 6: Clustering

- Class 7: Topic models

- Class 8: Supervised methods for classification
- Class 9: Ensemble methods for classification

- Class 10: Scaling Speech
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Question (from email received 1 hour ago):

I’'m curious if you have ever used mechanical turk for
coding of data (e.g., from text). Any experience with
that? Thoughts?
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Justin Grimmer (Stanford University) Text as Data



Question (from email received 1 hour ago):
I’'m curious if you have ever used mechanical turk for

coding of data (e.g., from text). Any experience with
that? Thoughts?

How is Homework Going? Class? What Can | do to help you?
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More About R Code

How to write to a file in R

Many method, easiest: sink

> sink(’Test.txt’)

> print(’This is a great tool’)
> sink ()
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Congressional Press Releases and Floor Speeches
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Congressional Language Across Sources

Congressional Press Releases and Floor Speeches
- Collected 64,033 press releases
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Congressional Language Across Sources

Congressional Press Releases and Floor Speeches
- Collected 64,033 press releases

- Problem: are they distinct from floor statements (approx. 52,000
during same time)?
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Congressional Language Across Sources

Congressional Press Releases and Floor Speeches
- Collected 64,033 press releases

- Problem: are they distinct from floor statements (approx. 52,000
during same time)?

- Yes: press releases have different purposes, targets, and need not relate
to official business
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Congressional Language Across Sources

Congressional Press Releases and Floor Speeches

- Collected 64,033 press releases
- Problem: are they distinct from floor statements (approx. 52,000
during same time)?
- Yes: press releases have different purposes, targets, and need not relate
to official business
- No: press releases are just reactive to floor activity, will follow floor
statements
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Congressional Language Across Sources

Congressional Press Releases and Floor Speeches

- Collected 64,033 press releases
- Problem: are they distinct from floor statements (approx. 52,000
during same time)?
- Yes: press releases have different purposes, targets, and need not relate
to official business
- No: press releases are just reactive to floor activity, will follow floor
statements
- Deeper question: what does it mean for two text collections to be
different?
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Congressional Language Across Sources

Congressional Press Releases and Floor Speeches

- Collected 64,033 press releases

- Problem: are they distinct from floor statements (approx. 52,000
during same time)?
- Yes: press releases have different purposes, targets, and need not relate
to official business
- No: press releases are just reactive to floor activity, will follow floor
statements
- Deeper question: what does it mean for two text collections to be
different?

- One Answer: texts used for different purposes
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Congressional Language Across Sources

Congressional Press Releases and Floor Speeches

- Collected 64,033 press releases

Problem: are they distinct from floor statements (approx. 52,000
during same time)?
- Yes: press releases have different purposes, targets, and need not relate
to official business
- No: press releases are just reactive to floor activity, will follow floor
statements

Deeper question: what does it mean for two text collections to be
different?

- One Answer: texts used for different purposes

Partial answer: identify words that distinguish press releases and floor
speeches
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Congressional Language Across Sources

Congressional Press Releases and Floor Speeches

- Collected 64,033 press releases

Problem: are they distinct from floor statements (approx. 52,000
during same time)?
- Yes: press releases have different purposes, targets, and need not relate
to official business
- No: press releases are just reactive to floor activity, will follow floor
statements

Deeper question: what does it mean for two text collections to be
different?

- One Answer: texts used for different purposes

Partial answer: identify words that distinguish press releases and floor
speeches

Today's Lecture: How to identify those words?
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A Method for Identifying Distinguishing Words
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A Method for Identifying Distinguishing Words
Method 1: Mutual Information
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A Method for Identifying Distinguishing Words
Method 1: Mutual Information

- Unconditional uncertainty (entropy):
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A Method for ldentifying Distinguishing Words
Method 1: Mutual Information

- Unconditional uncertainty (entropy):

- Randomly sample a press release
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A Method for ldentifying Distinguishing Words
Method 1: Mutual Information

- Unconditional uncertainty (entropy):
- Randomly sample a press release
- Guess press release/floor statement
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A Method for ldentifying Distinguishing Words
Method 1: Mutual Information

- Unconditional uncertainty (entropy):
- Randomly sample a press release

- Guess press release/floor statement
- Uncertainty about guess
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A Method for ldentifying Distinguishing Words
Method 1: Mutual Information

- Unconditional uncertainty (entropy):
- Randomly sample a press release

- Guess press release/floor statement
- Uncertainty about guess

- Maximum: No. press releases = No. floor statements
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A Method for ldentifying Distinguishing Words
Method 1: Mutual Information

- Unconditional uncertainty (entropy):
- Randomly sample a press release

- Guess press release/floor statement
- Uncertainty about guess

- Maximum: No. press releases = No. floor statements
- Minimum : All documents in one category
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A Method for ldentifying Distinguishing Words
Method 1: Mutual Information

- Unconditional uncertainty (entropy):
- Randomly sample a press release

- Guess press release/floor statement
- Uncertainty about guess

- Maximum: No. press releases = No. floor statements
- Minimum : All documents in one category

- Conditional uncertainty (w) (conditional entropy)
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A Method for ldentifying Distinguishing Words

Method 1: Mutual Information
- Unconditional uncertainty (entropy):

- Randomly sample a press release
- Guess press release/floor statement
- Uncertainty about guess

- Maximum: No. press releases = No. floor statements
- Minimum : All documents in one category

- Conditional uncertainty (w) (conditional entropy)
- Condition on presence of word w
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A Method for ldentifying Distinguishing Words

Method 1: Mutual Information
- Unconditional uncertainty (entropy):

- Randomly sample a press release
- Guess press release/floor statement
- Uncertainty about guess

- Maximum: No. press releases = No. floor statements
- Minimum : All documents in one category

- Conditional uncertainty (w) (conditional entropy)

- Condition on presence of word w
- Randomly sample a press release
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A Method for ldentifying Distinguishing Words

Method 1: Mutual Information
- Unconditional uncertainty (entropy):
- Randomly sample a press release
- Guess press release/floor statement
- Uncertainty about guess
- Maximum: No. press releases = No. floor statements
- Minimum : All documents in one category
- Conditional uncertainty (w) (conditional entropy)
- Condition on presence of word w
- Randomly sample a press release
- Guess press release/floor statement
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A Method for ldentifying Distinguishing Words

Method 1: Mutual Information
- Unconditional uncertainty (entropy):
- Randomly sample a press release
- Guess press release/floor statement
- Uncertainty about guess

- Maximum: No. press releases = No. floor statements
- Minimum : All documents in one category

- Conditional uncertainty (w) (conditional entropy)
- Condition on presence of word w
- Randomly sample a press release

Guess press release/floor statement
- Word presence reduces uncertainty
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A Method for ldentifying Distinguishing Words

Method 1: Mutual Information
- Unconditional uncertainty (entropy):
- Randomly sample a press release
- Guess press release/floor statement
- Uncertainty about guess
- Maximum: No. press releases = No. floor statements
- Minimum : All documents in one category

- Conditional uncertainty (w) (conditional entropy)
- Condition on presence of word w
- Randomly sample a press release

- Guess press release/floor statement
- Word presence reduces uncertainty

- Unrelated: Conditional uncertainty = uncertainty
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A Method for ldentifying Distinguishing Words

Method 1: Mutual Information
- Unconditional uncertainty (entropy):
- Randomly sample a press release
- Guess press release/floor statement
- Uncertainty about guess
- Maximum: No. press releases = No. floor statements
- Minimum : All documents in one category

- Conditional uncertainty (w) (conditional entropy)
- Condition on presence of word w
- Randomly sample a press release

- Guess press release/floor statement
- Word presence reduces uncertainty

- Unrelated: Conditional uncertainty = uncertainty
- Perfect predictor: Conditional uncertainty = 0
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A Method for ldentifying Distinguishing Words

Method 1: Mutual Information
- Unconditional uncertainty (entropy):

- Randomly sample a press release

- Guess press release/floor statement

- Uncertainty about guess
- Maximum: No. press releases = No. floor statements
- Minimum : All documents in one category

- Conditional uncertainty (w) (conditional entropy)
- Condition on presence of word w
- Randomly sample a press release

Guess press release/floor statement
- Word presence reduces uncertainty

- Unrelated: Conditional uncertainty = uncertainty
- Perfect predictor: Conditional uncertainty = 0

- Mutual information(w): uncertainty - conditional uncertainty (w)
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A Method for ldentifying Distinguishing Words

Method 1: Mutual Information
- Unconditional uncertainty (entropy):

- Randomly sample a press release
- Guess press release/floor statement
- Uncertainty about guess

- Maximum: No. press releases = No. floor statements
- Minimum : All documents in one category

- Conditional uncertainty (w) (conditional entropy)

- Condition on presence of word w
- Randomly sample a press release
- Guess press release/floor statement
- Word presence reduces uncertainty

- Unrelated: Conditional uncertainty = uncertainty
- Perfect predictor: Conditional uncertainty = 0

- Mutual information(w): uncertainty - conditional uncertainty (w)
- Maximum: Uncertainty — w is perfect predictor

Justin Grimmer (Stanford University) Text as Data April 27th, 2011 6 /29



A Method for ldentifying Distinguishing Words

Method 1: Mutual Information
- Unconditional uncertainty (entropy):
- Randomly sample a press release
- Guess press release/floor statement
- Uncertainty about guess
- Maximum: No. press releases = No. floor statements
- Minimum : All documents in one category
- Conditional uncertainty (w) (conditional entropy)
- Condition on presence of word w
- Randomly sample a press release
- Guess press release/floor statement
- Word presence reduces uncertainty
- Unrelated: Conditional uncertainty = uncertainty
- Perfect predictor: Conditional uncertainty = 0
- Mutual information(w): uncertainty - conditional uncertainty (w)

- Maximum: Uncertainty — w is perfect predictor
- Minimum: 0 — w fails to separate speeches and floor statements
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A Method for Identifying Distinguishing Words

- Pr(Press) = Probability selected document press release
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A Method for ldentifying Distinguishing Words

- Pr(Press) = Probability selected document press release

- Pr(Speech) = Probability selected document speech
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A Method for ldentifying Distinguishing Words

- Pr(Press) = Probability selected document press release

- Pr(Speech) = Probability selected document speech
- Define entropy H(k)
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A Method for ldentifying Distinguishing Words

- Pr(Press) = Probability selected document press release

- Pr(Speech) = Probability selected document speech
- Define entropy H(k)

H(k) =

D

Pr(t) log, Pr(t)
te{Pre,Spe}
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A Method for ldentifying Distinguishing Words

- Pr(Press) = Probability selected document press release

- Pr(Speech) = Probability selected document speech
- Define entropy H(k)

H(k) =

D

Pr(t) log, Pr(t)
te{Pre,Spe}
- log,? Encodes bits
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A Method for ldentifying Distinguishing Words

- Pr(Press) = Probability selected document press release

- Pr(Speech) = Probability selected document speech
- Define entropy H(k)

H(k) — Y Pr(t)log, Pr(t)
te{Pre,Spe}
- log,? Encodes bits

- Maximum: Pr(Press) = Pr(Speech) = 0.5
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A Method for ldentifying Distinguishing Words

- Pr(Press) = Probability selected document press release

- Pr(Speech) = Probability selected document speech
- Define entropy H(k)

H(k) =

D

Pr(t) log, Pr(t)
te{Pre,Spe}
- log,? Encodes bits

- Maximum: Pr(Press) = Pr(Speech) = 0.5

- Minimum: Pr(Press) — 0 (or Pr(Press) — 1)
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A Method for Identifying Distinguishing Words
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A Method for Identifying Distinguishing Words

- Consider presence/absence of word w;
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A Method for Identifying Distinguishing Words

- Consider presence/absence of word w;

- Define conditional entropy H(k|w;)
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A Method for ldentifying Distinguishing Words

- Consider presence/absence of word w;

- Define conditional entropy H(k|w;)

1
Hklwy) = =Y > Pr(t,w; = s)log, Pr(t|w; = s)

s=0 te{Pre,Spe}
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A Method for ldentifying Distinguishing Words

- Consider presence/absence of word w;

- Define conditional entropy H(k|w;)

s=0 te{Pre,Spe}

1
Hklwy) = =Y > Pr(t,w; = s)log, Pr(t|w; = s)

- Maximum: w; unrelated to Press Releases/Floor Speeches
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A Method for ldentifying Distinguishing Words

- Consider presence/absence of word w;

- Define conditional entropy H(k|w;)

1
Hklw) = =Y > Pr(t,w; = s)log, Pr(t|w; =s)

s=0 te{Pre,Spe}

- Maximum: w; unrelated to Press Releases/Floor Speeches

- Minimum: w; is a perfect predictor of press release/floor speech
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A Method for Identifying Distinguishing Words
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A Method for Identifying Distinguishing Words

- Define Mutual Information(w;) as
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A Method for Identifying Distinguishing Words

- Define Mutual Information(w;) as

Mutual Information(w;) = H(k) — H(k|w;)
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A Method for Identifying Distinguishing Words

- Define Mutual Information(w;) as

Mutual Information(w;) = H(k) — H(k|w;)

- Maximum: entropy = H(k|w;) =0
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A Method for ldentifying Distinguishing Words

- Define Mutual Information(w;) as

Mutual Information(w;) = H(k) — H(k|w;)

- Maximum: entropy = H(k|w;) =0
- Minimum: 0 = H(k|w;) = H(k).
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A Method for ldentifying Distinguishing Words

- Define Mutual Information(w;) as

Mutual Information(w;) = H(k) — H(k|w;)

- Maximum: entropy = H(k|w;j) =0
- Minimum: 0 = H(k|w;) = H(k).

Bigger mutual information = better discrimination
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A Method for ldentifying Distinguishing Words

Formula for mutual information
(based on ML estimates of probabilities)

np
Ns
D
n;
n—j
Nj.p
n.j7s
n_va

n_jvs

Number Press Releases

Number of Speeches

np + ns

D
Z w; (No. docs w; appears )
i=1

No. docs w; does not appear

No.
No.
No.
No.

press and w;
speech and w;
press and not w;

speech and not w;
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A Method for ldentifying Distinguishing Words

Formula for Mutual Information

n; ni,D n; n; D
Mi(w;) = —2LP |og 71’." + L2 27:15’1
D i Np D jNs
n_.
J7

n_j7sD

n_;ns

n_jnp D °8
(Page 258, 259 of this document

)

http://stanford.edu/~jgrimmer/RepStyle.pdf for more information
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What's Different About Press Releases
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What's Different About Press Releases
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What's Different About Press Releases
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What's Different About Press Releases

announc

includ
provid

What's Different?

- Press Releases: Credit Claiming

Justin Grimmer (Stanford University)

Text as Data



What's Different About Press Releases

announc

includ

E £ provid

What's Different?

- Press Releases: Credit Claiming

- Floor Speeches: Procedural Words
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What's Different About Press Releases

announc

What's Different?

- Press Releases: Credit Claiming

- Floor Speeches: Procedural Words
- Validate: Manual Classification
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What's Different About Press Releases

announc

What's Different?

Press Releases: Credit Claiming

Floor Speeches: Procedural Words

Validate: Manual Classification

Sample 500 Press Releases, 500 Floor Speeches
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What's Different About Press Releases
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What's Different?

Press Releases: Credit Claiming

Floor Speeches: Procedural Words

Validate: Manual Classification

Sample 500 Press Releases, 500 Floor Speeches

Credit Claiming: 36% Press Releases, 4% Floor Speeches
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What's Different About Press Releases

announc
fund

c L includ

it provid

i spatt
million

feder *Sonems

What's Different?

Press Releases: Credit Claiming

Floor Speeches: Procedural Words

Validate: Manual Classification

Sample 500 Press Releases, 500 Floor Speeches

Credit Claiming: 36% Press Releases, 4% Floor Speeches
Procedural: 0% Press Releases, 44% Floor Speeches

] = =
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What's Different About Press Releases
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General Idea

- What we know: document labels
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General Idea

- What we know: document labels
- Certain
- Complete
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General Idea

- What we know: document labels
- Certain
- Complete

- Inference: discriminating words
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- What we know: document labels
- Certain
- Complete

- Inference: discriminating words
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- What we know: document labels
- Certain
- Complete

- Inference: discriminating words

- Words that separate classes
- All methods presented today:
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General Idea
- What we know: document labels
- Certain
- Complete
- Inference: discriminating words

- Words that separate classes

- All methods presented today:
- Know labels
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General Idea

- What we know: document labels
- Certain
- Complete

- Inference: discriminating words
- Words that separate classes

- Know labels

- All methods presented today:
- Infer words
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General Idea

- What we know: document labels
- Certain

- Complete

- Inference: discriminating words

- Words that separate classes

- All methods presented today:
- Know labels

- Infer words
- All methods last week:

Justin Grimmer (Stanford University)

Text as Data



General Idea

- What we know: document labels
- Certain

- Complete

- Inference: discriminating words

- Words that separate classes

- All methods presented today:
- Know labels

- Infer words
- All methods last week:

- Know words
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General Idea

- What we know: document labels
- Certain

- Complete

- Inference: discriminating words

- Words that separate classes

- All methods presented today:
- Know labels

- Infer words
- All methods last week:

- Know words
- Infer labels
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Why Infer Separating Words?

Why do we care?
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Why Infer Separating Words?

Why do we care?

Social Science Inference:
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Why Infer Separating Words?

Why do we care?

Social Science Inference:

- Differences in Republican, Democrat Language
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Why Infer Separating Words?

Why do we care?

Social Science Inference:

- Differences in Republican, Democrat Language

- Differences in Liberal, Conservative Language
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Why Infer Separating Words?

Why do we care?

Social Science Inference:

- Differences in Republican, Democrat Language

- Differences in Liberal, Conservative Language

- Differences in Campaign Agendas
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Why Infer Separating Words?

Why do we care?
Social Science Inference:

Differences in Republican, Democrat Language

Differences in Liberal, Conservative Language

Differences in Campaign Agendas

Different Advice to Muslim and Christian Kings
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Why Infer Separating Words?

Why do we care?
Social Science Inference:

Differences in Republican, Democrat Language

Differences in Liberal, Conservative Language

Differences in Campaign Agendas

Different Advice to Muslim and Christian Kings

Recommendation Letters for Men and Women?
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Why Infer Separating Words?

Why do we care?
Social Science Inference:

Differences in Republican, Democrat Language

Differences in Liberal, Conservative Language

Differences in Campaign Agendas
Different Advice to Muslim and Christian Kings

Recommendation Letters for Men and Women?

- Toy Advertising for Boys and Girls?
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Why Infer Separating Words?
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Why Infer Separating Words?

Why do we care?
Social Science Inference:

Differences in Republican, Democrat Language
Differences in Liberal, Conservative Language
Differences in Campaign Agendas

Different Advice to Muslim and Christian Kings
Recommendation Letters for Men and Women?
Toy Advertising for Boys and Girls?

Beginning of Inference
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Why Infer Separating Words?
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Why Infer Separating Words?

Labeling
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Why Infer Separating Words?

Labeling

- Methods to estimate classes (Week 6 and 7)
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Why Infer Separating Words?

Labeling

- Methods to estimate classes (Week 6 and 7)
- Label classes: why grouped together?
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Why Infer Separating Words?
Labeling

- Methods to estimate classes (Week 6 and 7)

- Label classes: why grouped together?
Dictionary Creation
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Why Infer Separating Words?
Labeling

- Methods to estimate classes (Week 6 and 7)

- Label classes: why grouped together?
Dictionary Creation

- Training Set: use documents to identify separating words
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Why Infer Separating Words?
Labeling

- Methods to estimate classes (Week 6 and 7)

- Label classes: why grouped together?
Dictionary Creation

- Training Set: use documents to identify separating words
- Test Set: Validate separating words
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Why Infer Separating Words?
Labeling

- Methods to estimate classes (Week 6 and 7)

- Label classes: why grouped together?
Dictionary Creation

- Training Set: use documents to identify separating words
- Test Set: Validate separating words

Improve Supervised Learning Classification (Weeks 8, 9)
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Why Infer Separating Words?
Labeling

- Methods to estimate classes (Week 6 and 7)

- Label classes: why grouped together?
Dictionary Creation
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Why Infer Separating Words?

Labeling

- Methods to estimate classes (Week 6 and 7)

- Label classes: why grouped together?

Dictionary Creation
- Training Set: use documents to identify separating words
- Test Set: Validate separating words

Improve Supervised Learning Classification (Weeks 8, 9)
- Usually: more information, better

- Reality: rare words can cause over fitting

- Feature selection: one method to mitigate over fitting

Justin Grimmer (Stanford University)

Text as Data



Methods for Inference/Labeling
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Methods for Inference/Labeling

Task 1: Well defined
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Methods for Inference/Labeling

Task 1: Well defined
- Identifying maximally discriminating words
- Objective function for discrimination
- Identify each word'’s discrimination

~> We can derive optimal method, given objective
Take 2: Vague

- Generate intuition about differences
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Task 1: Well defined
- Identifying maximally discriminating words
- Objective function for discrimination
- Identify each word'’s discrimination

~> We can derive optimal method, given objective
Take 2: Vague

- Generate intuition about differences
- Use this intuition then to investigate claims
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Methods for Inference/Labeling

Task 1: Well defined
- ldentifying maximally discriminating words
- Objective function for discrimination
- Identify each word'’s discrimination

~> We can derive optimal method, given objective
Take 2: Vague

- Generate intuition about differences
- Use this intuition then to investigate claims
- Intuition very hard to formalize

~ Very difficult (impossible) to derive optimal method a priori

Justin Grimmer (Stanford University) Text as Data



Methods for Inference/Labeling

Task 1: Well defined
- ldentifying maximally discriminating words
- Objective function for discrimination
- Identify each word'’s discrimination

~> We can derive optimal method, given objective
Take 2: Vague

- Generate intuition about differences
- Use this intuition then to investigate claims
- Intuition very hard to formalize
~ Very difficult (impossible) to derive optimal method a priori

Be skeptical!
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Running Example

How Do Democrat and Republican Arguments About the Irag War Differ?

- Assume: ldentified set of documents (press releases) about Iraq War

- Speaker labels: know who (Democrat, Republican) issued press
release

- Inferential Goal: framing—considerations Democrats and Republicans
use when discussing war

Present simple methods, show similarity.
The example already has stop words and some names removed.
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Methods for Identifying Words

(Following steps are from Fightin' Words )
Difference in word frequency:
For each word j compute

njp = No. times used in Dem Documents

njg = No. times used in Rep Documents

Difference = nip — Njr
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Methods for Identifying Words

(Following steps are from Fightin’ Words )
Difference = njp — njr

amerlcan secur time
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vms bush
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Methods for Identifying Words

Differences in Word Proportions:
For each word j compute

- _ hip
p_/D -
np
= Proportion of Dem words that are j

NjRr

)j

pir = —
nr

= Proportion of Rep words that are j

Difference = pjp — pjr

Justin Grimmer (Stanford University) Text as Data



Methods for Identifying Words

Difference = PiD — PjR

support - . .
fund oy

contirgjmfgt S oA

nsur R i m .
develop g~ - ! b_Ilcan

Dem Frequency — Rep Frequency
100
1

freedom | .

-1e-03 -5e-04 0e+00 5e-04 1le-03

Prop Dem - Prop Rep
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Methods for Identifying Words

Log Odds Ratio:
For each word j compute:

OddeD = 15"%

j

OddeR = ]-fjﬁ

j

Odds;

Odds Ratio; = dZJD
iR

log Odds Ratio; = log Oddsjp — log Odds;r
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Methods for Identifying Words
log Odds Ratio; = log Oddsjp — log Odds;r

5e-04

truth

repeatedli benChn

SEd
0

ol ga

0e+00
1

Prop. Dem - Prop.Rep

-5e-04

freedom

I T T T T 1
-2 -1 0 1 2 3

Log Odds Ratio
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Methods for Identifying Words

Problem: What to Do With Dem (GOP) Only Words?
If Only Dems Use Words:

I
Pir = nr
OddeR = %
logOddsjg = log0 —logl

What should we do?

Justin Grimmer (Stanford University) Text as Data



Methods for Identifying Words

Solution: “add” a little, but in a principled way
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Methods for Identifying Words

Solution: “add” a little, but in a principled way

We need a model!: Intro to Bayes in 10 minutes
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Methods for Identifying Words

Solution: “add” a little, but in a principled way

We need a model!: Intro to Bayes in 10 minutes
Notation:

Pr = (PiRr,P2Rs---,PNR)
Pp (P1DsP2Ds - - - PND)
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Solution: “add” a little, but in a principled way

We need a model!: Intro to Bayes in 10 minutes
Notation:
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Pp (plDap2Da"'7pND)
yp ~ Multinomial(np,pp)

Prior
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Methods for Identifying Words

Solution: “add” a little, but in a principled way

We need a model!: Intro to Bayes in 10 minutes
Notation:

Pr = (P1R7P2R7--'aPNR)
Pp = (PlD,P2Da---7pND)
yp ~ Multinomial(np,pp)

Prior

pr ~ Dirichlet()
pp ~ Dirichlet(a)

o = (011,012,...,01/\/)
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Methods for Identifying Words

Solution: “add” a little, but in a principled way
We need a model!: Intro to Bayes in 10 minutes

Notation:
Pr = (P1R:P2R:-- - PNR)
pp = (pip,P2D,---,PND)
yp ~ Multinomial(np,pp)
Prior

pr ~ Dirichlet(a)
pp ~ Dirichlet(a)
o = (011,012,...,01/\/)

Before showing why this “adds” a little.
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Methods for Identifying Words

Solution: “add” a little, but in a principled way
We need a model!: Intro to Bayes in 10 minutes

Notation:
Pr = (P1R:P2R:-- - PNR)
pp = (pip,P2D,---,PND)
yp ~ Multinomial(np,pp)
Prior

pr ~ Dirichlet(a)
pp ~ Dirichlet(a)

a = (011,012,...,01/\/)

Before showing why this “adds” a little.
Let me teach you how to Dirichlet

Justin Grimmer (Stanford University) Text as Data



Dirichlet Distribution

Distribution over proportions.

T~

Dirichlet(a)
ra &
plrle) = = I

_ T
. J
H_] raJ j=1
Facts:

Qy
fml = > ko1 Ok
k=1

Variance|[r;]

_ ElmlQA - E[n])

ke (on) +1
Conjugate to Multinomial : easily apply to the model
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Methods for Identifying Separating Words

ppla ~ Dirichlet(a)

YplPp ~ Multinomial(np,pp)
Conjugacy implies

Pplyp,a ~ Dirichlet(a)
Oé} = Yiptqj
Yip —l-OzJ/-

Elpip] = ——x—
il ”D‘i‘ZLV:lO‘k

Smoothing (borrowing information): easy to understand in Bayesian
framework, take Simon's class
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Methods for Identifying Separating Words

Now, we can compute all log-odds.
But same problem: rare words dominate
Solution: include estimate of variance

1
Var(log Odds Ratio;) =~

Yip +@j

1
YiR 1 @
log Odds Ratio;

Std. Log Odds;

\/Var(log Odds Ratio;)
Analogues from Contingency Tables
Key ldea:

Systematic or Random Difference
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Methods For ldentifying Words

Log Odds Ratio

continu
freedom

-2

di
mﬁiﬁ%ﬁe 'truth

-60

Std. Log Odds Ratio
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Mutual Information, Standardized Log Odds

Iraq War, Partisan Words

republican
N
~
3 1
o
strategi
=) freedom
—
3 -
o
start
S ©
S o truth idea talk !
Rl troop democraci
g O
5 land
€ ©
- o
T 2
==} contimHary,
5 congre‘?g’grg
P note
o
8 A
o
N
o
8 -
o
o
o
8-
o T T T T T 1
-15 -1.0 -0.5 0.0 0.5 1.0
Log Odds o =
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Mutual Information, Standardized Log Odds

Gas Prices, Partisan Words
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profit
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o
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Methods for Identifying Words

There are many other similar methods

Difference in standardized proportions

x? statistics

Pointwise Mutual Information

Characteristics:
- Definition of separation
- Word by word test of separation

- Providing rank ordering of words

Best Method: depends on context, intuition provided

Justin Grimmer (Stanford University) Text as Data



Moving Forward

- Considered word by word methods solely
- During supervised classification, we will consider joint separability

- Conditional on other words, how much more information does this word
provide

Next Week:

- Geometry of texts

Foundation for clustering

topic modeling

supervised classification
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