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Text and Political Science

A pre-2000’s view of text in political science
- Political conflict often occurs in texts

- Political Scientists avoided studying texts/speech
- Why?

- Hard to find

- Time Consuming

- Not generalizable (each new data set...new coding scheme)
Difficult to store/search
Idiosyncratic to coders/researcher
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A post-2000's view of text in political science:
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A post-2000's view of text in political science:
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Massive collections of texts are increasingly used as a data source in
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A post-2000's view of text in political science:

Massive collections of texts are increasingly used as a data source in
political science:
American Politics

- Policy Agendas Project
- Congressional Bills Project
- LYDIA
Comparative Politics
- Legislative Speech Project

- Comparative Manifesto Project
International Relations

- Penn State Event Data Project
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Why?

Massive increase in availability of unstructured text (10 minutes of
worldwide email = 1 LOC)
Cheap storage: 1956: $10,000 megabyte. 2011: <<< $0.0001 per
megabyte (Unless you're sending an SMS)
Explosion in methods and programs to analyze texts
- Generalizable: one method can be used across many methods and to
unify collections of texts
- Systematic:parameters/statistics demonstrate how models make coding
decisions
- Cheap: easily applied to many new collections of texts
Unchanged Demand: Political conflict is expressed (or occurs over)
texts
- Laws
- Treaties
- News media
- Campaigns
- Political pundits
- Petitions
- Press Releases
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We will study a set of tools for the useful and principled analysis of

massive text corpora

1) Methods for inferences about texts using pre-determined
words/phrases

2) Methods for comparing language use across groups
3) Methods for discovering new organizations of text

4) Methods for efficiently classifying texts to a predetermined
classification scheme
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Plan for Course

Week 1: Finding Text Data

—

Week 2: Texts to Numbers Week 5: Vector Space Model

Week 3: Dictionary Methods
Week 4: Comparing Language

Week 6, 7: Discovering Categori

Week 8, 9: Classifying Texts
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Plan for Course: Applied Focus

Week 1: Finding Text Data

%
Week 2: Texts to Numbers

Week 5: Vector Space Model

Week 3: Dictionary Methods

Week 4: Comparing Language

Week 6, 7: Discovering Categori

Week 8, 9: Classifying Texts
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More on What Class is Covering

We're not covering

Machine Translation

- Word-sense disambiguation

Collaborative Filtering

Deep sentence parsing

The IBM Jeopardy answer machine

Self-aware machines (SkyNet...)

Examples/Methods draw heavily from what | find useful in my research
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Enrolled Students and Motivated Auditors

Two components of evaluation:
1) 50%: Weekly assignments (on your own data)

2) 50%: A final paper analyzing text (broadly defined) using techniques
from the class
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Analyzing Text Can Be Hard (It Ain’t Magic)

Two simple problems: identify words and sentences in the following text
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Analyzing Text Can Be Hard (It Ain’t Magic)

Two simple problems: identify words and sentences in the following text
At least $53 million in federal funds have gone to ACORN
activists since 1994, and the controversial group could get
up to $8.5 billion more tax dollars despite being under
investigation for voter registration fraud in a dozen
states. The economic stimulus bill enacted in February
contains $3 billion that the non-profit activist group
known more formally as the Association for Community
Organizations for Reform Now could receive, and 2010
federal budget contains another $5.5 billion that could
also find its way into the group’s coffers... A
downloadable spreadsheet of the $53 million is posted on
washingtonexaminer.com. Scott Levenson, ACORN’s national
spokesman, said "we have received no significant federal
funding." Michelle Bachmann (R-MN)
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Analyzing Text Can Be Surprisingly Easy (It can seem

magical)
(Lamar Alexander (R-TN) Feb 10, 2005)

Word No. Times Used in Press Release
department
grant
program
firefight
secure
homeland
fund

award
safety
service
AFGP
support

equip

—
N
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What Can Text Methods Do?

Haystack metaphor:
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What Can Text Methods Do?

Haystack metaphor:Improve Reading

- Interpreting the meaning of a sentence or phrase ~» Analyzing a straw
of hay

- Humans: amazing (Straussian political theory, analysis of English
poetry)

- Computers: struggle

- Comparing, Organizing, and Classifying Texts~~ Organizing hay stack
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What Can Text Methods Do?

Haystack metaphor:Improve Reading
of hay

- Interpreting the meaning of a sentence or phrase ~» Analyzing a straw
poetry)

- Humans: amazing (Straussian political theory, analysis of English
- Computers: struggle

What we won't do:

- Comparing, Organizing, and Classifying Texts~~ Organizing hay stack
- Humans: terrible. Tiny active memories
- Computers: amazing~ the subject of this course
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What Can Text Methods Do?

Haystack metaphor:Improve Reading

- Interpreting the meaning of a sentence or phrase ~» Analyzing a straw
of hay

- Humans: amazing (Straussian political theory, analysis of English

poetry)
- Computers: struggle

- Comparing, Organizing, and Classifying Texts~~ Organizing hay stack

- Humans: terrible. Tiny active memories
- Computers: amazing~ the subject of this course

What we won't do:
- Develop a comprehensive statistical model of language
- Replace the need to read

- Develop a single tool + evaluation for all tasks
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Small Problems are harder than you think

Manually develop categorization scheme for partitioning small (100) set of
documents
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Small Problems are harder than you think
documents

Manually develop categorization scheme for partitioning small (100) set of
- Bell(n) = number of ways of partitioning n objects
- Bell(2) =2 (AB, A B)

- Bell(3) =5 (ABC, AB C, A BC, AC B, A B C)
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- Bell(3) =5 (ABC, AB C, ABC, ACB, ABC()
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Small Problems are harder than you think

Manually develop categorization scheme for partitioning small (100) set of
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Small Problems are harder than you think

Manually develop categorization scheme for partitioning small (100) set of
documents

- Bell(n) = number of ways of partitioning n objects
- Bell(2) =2 (AB, A B)
- Bell(3) =5 (ABC, AB C, ABC, ACB, ABC()
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Small Problems are harder than you think

Manually develop categorization scheme for partitioning small (100) set of
documents

- Bell(n) = number of ways of partitioning n objects
- Bell(2) =2 (AB, A B)
- Bell(3) =5 (ABC, AB C, ABC, ACB, ABC()
- Bell(5) =52
- Bell(100)~ 4.75 x 10'%® partitions
- Big Number:
7 Billion RAs

Impossibly Fast (enumerate one clustering every millisecond)
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Small Problems are harder than you think

Manually develop categorization scheme for partitioning small (100) set of
documents

- Bell(n) = number of ways of partitioning n objects
- Bell(2) =2 (AB, A B)
- Bell(3) =5 (ABC, AB C, ABC, ACB, ABC()
- Bell(5) =52
- Bell(100)~ 4.75 x 10'%® partitions
- Big Number:
7 Billion RAs

Impossibly Fast (enumerate one clustering every millisecond)
Working around the clock (24/7/365)
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Small Problems are harder than you think

Manually develop categorization scheme for partitioning small (100) set of

documents
- Bell(n) =

- Bell(2) =2 (AB, A B)

- Bell(3) =5 (ABC, AB C, ABC, ACB, ABC()

- Bell(5) =52

- Bell(100)~ 4.75 x 10'%® partitions

- Big Number:
7 Billion RAs
Impossibly Fast (enumerate one clustering every millisecond)
Working around the clock (24/7/365)
~ 1.54 x 1084 x

= number of ways of partitioning n objects
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Small Problems are harder than you think

Manually develop categorization scheme for partitioning small (100) set of

documents
- Bell(n) = number of ways of partitioning n objects
- Bell(2) =2 (AB, A B)
- Bell(3) =5 (ABC, AB C, ABC, ACB, ABC()
- Bell(5) =52
- Bell(100)~ 4.75 x 10'%® partitions
- Big Number:
7 Billion RAs

Impossibly Fast (enumerate one clustering every millisecond)
Working around the clock (24/7/365)
~ 1.54 x 10%x (14,000, 000, 000)
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Small Problems are harder than you think

Manually develop categorization scheme for partitioning small (100) set of

documents
- Bell(n) = number of ways of partitioning n objects
- Bell(2) =2 (AB, A B)
- Bell(3) =5 (ABC, AB C, ABC, ACB, ABC()
- Bell(5) =52
- Bell(100)~ 4.75 x 10'%® partitions
- Big Number:
7 Billion RAs

Impossibly Fast (enumerate one clustering every millisecond)
Working around the clock (24/7/365)
~ 1.54 x 10%*x (14,000,000, 000) years
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Small Problems are harder than you think

Manually develop categorization scheme for partitioning small (100) set of

documents
- Bell(n) =

- Bell(2) =2 (AB, A B)

- Bell(3) =5 (ABC, AB C, ABC, ACB, ABC()

- Bell(5) =52

- Bell(100)~ 4.75 x 10'%® partitions

- Big Number:
7 Billion RAs
Impossibly Fast (enumerate one clustering every millisecond)
Working around the clock (24/7/365)
~ 1.54 x 10%*x (14,000,000, 000) years

= number of ways of partitioning n objects

Automated methods can help with even small problems
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A Brief Digression on Computing Languages

Texts processing is active across many computer languages
Goal: useful tools in R

- Reality: if you want automated texts to occupy a central part of
research, you need to know a little
- HTML
- Python (or PERL)
- If you knew JAVA or C, you'd be a step ahead

We'll talk about how to hire programmers to eliminate language gap

I'll post python code on course site [note: Kludgey Python Code]
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Where and How to Find Text Data?

Internet and archives have massive stores of text data (and growing!)
- Prepackaged Data

- Computer and Human intensive Web Scraping

- Archive Materials and Optical Character Recognition
Goal: plan text (.txt) file. (UTF-8, ASCII)
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An obvious plan for data acquisition

- Check prepackaged resources
- Lexis-Nexis (Batch Downloads)
- Proquest
- Research Librarians
- Move to web based search
- Before deciding to scrape a data set:
- Is the HTML standardized? (Our example today: no [Xtreme
webscraping])
- Does the website allow you to scrape? (Not always)
- Can you do it faster by hand? With Mturk?
- Archival research

- Invest in a scanner that allows OCR
- Before making plans to scan, be sure archives allows scanning
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Two examples from prepackaged data sources
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Automated Literature Reviews

How do we conduct literature reviews?
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Automated Literature Reviews

How do we conduct literature reviews?

- Think about literature (ask graduate student working in area for help)
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Automated Literature Reviews

How do we conduct literature reviews?

- Think about literature (ask graduate student working in area for help)
- Make an argument about the deficiency/gaps in that literature
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Automated Literature Reviews

How do we conduct literature reviews?

- Think about literature (ask graduate student working in area for help)
- Make an argument about the deficiency/gaps in that literature

- Cite the prominent articles, make an argument about “conventional
wisdom"” (which is always wrong), call it a day
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Automated Literature Reviews

How do we conduct literature reviews?

- Think about literature (ask graduate student working in area for help)

- Make an argument about the deficiency/gaps in that literature

- Cite the prominent articles, make an argument about “conventional
wisdom"” (which is always wrong), call it a day

Literature reviews and analysis of concept development are difficult text
problems
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Automated Literature Reviews

JSTOR data, now available for download
http://dfr.jstor.org
Live example
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http://dfr.jstor.org 

History of Home Style

Congressional Life Cycle

Prop. Topic

0.02
1

T T T T
1980 1985 1990 1995

Year
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History of Home Style

Comparative Study of Home Style

Prop. Topic

T T T T 1
1980 1985 1990 1995 2000

Year
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History of Home Style

Casework and the Incumbency Advantage

=)
a4
(=]

Prop. Topic

T T T T 1
1980 1985 1990 1995 2000

Year
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History of Home Style

Causes of Roll Call Voting Decisions

Prop. Topic

0.02
1

T T T T 1
1980 1985 1990 1995 2000

Year

Justin Grimmer (Stanford University)

Text as Data



History of Home Style

Ideological Shirking

0.10
|

Prop. Topic
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1980 1985 1990 1995

Year

Justin Grimmer (Stanford University)

1
2000

Text as Data



History of Home Style

Biases in Congressional Communication

0.10

Prop. Topic

0.02
1

T T T T 1
1980 1985 1990 1995 2000

Year
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Intellectual History and Google Books

Scholars of political thought:
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books.google.com

Intellectual History and Google Books

Scholars of political thought: Careful (manual) analysis of texts.
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Intellectual History and Google Books

Scholars of political thought: Careful (manual) analysis of texts.
Many books now available for download thanks to google

Justin Grimmer (Stanford University)

o F
Text as Data


books.google.com

Intellectual History and Google Books

Scholars of political thought: Careful (manual) analysis of texts.

Many books now available for download thanks to google

- books.google.com
- Advanced Search

- Full view only

- Download " .epub”

- Use a converter

Live Example, Part 2.
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books.google.com

Human and Computer Based Web Scraping
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Mechanical Turk
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Mechanical Turk

- Mechanical Turk is an amazon run marketplace for workers (humans)
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Mechanical Turk

- Mechanical Turk is an amazon run marketplace for workers (humans)
- We can replicate this task by asking (bored, poor, bored & poor)
workers to do the task
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Mechanical Turk

- Mechanical Turk is an amazon run marketplace for workers (humans)

- We can replicate this task by asking (bored, poor, bored & poor)
workers to do the task

- Distribute Small Tasks Across Workers
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Mechanical Turk

- Mechanical Turk is an amazon run marketplace for workers (humans)

- We can replicate this task by asking (bored, poor, bored & poor)
workers to do the task

- Distribute Small Tasks Across Workers
Live Example 3: Paul Tonko (D-NY)
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A Brief Introduction to Web Scraping

How do we get other data?
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- Web pages are loaded with text data
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A Brief Introduction to Web Scraping

How do we get other data?
- Web pages are loaded with text data

- But not necessarily prepared for download
- Web scraping:

- Interact with html to extract text from web pages
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A Brief Introduction to Web Scraping

How do we get other data?
- Web pages are loaded with text data

- But not necessarily prepared for download
- Web scraping:

- Interact with html to extract text from web pages
- Requires some programming expertise
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Xtreme Web Scraping

Congressional Web Sites and Press Releases

Web Sites: Mix of professionals, capable amateurs, and horrible html
writers

No coherent structure across websites

- Difficult scraping problem: collecting press releases from a web site
Live Example 4, Paul Tonko (D-NY)

- Identify pages with press releases

- Extract press releases from page
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Other Data Sources/Acquisition

Programming/Data Acquisition Help

- ODesk: submit programming tasks to coders (must be very specific)

- Elance: submit many small tasks to dedicated workers (don't mind
outsourcing work to India/OK with not paying minimum wage)

- Guru: “World's largest online marketplace”
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Conclusion

Today: Introduction and where to get text

Next week: how to represent text quantitatively
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